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Powerful Parallel and Symmetri 3D Thinning Shemes Based onCritial Kernels ∗Gilles Bertrand and Mihel CouprieUniversité Paris-Est, Laboratoire d'Informatique Gaspard-Monge, ESIEE ParisCité Desartes, BP 99, 93162 Noisy-le-Grand Cedex Franeg.bertrand�esiee.fr,m.ouprie�esiee.frSeptember 12, 2012AbstratThe main ontribution of the present artile onsists ofnew 3D parallel and symmetri thinning shemes whihhave the following qualities:- They are e�etive and sound, in the sense that theyare guaranteed to preserve topology. This guarantee isobtained thanks to a theorem on ritial kernels;- They are powerful, in the sense that they removemore points, in one iteration, than any other symmetriparallel thinning sheme;- They are versatile, as onditions for the preservationof geometrial features (e.g., urve extremities orsurfae borders) are independent of those aountingfor topology preservation;- They are e�ient: we provide in this artile a smallset of masks, ating in the grid Z3, that is su�ient, inaddition to the lassial simple point test, to straight-forwardly implement them.Keywords: Thinning algorithm, skeleton, parallel al-gorithm, ritial kernel, ubial omplex, simple point,ollapse.1 IntrodutionComputing the skeleton of a 3D shape is a fundamentalstep in several appliations dealing with shape analysis,shape reognition, registration, visualization, animation,et. A fundamental property of skeletons is topologypreservation: a skeleton must have the same topologialharateristis as the original shape.
∗This work has been partially supported by the �ANR-2010-BLAN-0205 KIDICO� projet.

In disrete grids (Z2, Z3, Z4), a topology-preservingtransformation an be de�ned thanks to the notion ofsimple point [25℄: intuitively, a point of an objet (asubset of Z
d) is alled simple if it an be deleted fromthis objet without altering topology. Let us illustratethis notion by Fig. 1, whih displays a same subset of

Z
2 under two usual representations: as a set of points(left), and as a set of pixels (right). In this example, thepixels (or points) a, b, c are simple but x, y, z, t are not.This notion, pioneered by Duda, Hart, Munson [18℄, Go-lay [20℄ and Rosenfeld [43℄, has sine been the subjetof an abundant literature. In partiular, loal hara-terizations of simple points have been proposed (see e.g.[13, 17℄), on whih e�ient implementation of thinningproedures are based.
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Figure 1: Illustration of 2D simple points/pixels. The set
X is made of the points represented as blak diss on theleft, and by gray pixels on the right. The points/pixels
a, b, c are simple while x, y, z, t are not: deleting x wouldreate a hole in X , deleting y would suppress a hole,deleting z would split a onneted omponent, and delet-ing t would suppress a onneted omponent.The most �natural� way to thin an objet onsists ofremoving some of its border points in parallel. By paral-lel, we mean that the same operation is exeuted simul-1
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(a) (b) ()Figure 2: Di�erent kinds of skeletons: (a) surfae skeleton, (b) urvilinear skeleton, () minimal skeleton.taneously and independently for eah image point. Byrepeating suh a proedure until stability, one an ob-tain a well-entered �skeleton� of the original objet (seeFig. 2). Furthermore, parallel thinning algorithms tendto produe skeletons whih are more robust to small vari-ations of shape ontours, in omparison with sequentialalgorithms whih must make arbitrary hoies regardingthe order of the proessing of points.However, parallel deletion of simple points does not, ingeneral, guarantee topology preservation: see for exam-ple Fig. 1 where the points a and b are both simple, andremoving these two points simultaneously would mergetwo bakground omponents. In fat, suh a guaran-tee is not obvious to obtain, even for the 2D ase (see[16℄, where �fteen published parallel thinning algorithmsare analyzed, and ounter-examples are shown for �ve ofthem).For the 2D ase, A. Rosenfeld introdued in [44℄ amethod that onsists of dividing eah thinning step intofour substeps. Eah of these substeps onsiders as an-didate for deletion, only the simple points that haveno neighbor belonging to the objet in one of the fourmain diretions (north, south, east, west) and have atleast two 8-neighbors belonging to the objet. However,this so-alled diretional strategy annot be straightfor-wardly extended to 3D. In this ase, the six main di-retions are north, south, east, west, up and down. InFig. 3, the voxels x, y are simple voxels that have noneighbor belonging to the objet in the diretion �up�,but if we remove them in parallel, the objet splits.Some authors (see e.g. [9, 33, 39, 38℄) have proposedthinning algorithms based on the so-alled sub�eld strat-egy, a general strategy whih permits the parallel dele-tion of ertain simple points. It onsists of onsidering,

in eah substep, only simple points that belong to a givensubgrid (also alled sub�eld). For example in 2D (resp.3D), four (resp. eight) disjoint sub�elds may be de�nedby saying that two points belong to the same sub�eldif the parity of eah of their oordinates is the same.Variants with four or even two sub�elds, in 3D, havealso been proposed; but additional onditions must beheked to ensure topology preservation.The diretional and the sub�eld strategy share a om-mon drawbak: depending on the order of the onsidereddiretions or sub�elds, one an obtain di�erent skele-tons. An alternative to these strategies onsists of delet-ing points in a symmetri manner. By symmetri, wemean that this operation is invariant by any isometry(an isometry, in Z
d, is a bijetion whih preserves adja-eny relations). For topology preservation, additionalonditions must be veri�ed when deleting simple pointsin this way. Suh onditions are di�ult to design: in-deed, very few symmetri 3D thinning algorithms havebeen published [31, 32, 37, 29, 40℄, and among these, [31℄and [32℄ do not preserve topology (see [27, 28℄).Reently, one of the authors introdued a generalframework, alled ritial kernels [8℄, that permits to

x
yFigure 3: All voxels are simple, the voxels x and y areboth �up� voxels.2
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hek the topologial soundness of parallel thinning al-gorithms in any dimension, and also to design new onesthat preserve topology �by onstrution�.As proven in [12℄, ritial kernels onstitute a non-trivial generalization of all previously proposed frame-works with similar aims, namely minimal non-simplesets [42℄ and P-simple points [6℄. Thanks to ritial ker-nels, we were able to propose in [11℄ nine new 2D thin-ning algorithms whih respond to spei� needs (sym-metry, entering, thinness, geometrial riterions, et.)and whih had no equivalent among previously publishedworks. The lear separation of topologial and geometri-al onstraints, whih is a key feature of this framework,makes easy the design of suh algorithms.The main ontribution of the present artile onsists ofnew 3D parallel and symmetri thinning shemes whihhave the following qualities:- They are e�etive and sound, as the main theorem ofritial kernels and additional properties proven in thisartile provide the guarantee of topology preservation;- They are powerful, in the sense that they remove morepoints, in one iteration, than any other symmetri par-allel thinning sheme. In partiular, they an be used toompute minimal skeletons;- They are versatile, as onditions for the preservationof geometrial features (e.g., urve extremities or surfaeborders) are independent of those aounting for topol-ogy preservation. We give in this artile examples andillustrations of minimal, urvilinear and surfae skele-tons produed using these shemes;- They are e�ient: we provide in this artile a smallset of masks, ating in the grid Z3, that is su�ient, inaddition to the lassial simple point test, to straightfor-wardly implement them.All the proofs of properties stated below are in the ap-pendix. Some preliminary results of the work presentedin this paper appear in [10℄.2 Cubial and Xel ComplexesIn this setion, we give some basi de�nitions for ubi-al omplexes, see also [26, 3, 2℄. We onsider here thethree-dimensional ase. Note that most of the notionsintrodued in the �rst setions make sense in arbitrary
n-dimensional ubial spaes.Let Z be the set of integers. We onsider the familiesof sets F1

0, F1
1, suh that F1

0 = {{a} | a ∈ Z}, F1
1 =

{{a, a + 1} | a ∈ Z}. A subset f of Z3 whih is theCartesian produt of exatly d elements of F1
1 and (n−d)

elements of F1
0 is alled a fae or a d-fae of Z3, d is thedimension of f , we write dim(f) = d.We denote by F

3 the set omposed of all d-faes of
Z3, with d ∈ {0, 1, 2, 3}. A d-fae of Z3 is alled a pointif d = 0, a (unit) segment if d = 1, a (unit) square if
d = 2, a (unit) ube if d = 3.If X is a �nite set of faes in F 3, we write X− = {y ∈
F

3 | y ⊆ x for some x ∈ X}, X− is the losure of X . A�nite set X of faes in F 3 is a ubial omplex (in F 3) if
X = X−. We denote by C3 the olletion omposed ofall suh omplexes.Let X be a �nite set of faes in F 3. We say that Xis a xel omplex (in F 3) if, for any x, y ∈ X , we have
y = x whenever y ⊆ x. We denote by X3 the olletionomposed of all suh omplexes. Observe that, if X ∈ X3and Y ⊆ X , then we have neessarily Y ∈ X

3.If X is a �nite set of faes in F 3, we denote by X+ theset of faes in X whih are maximal for inlusion in X .Thus, if X ∈ C3, we have X+ ∈ X3 and (X+)− = X . If
X ∈ X3, we have X− ∈ C3 and (X−)+ = X .Therefore, it is equivalent, with the above orrespon-denes, to speify a ubial omplex or a xel omplex.See an illustration Fig. 4.

x y

z t(a) (b) ()
(d) (e)Figure 4: (a): Four points x, y, z, t. (b): A graphial rep-resentation of the set of faes {{x, y, z, t}, {x, y}, {z}}.(): A set of faes X , whih is neither a ubial om-plex nor a xel omplex. (d): The set X+, whih is a xelomplex omposed of 4 segments, 1 square, and 1 ube.(e): The set X−, whih is a ubial omplex.3 Simple FaesIntuitively a fae x of a xel omplex X is simple if itsremoval from X �does not hange the topology of X�.In this setion, we propose a de�nition of a simple fae3
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(a) (b) () (d)Figure 5: The ubial omplex of Fig. 4 (e) and threesteps of elementary ollapses.based on the operation of ollapse [47, 19℄. This op-eration, whih is a disrete analogue of a ontinuousdeformation (a homotopy), is de�ned hereafter for anarbitrary ubial omplex X ∈ C 3.Let X ∈ C 3 and x, y ∈ X suh that x ⊂ y. If y isthe only fae of X distint from x that ontains x, wesay that (x, y) is a free pair for X , and that the ubialomplex X \ {x, y} is an elementary ollapse of X .Let X, Y ∈ C 3. We say that X ollapses onto Y ifthere exists a sequene 〈X0, ..., Xk〉 suh that X0 = X ,
Xk = Y , and Xi is an elementary ollapse of Xi−1, i =
1, ..., k. See illustration Fig. 5.Now, we give the de�nition of a simple fae in an ar-bitrary xel omplex X ∈ X 3, see [8℄. It may be seen as adisrete analogue of the one given by T.Y. Kong in [23℄whih lies on ontinuous deformations in the Eulideanspae. See the illustration given Fig. 6.De�nition 1. Let X ∈ X 3 and let x ∈ X . We say that
x is simple for X if X− ollapses onto (X \ {x})−. If xis simple for X , we say that X \ {x} is an elementarythinning of X .Let X, Y ∈ X

3. We say that Y is a thinning of X ifthere exists a sequene 〈X0, ..., Xk〉 suh that X0 = X ,
Xk = Y , and Xi is an elementary thinning of Xi−1,
i = 1, ..., k.Observe that, if Y is a thinning of X , then X− ol-lapses onto Y −.4 Critial KernelsLet X be a xel omplex in F 3. As seen in the introdu-tion, if we remove simultaneously (in parallel) simplefaes from X , we may �hange the topology� of the orig-inal objet X . More preisely, we may obtain a set Ysuh that X− does not ollapse onto Y −.Thus, it is not possible to use diretly the notion of sim-ple fae for thinning disrete objets in a symmetrialmanner.In this setion, we reall a framework for thinningdisrete objets in parallel with the warranty that we do

x

y z

X Y Z T

X− Y − Z− T−Figure 6: Four xel omplexes X , Y = X \ {x}, Z =
Y \ {y}, T = Z \ {z} (X is the xel omplex of Fig. 4(d)). The ubial omplexes X−, Y −, Z−, T− are alsogiven. The fae x is simple for X , y is simple for Y , but
z is not simple for Z, for Z− does not ollapse on T−.

(a) (b)Figure 7: (a) A xel omplex X whih is made of 3 seg-ments, 3 squares, and 4 ubes, (b) the faes whih areessential for X and whih are not faes of X are high-lighted in dark.not alter the topology of these objets [8℄. This methodholds for omplexes of arbitrary dimension. As far aswe know, this is the �rst general method whih permitsto thin arbitrary omplexes in a symmetri way.Let C ∈ X3. We say that C is a d-lique, or a lique,if ∩{x ∈ C} is a d-fae.De�nition 2. Let X ∈ X3 and let x ∈ X−. We saythat x is an essential fae for X if x is preisely theintersetion of all faes of X whih ontain x, i.e., if
x = ∩{y ∈ X | x ⊆ y}. If x is an essential fae for X , wewrite x+

X
= {y ∈ X | x ⊆ y}, and we say that the lique

x+

X
is essential for X .Let x be any fae of X ∈ X3. We observe that x isan essential fae for X and we have x+

X
= {x}. Theessential faes for the xel omplex X of Fig. 7 (a) whihare not faes of X are highlighted Fig. 7 (b).De�nition 3. Let X ∈ X

3 and let x be an essential faefor X . We say that x is regular for X if x is simple for
(X \x+

X
)∪{x}. We say that x is ritial for X if x is notregular for X . If x is ritial (resp. regular) for X , wesay that the lique x+

X
is ritial (resp. regular) for X .4
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Observe that, in the previous de�nition, (X\x+

X
)∪{x}is a xel omplex. If x ∈ X , we have (X \x+

X
)∪{x} = X .Thus, a fae x ∈ X is regular for X if and only if itis simple for X . Observe also that a 0-lique whih isessential for X is neessarily ritial for X . See Fig.8 and 9 whih illustrate the notion of a ritial fae.Note that an alternative and equivalent de�nition of aregular/ritial fae is given in [8℄.

x
y

z

t

(a)
x

y(b) ()
z

t

(d) (e)Figure 8: (a): The xel omplex X of Fig. 7 and fouressential faes x, y, z, t (highlighted). (b): The xelomplex (X \ x+

X
)∪ {x}: x is regular for X . () The xelomplex (X \ y+

X
)∪{y}: y is ritial for X . (d): The xelomplex (X \ z+

X
) ∪ {z}: z is regular for X . (e) The xelomplex (X \ t+

X
) ∪ {t}: t is ritial for X .Remark 4. Let X ∈ X3, let x be an essential fae for

X , and let C be the lique x+

X
. If C is regular for X ,and if x ∈ X , then (as mentioned above) x is simple for

X , and we have C = {x}. Thus X \ C is a thinning of
X : we an remove suh a regular lique from the objetwithout altering the topology. Now let us onsider thease where C is regular but x 6∈ X . For that purpose, let

(a) (b)Figure 9: (a): The xel omplex X of Fig. 7: the faes of
X whih are ritial for X (not simple) are highlighted.(b): The faes whih are ritial for X and whih arenot faes of X are highlighted.us onsider the xel omplex X of Fig. 8 (a) and the faes
x and z . Let C be the lique (made of 2 squares) suhthat C = x+

X
, C is a regular lique for X . We observethat X \ C is a thinning of X (see Fig. 8 (b)). Nowlet C′ = z+

X
(a lique omposed of two ubes) whih isalso a regular lique for X . We note that X \C′ has notthe same topology as X (X has two tunnels and X \C′has only one tunnel, see Fig. 8 (a) and (d)). Thus

X \C′ annot be a thinning of X . In fat, the di�erenebetween these two situations is that the two faes of x+

Xare regular (i.e. simple) for X , while there is a fae of
z+

X
whih is not regular for X (the ube above z). Inthe sequel of this setion, we will give some onditionswhih, in the ontext of ritial faes and ritial liques,ensure that a given subset Y ⊆ X is a thinning of X .The following result is a onsequene of a general the-orem whih holds for omplexes of arbitrary dimensions(see [8℄).If X ∈ X3, the ritial kernel of X is the ubial omplexomposed of all faes that are ritial for X and all faesthat are inluded in these faes.Theorem 5. Let X ∈ X3 and let Y ⊆ X.The xel omplex Y is a thinning of X if Y − ontains theritial kernel of X.In other words, the xel omplex Y is a thinning of Xif Y − ontains all faes that are ritial for X . See Fig.10 whih provides two examples of a omplex Y thatsatis�es the above property.As a diret onsequene of Th. 5, we obtain the follow-ing property whih will be our guideline for the sequel.5
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Corollary 6. Let X ∈ X3 and let Y ⊆ X.The xel omplex Y is a thinning of X if any lique thatis ritial for X ontains at least one fae of Y .We onlude this setion by giving a haraterizationof the omplexes whih satisfy the ondition of Th. 5.Theorem 7. Let X ∈ X3 and let Y ⊆ X. The ubialomplex Y − ontains the ritial kernel of X if and onlyif any Z suh that Y ⊆ Z ⊆ X is a thinning of X.
(a) (b)
() (d)Figure 10: (a): A xel omplex X made of 12 ubes. (b):The faes that are ritial for X are highlighted. () and(d) : two xel omplexes Y ′ ⊆ X and Y ′′ ⊆ X . By Th.5, Y ′ and Y ′′ are both thinnings of X .5 Charaterization of ritialliques in voxel omplexesIn this paper, we investigate a methodology for thinningobjets whih are made of voxels (i.e., unit ubes).For that purpose, we propose, in the following, severalharaterizations of d-liques (with d = 3, 2, 1, 0) whihare ritial for suh objets. We �rst give a few baside�nitions for voxel omplexes.We denote by V3 the olletion of all xel omplexeswhih are omposed solely of unit ubes. A unit ubeis also alled a voxel , an element of V3 is alled a voxelomplex .For example, the xel omplex of Fig. 10 (a) is a voxelomplex, while the one of Fig. 7 (a) is not.

Figure 11: Di�erent types of neighborhoods: N ∗

2 (x)(squares), N ∗

1 (x) (squares and irles), N ∗

0 (x) (squares,irles, and triangles). The voxel x orresponds to theentral point.Let d ∈ {0, 1, 2}. We say that two voxels x, y are
d-adjaent if x ∩ y is a k-fae, with k ≥ d. If x is avoxel, we write Nd(x) for the set of all voxels whihare d-adjaent to x, Nd(x) is the d-neighborhood of x.Note that, for eah voxel x, we have x ∈ Nd(x). We set
N ∗

d
(x) = Nd(x) \ {x}. See an illustration Fig. 11 wherethe voxel x is represented by a point.Let X, Y ∈ V3, with Y ⊆ X . We say that Y is

d-onneted in X if, for any x, y ∈ Y , there exists asequene 〈x0, ..., xk〉 of voxels in X suh that x0 = x,
xk = y, and xi is d-adjaent to xi−1, i = 1, ..., k.We say that X ∈ V3 is d-onneted if X is d-onnetedin X .A 3-lique whih is ritial for X ∈ V 3 is a set om-posed solely of one voxel whih is not simple forX . Thus,any haraterization of simple voxels is su�ient to har-aterize suh liques.The following proposition shows that, when onsider-ing voxel omplexes, De�nition 1 leads to a harateri-zation of simple voxels whih is equivalent to previousones [5, 13, 46, 22, 17℄. If X ∈ V 3, we write X for theset of voxels whih are not in X .Proposition 8. Let X ∈ V 3 and let x ∈ X.The voxel x is simple for X if and only if:1) The set N ∗

0 (x)∩X is non-empty and 0-onneted; and2) The set N ∗

2 (x) ∩ X is non-empty and 2-onneted in
N ∗

1 (x) ∩ X.Let d ∈ {0, 1, 2}. The voxels whih belong to d-liquesthat are ritial for X ∈ V 3 may be deteted by:1) Deteting all d-faes in X− whih are essential for X6
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(Def. 2);2) Deteting all essential d-faes x whih are not simplefor (X \ x+

X
) ∪ {x} (Def. 3);3) Labeling all the voxels of X whih ontain suh faes.In the following, we propose to haraterize ritialliques in a way suh that the omputation of X− isnot neessary.We �rst observe that, up to π/2 rotations, the threeon�gurations C2, C1, and C0 given in Fig. 12 maybe used for the detetion of an arbitrary (regular orritial) lique whih is essential for a given voxelomplex X in V3 (in this �gure a voxel is representedby a point). In fat, it may be seen that:- C2 may be used for deteting a 2-lique C whih isessential for X : there is suh a lique if both voxels Aand B are in X . In this ase, we have C = {A, B}.- C1 may be used for deteting a 1-lique C whih isessential for X : there is suh a lique if both A and Dare in X or both B and C are in X . In this ase, wehave C = {A, B, C, D} ∩ X .- C0 may be used for deteting a 0-lique C whih isessential for X : there is suh a lique if A and H , or Band G, or C and F , or D and E are in X . In this ase,we have C = {A, B, C, D, E, F, G, H} ∩ X .We now introdue a notion of neighborhood whih isfundamental for our purpose.De�nition 9. Let S ∈ V3. The K-neighborhood of S,written K(S), is the set made of all voxels whih are

0-adjaent to eah voxel in S. We set K∗(S) = K(S)\S.We note that we have K(S) = N0(x) whenever S ismade of a single voxel x. We also observe that:- we have K(T ) ⊆ K(S) whenever S ⊆ T ;- we have S ⊆ K(S) whenever S is a lique;
A

B

A

B

D

C

A E

B F

C

D H

G

C2 C1 C0Figure 12: Masks for 2-liques (C2), 1-liques (C1), and
0-liques (C0). Here, a voxel is represented by its entralpoint.
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A E

B F

C

D H

G

K1 K0Figure 13: K-neighborhoods for 2-liques (K2), 1-liques(K1), and 0-liques (K0). A voxel is represented by itsentral point.- we have K(S) = K(T ) whenever S and T are twoliques suh that ∩{x ∈ S} = ∩{x ∈ T }.The K-neighborhoods of the on�gurations C2, C1, and
C0 are given Fig. 13. Observe that we have K∗(S) = ∅for the on�guration C0.Let X ∈ V3. As mentioned earlier, a 0-lique whih isessential for X is neessarily ritial. With the followingtwo propositions, we give some haraterizations for 2-and 1-liques whih are regular for X . Reall that a 2-lique whih is essential for X is neessarily omposedof two voxels whih are 2-adjaent (on�guration C2).Proposition 10. Let X ∈ V3, let C = {x, y} be a 2-lique whih is essential for X. The lique C is regularfor X if and only if:1) The set of voxels K∗(C) ∩ X is non-empty and 0-onneted; and2) There exists two voxels x′, y′ ∈ K∗(C) ∩ X suh that
x′ ∈ N ∗

2 (x), y′ ∈ N ∗

2 (y), and x′ ∈ N ∗

2 (y′).Proposition 11. Let X ∈ V3, let C be a 1-lique whihis essential for X. The lique C is regular for X if andonly if the set of voxels K∗(C) ∩ X is non-empty and
0-onneted.We are now in position to propose some masks fordeteting ritial liques. These masks K2, K1, K0 are7
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y
x (a) B

A(b)Figure 14: (a): The xel omplex X whih is the one ofFig. 10 (a). Here, eah voxel of X is represented bya blak disk. (b): The mask K2, with A, B mathingvoxels x, y of X . Condition ii) of Def. 12 for K2 is notsatis�ed but ondition i) is ful�lled sine the set of voxels
{X0, ..., X7, Y0, ..., Y7} ∩ X is not 0-onneted. Thus, byProp. 13, the voxels x, y onstitute a 2-lique of S whihis ritial for X . See also Fig. 10 (b) where the ritialfae z = x ∩ y is highlighted, we have z+

X
= {x, y}.desribed using Fig. 13. For eah of these masks, we alsoonsider all the masks obtained from them by applying

π/2 rotations about eah axis. We get 7 masks (3 for K2,3 for K1, and 1 for K0). See Fig. 14 for an illustrationof the use of the mask K2.De�nition 12. Let X ∈ V3, and let S be a set ofvoxels of X . We say that:1) S mathes K2 in X if S = {A, B}; andi) the set of voxels {X0, ..., X7, Y0, ..., Y7}∩X is eitherempty or not 0-onneted; orii) for eah i ∈ {0, 2, 4, 6}, Xi or Yi belongs to X .2) S mathes K1 in X if S = {A, B, C, D} ∩ X ; andi) at least one of the sets {A, D}, {B, C} is a subsetof X ; andii) we have either [ U ∩ X 6= ∅ and V ∩ X 6= ∅ ] or
[ U ∩ X = ∅ and V ∩ X = ∅ ], with U = {X0, ..., X3}and V = {Y0, ..., Y3}.3) S mathes K0 in X if S = {A, B, C, D, E, F, G, H}∩Xand at least one of the sets {A, H}, {B, G}, {C, F},
{D, E} is a subset of X .Prop. 13 is a diret onsequene of Prop. 10 and 11.Proposition 13. Let X ∈ V3, let S be a set of voxelsin X, and let d ∈ {2, 1, 0}. The set S is a d-lique whihis ritial for X if and only if S mathes Kd in X.We onlude this setion by giving a haraterizationof simple voxels and regular liques that is based on the

notion of a reduible set of voxels. A reduible set isde�ned reursively as follows.De�nition 14. Let X ∈ V3.We say that X is reduible if either:i) X is omposed of a single voxel; orii) there exists x ∈ X suh that N ∗

0 (x) ∩ X is reduibleand X \ {x} is reduible.The following theorem allows us to haraterize sim-ple voxels with reduible sets, see also [23, 7℄ for otherreursive approahes for simpliity.Theorem 15. Let X ∈ V3 and let x ∈ X. The voxel xis simple for X if and only if N ∗

0 (x) ∩ X is reduible.Thus, a omplex X ∈ V3 is reduible if and only if itis possible to redue X to a single voxel by iterativelyremoving simple voxels.More preisely, X ∈ V3 is reduible if and only if thereexists a sequene 〈x0, ..., xk〉 suh that X = {x0, ..., xk},and xi is simple for {xi, ..., xk}, i ∈ [0, k − 1].The following theorem is an extension of Th. 15 toarbitrary regular liques.Theorem 16. Let X ∈ V3 and let C be a lique thatis essential for X. The lique C is regular for X if andonly if K∗(C) ∩ X is reduible.Thus, Th. 16 makes it possible to haraterize, ina uni�ed way, regular d-liques, with d = 3, 2, 1, 0. Inpartiular, for d = 3, we get the haraterization ofsimple voxels given Th. 15. In this ase, the lique Cis made of a single voxel x, and we have K∗(C) = N ∗

0 (x).Let X ∈ V3 be a reduible omplex whih is notomposed of a single voxel. By the very de�nition ofsuh a omplex, and by Th. 15, there exists a simplevoxel for X suh that X \ {x} is reduible. But if
x is an arbitrary simple voxel for X , then X \ {x}is not neessarily reduible. Suh a situation ourswhen X \ {x} is an objet suh as the so-alled dunehat [48℄ or house with two rooms [14℄, see also [34℄ foralgorithmi issues.The following result shows that there is not enoughspae for suh objets to be in the K-neighborhood of alique.Theorem 17. Let C ∈ V3 suh that C is a lique, andlet S ⊆ K∗(C). If S is reduible, then S\{x} is reduiblewhenever x is a simple voxel for S.8
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Let X ∈ V3 and let C be a lique that is essential for
X . As a onsequene of Th. 16 and 17, determiningwhether C is regular or ritial for X may be done bythe following greedy algorithm RegularClique.Algorithm 1: RegularCliqueData: X ∈ V3, a lique C whih is essential for XResult: Regular

S = K∗(C) ∩ X ;1 repeat2 arbitrarily selet a voxel x that is simple for S;3
S = S \ {x};4 until stability ;5 If Card(S) = 1, then Regular = True;6 Else Regular = False;76 Cruial Kernels and MinimalSkeletonsOur goal is to de�ne a subset of a voxel omplex X thatis guaranteed to inlude at least one voxel of eah liquethat is ritial for X . By Cor. 6, this subset will be athinning of X .We want this subset to be as small as possible inorder to obtain an e�ient thinning proedure. We alsowant our method to be independent of arbitrary hoies,in partiular of a hoie of spei� voxels in a givenritial lique. For that purpose the following notion ofa �maximal ritial fae� was introdued [11, 12℄.Let X ∈ V3 and let x be a ritial fae for X . We saythat x is M-ritial for X if x is not a proper fae ofa fae whih is ritial for X . If x is M-ritial for X ,we say that the lique x+

X
is M-ruial for X . We saythat a voxel x ∈ X is M-ruial for X if x belongs to alique whih is M-ruial for X .If X ∈ V3, we denote by M(X) the set omposedof all voxels that are M-ruial for X , M(X) isthe M-ruial kernel of X . Thus, M(X) is the set ofvoxels of X that ontain a fae whih isM-ritial for X .In Fig. 15 (a), the M-ritial faes of a omplex X arehighlighted (see also Fig. 10 (b) where the ritial faesof the same omplex are given). The M-ruial kernelof X is given Fig. 15 (b).

Remark 18. Let X ∈ V3 and let C ⊆ X . It may beseen that C is an M-ruial lique for X if and only if
C is a ritial lique for X and no proper subset of C isa lique whih is ritial for X .Remark 19. Let X ∈ V3 and let C ⊆ X . It has beenproved that C is non-simple for X whenever C is an
M-ruial lique for X , whih means that the set X \Cis not a thinning of X . In fat, it was shown in [12℄(Th. 28), that a subset of X is an M-ruial lique for
X if and only if it is a minimal non-simple set for X ,see [42, 21, 30, 24℄ for other properties of the so-alledMNS's.By the very de�nition of an M-ruial voxel, M(X)is guaranteed to inlude at least one voxel of eah liquewhih is ritial for X , thus M(X) is a thinning of
X . Nevertheless, through the following observation, itmay be seen that it is possible to obtain a subset ofvoxels of X whih ful�lls the onditions given in thevery beginning of this setion, and whih ontains lessvoxels than M(X).Let us onsider again Fig. 15 (a). The voxel x ontainsan M-ritial 1-fae and thus it belongs to M(X). Butthis 1-fae is also inluded in the voxel y, whih ontainsa 2-fae whih is also M-ritial. This motivates thefollowing reursive de�nition of a ruial voxel whih isbased on dimension.De�nition 20. Let X ∈ V3 and C be a d-lique whihis ritial for X . We say that C is D-ruial for X if:i) d = 3; orii) d ∈ {2, 1, 0} and C does not ontain any voxel be-longing to a d′-lique that is D-ruial for X and suhthat d′ > d.We say that a voxel x ∈ X is D-ruial for X if x belongsto a lique that is D-ruial for X .Note that a voxel that is not simple neessarilyonstitutes a 3-lique whih is D-ruial. Observe alsothat, if d′ 6= d, a voxel x that belongs to a d-liquewhih is D-ruial annot belong to a d′-lique whih isalso D-ruial.If X ∈ V3, we denote by D(X) the set omposed of allvoxels whih are D-ruial for X , D(X) is the D-ruialkernel of X .Again, by the very de�nition of a D-ruial fae, D(X)is guaranteed to inlude at least one voxel of eah liquewhih is ritial for X . Thus, by Cor. 6, D(X) is athinning of X .9
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The following proposition shows that, in the ontext ofthinning, the D-ruial kernel orresponds to an opera-tion whih is �more powerful� than the M-ruial kernel.Theorem 21. Let X ∈ V3. The D-ruial kernel of Xis a subset of its M-ruial kernel.Observe that the example of Fig. 15 (a) showsthat the above inlusion may be strit: the voxel x is
M-ruial for X but not D-ruial for X .Let X ∈ V3. Let 〈X0, ..., Xk〉 be the sequene of dis-tint elements suh that X0 = X , Xk = D(Xk), and
Xi = D(Xi−1), for i = 1, ..., k. The set Xk is the mini-mal D-skeleton of X .In Fig. 15 (), the omplex Z = D(X) is highlighted,the omplexX being the one of Fig. 15 (a). The omplex
Z ′ = D(Z) is given in (d) and (e). We have Z ′ = D(Z ′),thus Z ′ is the minimal D-skeleton of X .Two other examples of minimal D-skeletons are givenFig. 16. We will see in the next setion that a minimal
D-skeleton may be obtained by an algorithm whih is aspeial instane of a generi parallel thinning sheme.7 Three Generi Symmetri Thin-ning ShemesIn this setion, we propose three generi thinningshemes whih permit to ompute a wide variety ofskeletons.For that purpose, we �rst introdue the notion of a D-ruial kernel whih is onstrained to preserve a given set
K (Def. 23), and whih generalizes the de�nition of a D-ruial kernel presented in Se. 6. In fat, for thinningobjets, we often want to keep other voxels than theones that are ruial. Intuitively, the set K orrespondsto a set of features that we want to be preserved by athinning algorithm (like extremities of urves, if we wantto obtain a urvilinear skeleton).All the three proposed thinning shemes are based onsuh onstrained D-ruial kernels.De�nition 22. Let X ∈ V3, K ∈ V3, and let C be a
d-lique whih is ritial for X and suh that C ⊆ X \K.We say that C is D-ruial for 〈X, K〉 if:i) d = 3; orii) d ∈ {2, 1, 0} and C does not ontain any voxel be-longing to a d′-lique whih is D-ruial for 〈X, K〉 andsuh that d′ > d.

x

y (a)
(b) ()
(d) (e)Figure 15: (a): A voxel omplex X and its M-ritialfaes (highlighted). (b): The omplex Y = M(X) ishighlighted. (): The omplex Z = D(X) is highlighted.(d): The omplex Z ′ = D(Z) is highlighted. (e): Wehave Z ′ = D(Z ′): Z ′ is the minimal D-skeleton of X .We say that a voxel x ∈ X is D-ruial for 〈X, K〉 if

x is in K or if x belongs to a lique whih is D-ruialfor 〈X, K〉.De�nition 23. Let X ∈ V3, K ∈ V3. We denote by
D(X, K) the set omposed of all voxels whih are D-ruial for 〈X, K〉, D(X, K) is the D-ruial kernel of Xonstrained by K.From the previous de�nitions and from Cor. 6, weimmediately dedue the following proposition whih en-sures that any onstrained D-ruial kernel of an objetpreserves the topology of this objet.Proposition 24. Let X ∈ V3, K ∈ V3. The D-ruialkernel of X onstrained by K is a thinning of X.By onstrution, the following proedure D-ruialomputes the D-ruial kernel of an objet X ∈ V

3onstrained by K. It onsists of 5 steps, eah stepmay be done in parallel. Voxels that are not simpleand ritial liques may be deteted with the hara-terizations given Prop. 8 and Prop. 13, or with the10

ha
l-0

07
31

08
3,

 v
er

si
on

 1
 - 

12
 S

ep
 2

01
2



(a) (b)Figure 16: Two voxel omplexes and their minimal D-skeleton (in red).uni�ed haraterization given Th. 16 whih an beimplemented using algorithm RegularClique.Algorithm 2: D-ruialData: X ∈ V
3, K ∈ V

3Result: X
R3 := set of all voxels of X whih are not simple for1
X or whih are in K;
R2 := set of all voxels belonging to any 2-lique2 whih is ritial for X and inluded in X \ R3 ;
R1 := set of all voxels belonging to any 1-lique3 whih is ritial for X and inluded in
X \ (R3 ∪ R2) ;
R0 := set of all voxels belonging to any 0-lique4 whih is ritial for X and inluded in
X \ (R3 ∪ R2 ∪ R1) ;
X := R3 ∪ R2 ∪ R1 ∪ R0;5 We present now the �rst thinning sheme whih on-sists in omputing iteratively, starting from X , D-ruialkernels onstrained by a given set K, this onstraint setis �xed from the beginning. By Prop. 24, the result is athinning of X . Furthermore, the result ontains K ∩X .De�nition 25. Let X ∈ V3, K ∈ V3. Let 〈X0, ..., Xk〉be the sequene of distint elements suh that X0 = X ,

Xi = D(Xi−1, K) for i = 1, ..., k, and Xk = D(Xk, K).The set Xk is the D-skeleton of X onstrained by K.Observe that the minimal D-skeleton of an objet Sis a D-skeleton of S onstrained by K, with K = ∅.Note also that the D-skeleton of X onstrained by Kmay be easily obtained by repeating, until stability, the

proedure D-ruial.The seond thinning sheme is based on a �dynamionstraint set�. This onstraint set is de�ned thanksto a funtion Ψ from V3 to V3 whih is �xed from thebeginning. This funtion allows one to de�ne, at eah it-eration, the very subset of the objet whih must be pre-served during the thinning proedure. Again, by Prop.24, the result is a thinning of X .De�nition 26. Let Ψ be a funtion from V
3 to V

3. Let
X ∈ V3 and let 〈X0, ..., Xk〉 be the sequene of distintelements suh that X0 = X , Xi = D(Xi−1, Ψ(Xi−1)) for
i = 1, ..., k, and Xk = D(Xk, Ψ(Xk)). The set Xk is the
D-skeleton of X onstrained by Ψ.The third thinning sheme is based, as above, on adynami onstraint set and a map Ψ from V3 to V3 whihis �xed from the beginning. The di�erene is that theonstraint set is built iteratively from Ψ and from theonstraint obtained at the previous iteration step. ByProp. 24, the result is a thinning of X .De�nition 27. Let Ψ be a funtion from V

3 to V
3. Let

X ∈ V3, K ∈ V3, and let 〈X0, ..., Xk〉 be the sequeneof distint elements suh that X0 = X , K0 = K, Xi =
D(Xi−1, Ki) with Ki = Ki−1 ∪ Ψ(Xi−1) for i = 1, ..., k,and Xk = D(Xk, Kk ∪ Ψ(Xk)). The set Sk is the D-skeleton of X inrementally onstrained by Ψ and K.Again, it may be seen that the D-skeleton of X on-strained by Ψ, or the D-skeleton of X inrementally on-strained by Ψ and K, may be easily obtained by itera-tively applying the proedure D-ruial.8 ExamplesIn this setion, we give several examples of spei�instanes of the three above thinning shemes.A �rst basi example of a D-skeleton onstrained bya set of voxels K is given Fig. 17. Here K is made of5 points, thus the D-skeleton of the original objet Xonstrained by K is a urvilinear shape. Note that a
D-skeleton may ontain some simple points that do notbelong to the onstrained set. In other words suh askeleton may be �thik�, whih is the prie to pay forsymmetry.A seond example of suh a skeleton is given Fig. 18where X is a solid ube and K is a subset of X whih11
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is a solid torus. The D-skeleton of X onstrained by Kis an objet whih ontains the torus and whih has nohole. Sine the topology of the ube is preserved duringthe thinning proess, we see that this method may beused for losing the holes of all objets provided theyare onneted. See also [1℄.The quality of a surfae skeleton is often assessed bythe fat that it ontains, approximately or ompletely,the medial axis of the shape. An easy way to obtain suha skeleton of an objet X is to ompute the D-skeletonof X onstrained by its medial axis MA(X), the medialaxis of X being made of all the enters of the maximalballs inluded in X . Reall that a ball is maximal for
X if it is inluded in X and if it is not a proper subsetof another ball inluded in X [41, 15℄. See Fig. 19 and20 where an example of a D-skeleton onstrained bythe medial axis is given, here the ity-blok distane isonsidered for de�ning the balls involved in the medialaxis. It is well-known that, with the ity-blok distane,the medial axis of a shape an be obtained by detetingthe loal maxima of its distane transform [45℄. Thisprovides an e�ient algorithm for omputing the setMA(X).This strategy is e�etive in 2D, beause the existeneof a single medial axis point is su�ient to generate askeleton branh, even in the ase where the medial axis isdisonneted. However in 3D, the medial axis of ertainsurfae-like objets may be quite sparse, and the skeletononstrained by this medial axis may present unwantedindentations (see the top of Fig. 20).In order to obtain surfae skeletons whih do notpresent suh indentations, we may onstrain the skele-tons with residual voxels. Following the voabulary in-trodued in [11℄, we say that a voxel x in X is a residualvoxel (for X) if it is a border voxel of X whih is not 2-adjaent to any interior voxel of X . Here a border (resp.interior) voxel of X is a voxel of X whih is (resp. whihis not) 2-adjaent to a voxel in X. Intuitively, a residualvoxel an be loated at urvilinear or surfae parts ofthe objet.Let Ψ be the map whih assoiates to X the set om-posed of all residual voxels for X . The D-skeleton of Xonstrained by Ψ is depited Fig. 21, X being the objetof Fig. 19. We observe that no more �indentations� suhas the ones of Fig. 20 appear.As in 2D (see [11℄), this strategy produes a skeletonwhih ontains most of the medial axis points, but notneessarily all of them. For instane, the skeleton shown

Figure 17: Left: in transparent gray, a shape X ; in red,�ve points that will serve as a onstraint set K. Right:the D-skeleton of X onstrained by K.

Figure 18: Left: in transparent gray, an objet X whihis a solid ube; in red, a subset K of X whih is a solidtorus. Right: the D-skeleton of X onstrained by K.Notie that the hole of the torus has been losed.in Fig. 21 ontains 1987 among the 1995 medial axispoints (only 8 are missing).A possible way to keep the good quality of the skele-ton based on residual voxels while preserving all pointsof the medial axis, is to onsider the D-skeleton of X12
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Figure 19: Original objet X . Up: a rendering (proje-tion). Down: two ross-setions.

Figure 20: The D-skeleton of X (the objet of Fig. 19)onstrained by its medial axis.inrementally onstrained by Ψ and K. We set the map
Ψ to be the above map whih assoiates residual vox-els and K to be the medial axis of the original objet
X . When applied to the objet of Fig. 19, this skeletondi�ers only in few voxels with the one of Fig. 21.

Figure 21: The D-skeleton of X (the objet of Fig. 19)onstrained by Ψ, where Ψ is the map whih assoiatesto X the set omposed of all residual voxels for X .9 Disussion and onlusionWe introdued in this paper new general 3D parallelthinning shemes whih are symmetri (invariant byisometries), well de�ned (whih provide results whihdo not depend on any arbitrary hoie), e�etive andsound (thanks to the properties proved in the ritialkernels framework), versatile (allows the user to speifyany additional geometrial ondition), simple to imple-ment and e�ient (they an be implemented through aset of only three masks in addition to the lassial simplepoint test). No previously proposed method exhibits allthese qualities. In partiular, formerly proposed sym-metri parallel thinning algorithms for 3D voxel objetsare very few in the literature, let us disuss eah of them.Two algorithms, [31℄ and [32℄, do not preserve topology(see [27, 28℄). Manzanera et al. proposed several algo-rithms [4, 35, 36℄ that they uni�ed in a ommon frame-work for n-dimensional thinning [37℄. These algorithmsprodue urve skeletons in 2D and surfae skeletons in3D. More reently in 2008, K. Palágyi also proposed asymmetri algorithm for surfae skeletons [40℄. In allthese works, topologial and geometrial onditions an-not be separated, implying that there is no easy way toadapt these algorithms to di�erent geometrial ondi-tions. A symmetri algorithm, based on the framework13
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of P-simple points, has been introdued in [29℄, we shalldisuss it in the next paragraphs.In omparison with most previous works on parallelthinning (symmetri or not), one of the most remark-able features of the proposed sheme is the separation oftopologial and geometrial onditions. The topologialonditions are learly stated in the framework of riti-al kernels and may be heked by di�erent means (seesetion 5). Geometrial onditions are introdued in ageneri way through a onstraint set K or a funtion
Ψ (see setion 7). This brings to our sheme a �exi-bility that allows the user to design spei� onditions,adapted to partiular appliations. There are only threeother general strategies whih allow for suh a separa-tion, namely the sub�eld approah, P-simple points, and
M-ruial liques.The sub�eld strategy, brie�y desribed in the introdu-tion, indeed allows for introduing various geometrialonditions (see [9, 33, 39, 38℄). However, the resultingskeletons are not invariant by isometries.In the framework of P-simple points, C. Lohou and one ofthe authors [29℄ introdued a symmetri thinning shemethat they illustrated by two algorithms, one for urvilin-ear and one for surfae skeletons. Nevertheless, it isnot straightforward to use this framework for propos-ing more powerful thinning operators, as for example athinning algorithm produing a minimal skeleton. Thispoint is disussed in detail and illustrated in [12℄, se-tion 5.Finally, the notion of M-ruial lique [11, 12℄ indeedpermits to design a 3D thinning sheme, whih is pow-erful and �exible enough to produe various types ofskeletons, inluding minimal ones. However, this shemeis less powerful than the one that we propose, whih isbased on D-ruial liques (see disussion in setion 6).And more importantly, it has not been possible up tonow to design a set of masks ating in Z3 for deteting
M-ruial liques.As a prie to pay for symmetry, the obtained skeletonsare not free of simple non-end points; in other words,they are not �thin�. However, the ritial kernels frame-work is �exible enough to permit the design of asym-metri parallel 3D thinning shemes. This is the topiof an ongoing work, where we will introdue new urvi-linear and surfae skeletons and ompare their qualitiesto previously proposed ones.
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arbitrary dimensions.Let S ∈ X3, let R ⊆ S, and let T suh that R ⊆ T ⊆ S.If R− ontains the ritial kernel of S, then T− ollapsesonto R−.Now let X ∈ X3 and let Y ⊆ X suh that Y − ontainsthe ritial kernel of X .Let X \ Y = {x1, ..., xk}. Thus the faes of X \ Y areordered aording to their indies in an arbitrary way.We set X0 = X , Xi = X \ {x1, ..., xi}, i ∈ [1, k].Let i ∈ [1, k]. The omplex Xi ontains Y , thus X−

iontains all the faes whih are ritial for X . By theabove result X−

i−1 ollapses onto X−

i
= [Xi−1 \ {xi}]−,whih means that xi is simple for Xi−1 and that Xi isan elementary thinning of Xi−1 (Def. 1). Thus, the xelomplex Y = Xk is a thinning of X = X0. �Proof of Th. 7.Let X ∈ X3 and let Y ⊆ X .i) Suppose Y − ontains the ritial kernel of X . Let Zsuh that Y ⊆ Z ⊆ X . Sine Z− ontains the ritialkernel of X , by Th. 5, Z is a thinning of X .ii) Suppose Y − does not ontain the ritial kernel of

X . Then, there exists a fae whih is ritial for X in
X− \Y −. There exists also a fae x in X− \Y − whih is
M-ritial for X . Then, the M-ruial lique C = x+

X
isnon-simple for X (see [12℄, Th. 28, and Remark 19), i.e.,the set Z = X \ C is not a thinning of X . We observethat Y ⊆ Z. Thus, there exists Z suh that Y ⊆ Z ⊆ X ,and suh that Z is not a thinning of X . �Proof of Prop. 8. We proved the proposition withthe help of a omputer program. All 226 possible on-�gurations of the neighborhood of a point x in X wereexamined, and for eah of them the equivalene betweende�nition 1 and onditions 1) and 2) was suessfullytested.Proof of Prop. 10. We proved the proposition withthe help of a omputer program. All 216 possible on-�gurations of the K-neighborhood of a 2-lique C in Xwere examined, and for eah of them the equivalenebetween de�nition 3 and onditions 1) and 2) was su-essfully tested.Proof of Prop. 11. We proved the proposition withthe help of a omputer program. All 28 possible on�gu-rations of the K-neighborhood of a 1-lique C in X wereexamined, and for eah of them the equivalene betweende�nition 3 and the ondition was suessfully tested.16
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Proof of Th. 16 (and Th. 15). We proved theproposition with the help of a omputer program. Theondition �K∗(C)∩X is reduible� ould not be hekeddiretly beause of ombinatorial explosion, so we provedthe property reursively with respet to the ardinalityof S = K∗(C) ∩ X . More preisely, knowing that theproposition is trivially true for |S| = 0, we heked itfor all possible on�gurations of n elements of S, for
n = 1, ..., N (with N = 26, 16, 8 for d = 3, 2, 1 respe-tively, C being a d-lique), based on the fat that theproposition was already proved for n−1. For simpliity,the on�gurations of n elements out of N were generatedby sanning all possible 2N on�gurations and seletingthose with preisely n elements.Proof of Th. 17. We proved the theorem with the helpof a omputer program. It is trivially true when |S| = 0(ase of a 0-lique). We heked it for all possible on-�gurations of N elements of S, (with N = 26, 16, 8 for
d = 3, 2, 1 respetively, C being a d-lique). For eah ofthese on�gurations, we tested for eah simple voxel xof S the reduibility of S \ {x}, thanks to Th. 16 andto haraterizations of regular liques (Prop. 13) andsimple points (Prop. 8).Proof of Th. 21.Let X ∈ V

3, let C be a d-lique whih is ritial for
X , and let x = ∩{x ∈ C}.Suppose C is not M-ruial for X . Then there existsa d′-lique D whih is ritial for X , and suh that x isa proper fae of the fae y = ∩{x ∈ D}. Thus, we have
d < d′ and D is a proper subset of C.i) Suppose D is D-ruial for X . It means that C on-tains a voxel belonging to a d′-lique whih is D-ruialfor X , with d′ > d. Thus, C is not D-ruial for X .ii) Suppose D is not D-ruial for X . It means that D(hene also C) ontains a voxel belonging to a d′′-liquewhih is D-ruial for X , with d′′ > d′ > d. Again, Cannot be D-ruial for X .Thus, a lique whih is D-ruial for X is neessarily
M-ruial for X . It follows that the D-ruial kernel of
X is a subset of its M-ruial kernel. �

17
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