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Abstract

In this paper, we study the classical problem of maximization of the sum of the utility of

the terminal wealth and the utility of the consumption, in a case where a sudden jump in the

risk-free interest rate creates incompleteness. The value function of the dual problem is proved

to be solution of a BSDE and the duality between the primal and the dual value functions is

exploited to study the BSDE associated to the primal problem.
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1 Introduction

Many studies in the field of Mathematical Finance are devoted to portfolio and/or consumption

optimization problems. In the case of a complete market, with several risky assets and a savings

account adapted to a Brownian filtration, the problem is fully solved in the monography of

Karatzas and Shreve [11]. The situation in incomplete markets is more delicate, and it is not

easy to give closed form solutions (see, e.g., Menoncin [15]). The incompleteness of the market

may arise from a number of risky assets smaller than the dimension of the driving noise, from

constraints on the portfolio, or from an interest rate which depends on an extra noise, which will

be the case in our setting. The literature about the two first cases of incompleteness is important,
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on the other hand the literature about the third case of incompleteness is reduced. We can cite

[15] for the case of a multidimensional incomplete market (and constant interest rate) and a

Brownian filtration under Markovian framework, where the author solves the problem using

HJB equation. The case where the measurability of the interest rate creates incompleteness is

presented in Bauerle and Rieder [1] in which the dynamics of the interest rate is driven by a

Markov chain.

A classical tool to solve utility maximization problem is the dual approach. This one con-

sists in solving an auxiliary optimization problem, called the dual problem, which is defined

on the set of all equivalent martingale measures. The list of papers studying that problem is

long and we quote only few of them. This approach is used in the case of incomplete markets

generated by a savings account (with constant interest rate) and several stocks (represented by

general semi-martingales) for HARA utility, by Kramkov and Schachermayer [13]. They state

an existence and uniqueness result for the final optimal wealth (associated to an investment

problem), but no explicit formulas are provided. Rogers [16] formulates an abstract theorem

in which the value function of the utility maximization problem and the value function for the

associated dual problem satisfy a bidual relation. As it is mentioned, this procedure can be ap-

plied for a wide class of portfolio and/or consumption optimization problems. Castañeda-Leyva

and Hernández-Hernández [2] deal with a combined investment and consumption optimization

problem with a single risky asset, in a Brownian framework, and where the coefficients of the

model (including the interest rate) are deterministic functions of some external economic factor

process.

Here, we are concerned with the problem of maximization of expected power utility of

both terminal wealth and consumption, in a market with investment opportunities in a savings

account with a stochastic interest rate, which suffers an unexpected shock at some random time

τ , and a stock modeled by a semi-martingale driven by a Brownian motion. The unexpected

shock can for example be due to some serious macroeconomic issue. This one implies that

the market is incomplete. The problem will be solved in the filtration generated by prices (of

stock and savings account) so that the change of regime time τ is a stopping time, under the

immersion hypothesis between the filtration generated by the stock and the general filtration.

Using standard results of duality, the original optimization problem (called the primal prob-

lem) is linked to the dual problem, in which the control parameters take value in the set of

equivalent martingale measures. Then, we prove, by using a similar approach to the one used

in Hu et al.[7] for the case of the primal problem without consumption and more recently in

Cheridito and Hu [3] for the case with consumption, that the value function of that problem

is solution of a particular BSDE, involving one jump. Using a recent result of Kharroubi and

Lim [12], we show that this BSDE has a unique solution. Then, we give the optimal portfolio

and consumption in terms of the solution of this BSDE, and explicit formula for the optimal

wealth process. We also establish a duality result for the dynamic versions of the value func-

tions associated to primal and dual optimization problems which allows us to prove that the

BSDE associated to the primal problem has a unique solution. To the best of our knowledge,

the BSDE methodology has not been used yet for dual problems in the literature.

The paper is organized as follows. In Sections 2 and 3, we describe the set up and model.

In Section 4, we characterize the set of the equivalent martingale measures, then we derive and

solve the dual optimization problem. Finally, Section 5 is dedicated to the link between the

value functions associated to the primal and dual optimization problems and to the computation

of explicit formulas for the optimal wealth process, optimal trading and consumption policies.
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2 Set up

Throughout this paper (Ω,G,P) is a probability space on which is defined a one dimensional

Brownian motion (Bt)t∈[0,T ] whereT <∞ is the terminal time. We denote by F := (Ft)t∈[0,T ]

the natural filtration of B (augmented by the P-null sets) and we assume that FT  G. On the

same probability space is given a finite positive G-measurable random variable τ which is inter-

preted as a random time associated to some unpredicted evolution (with respect to the filtration

F) in the dynamics of the interest rate or to a switching regime. Let H be the càdlàg process

equal to 0 before τ and 1 after τ , i.e., Ht := 1τ≤t. We introduce the filtration G which is

the smallest right-continuous extension of F that makes τ a G-stopping time. More precisely

G := (Gt)t∈[0,T ], where Gt is defined for any t ∈ [0, T ] by

Gt :=
⋂

ǫ>0

G0
t+ǫ ,

where G0
t := Ft ∨ σ(Hu , u ∈ [0, t]), for any t ∈ [0, T ]. Throughout the sequel, we assume the

following classical hypotheses.

(H1) Any F-martingale is a G-martingale, i.e., F is immersed in G.

(H2) The process H admits an absolutely continuous compensator, i.e., there exists a non-

negativeG-adapted process λG, called theG-intensity, such that the compensated process

M defined by

Mt := Ht −

∫ t

0

λGs ds ,

is a G-martingale. Note that the process λG vanishes after τ , and we can write λGt =
λFt1t<τ where λF is an F-adapted process, called the F-intensity of the process H . We

assume that λG is uniformly bounded, hence λF is also uniformly bounded. The existence

of λG implies that τ is not an F-stopping time (in fact, τ avoids F-stopping times and is a

totally inaccessible G-stopping time).

We recall in this framework the standard decomposition of any G-predictable process ψ which

is given by Jeulin [8, Lemma 4.4].

Lemma 1. Any G-predictable process ψ can be decomposed under the following form

ψt = ψ0
t1t≤τ + ψ1

t (τ)1t>τ ,

where the process ψ0 is F-predictable, and for fixed non-negative u, the process ψ1
· (u) is F-

predictable. Furthermore, for any fixed t ∈ [0, T ], the mapping ψ1
t (·) is Ft ⊗ B([0,∞))-

measurable. Moreover, if the process ψ is uniformly bounded, then it is possible to choose

bounded processes ψ0 and ψ1(u).

Remark 1. The process (exp(aBt−
1
2a

2t))t∈[0,T ] being an F-continuous martingale for every

real number a, the immersion property implies that it is a G-continuous martingale, hence B
is a G-Brownian motion. It follows that the stochastic integral

∫
ϑsdBs is well defined for a

G-adapted process ϑ (up to integrability conditions, e.g. if ϑ is bounded) and that this integral

is a G local-martingale.

We define the following spaces which will be used throughout this paper.
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• S∞
F (u, T ) (resp. S∞

G (u, T )) denotes the set of F (resp. G)-progressively measurable

processes X which are essentially bounded on [u, T ], i.e., such that

ess sup
t∈[u,T ]

|Xt| <∞ ;

• S∞,+
F (u, T ) (resp. S∞,+

G (u, T )) denotes the subset of S∞
F (u, T ) (resp. S∞

G (u, T )) such

that Xt ≥ C for a positive constant C;

• H2
F(u, T ) (resp. H2

G(u, T )) denotes the set of square integrable F (resp. G)-predictable

processes X on [u, T ], i.e.,

‖X‖2H2(u,T ) := E
( ∫ T

u

|Xt|
2dt

)
<∞ ;

• H2
G(M) denotes the set of G-predictable processes X on [0, T ] such that

‖X‖2H2

G
(M) := E

(∫ T

0

λGt |Xt|
2dt

)
<∞ .

3 Model

The financial market consists in a savings account with a stochastic interest rate with dynamics

dS0
t = rtS

0
t dt , S0

0 = 1 ,

where r is a non-negativeG-adapted process, and a risky asset whose price process S follows

the dynamics

dSt = St(νtdt+ σtdBt) .

Our assumptions about the market are the following

(H3) r is a G-adapted process of the form

rt = r0t1t<τ + r1t (τ)1t≥τ ,

where r0 is a non-negative uniformly bounded F-adapted process, and for any fixed non-

negative u, r1· (u) is a non-negative uniformly bounded F-adapted process, and for fixed

t ∈ [0, T ], the mapping r1t (·) is Ft ⊗ B([0,∞))-measurable.

(H4) ν and σ are F-adapted processes, and there exists a positive constantC such that |νt| ≤ C
and 1

C
≤ σt ≤ C, t ∈ [0, T ], P - a.s.

Throughout the sequel, we use the notationR for the discount factor defined byRt := e−
∫

t

0
rsds

for any t ∈ [0, T ].

We now consider an investor acting in this market, starting with an initial amount x > 0 and

we denote by π0 and π the part of wealth invested in the savings account and in the risky asset,

and by c the associated instantaneous consumption process. Obviously we have the relation

π0
t = 1 − πt. We denote by Xx,π,c the wealth process associated to the strategy (π, c) and the

initial wealth x, and we assume that the strategy is self-financing, which leads to the equation
{

Xx,π,c
0 = x ,

dXx,π,c
t = Xx,π,c

t

[
(rt + πt(νt − rt))dt+ πtσtdBt

]
− ctdt .

(1)

We consider the set A(x) of the admissible strategies defined below.
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Definition 1. The set A(x) of admissible strategies (π, c) consists in G-predictable processes

(π, c) such that E(
∫ T
0 |πsσs|

2ds) <∞, ct ≥ 0 and Xx,π,c
t > 0 for any t ∈ [0, T ].

We are interested in solving the classical problem of utility maximization defined by

V (x) := sup
(π,c)∈A(x)

E
[ ∫ T

0

U(cs)ds+ U(Xx,π,c
T )

]
, (2)

where the utility function U is U(x) = xp/p with p ∈ (0, 1).

4 Dual approach

To prove that there exists an optimal strategy to the problem (2), we use the dual approach

introduced by Karatzas et al. [10] or Cox and Huang [4].

For that, we introduce the convex conjugate function Ũ of the utility function U , which is

defined by

Ũ(y) := sup
x>0

(U(x) − xy) , y > 0 .

The supremum is attained at the point I(y) := (U ′)−1(y) and a direct computation shows that

I(y) = y
1

p−1 and Ũ(y) = − yq

q
where q := p

p−1 < 0. We also have the conjugate relation

U(x) = inf
y>0

(Ũ(y) + xy) , x > 0 . (3)

Before studying the dual problem, we characterize the set of equivalent martingale measures

which is used to introduce the dual problem.

4.1 Characterization of the set of equivalent martingale measures

The set M(P) of equivalent martingale measures (e.m.m.) is

M(P) := {Q | Q ∼ P, RS is a (Q,G)− local martingale }.

The dynamics of the discounted price of the risky asset S̃ := RS is given by

dS̃t = σtS̃t(dBt + θtdt) , (4)

where θt :=
νt−rt
σt

is the risk premium.

Let Q be a probability measure equivalent to P, defined by its Radon-Nikodym density

dQ
∣∣
Gt

= LQ
t dP

∣∣
Gt
,

where LQ is a positive G-martingale with LQ
0 = 1.

According to the Predictable Representation Theorem (see Kusuoka [14]), and using the

fact that LQ is positive, there exists a pair (a, γ) of G-predictable processes satisfying γt > −1
for any t ∈ [0, T ] such that

dLQ
t = LQ

t−
(atdBt + γtdMt) .
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From Girsanov’s theorem, the process B̂ defined by

B̂t := Bt −

∫ t

0

asds

is a (Q,G)-Brownian motion, and the process M̂ defined by

M̂t :=Mt −

∫ t

0

γsλ
G
s ds = Ht −

∫ t

0

(1 + γs)λ
G
s ds

is a (Q,G)-discontinuous martingale, orthogonal to B̂.

Using (4), we notice that if a probability measure Q is an e.m.m., then at = −θt for any

t ∈ [0, T ].

Lemma 2. The set M(P) is determined by all the probability measures Q equivalent to P,

whose Radon-Nikodym density process has the form

LQ
t = exp

(
−

∫ t

0

θsdBs −
1

2

∫ t

0

|θs|
2ds+

∫ t

0

ln(1 + γs)dHs −

∫ t

0

γsλ
G
s ds

)
,

where γ is a G-predictable process satisfying γt > −1.

To alleviate the notations, for any Q ∈ M(P), we write Lγ for LQ where γ is the process

associated to Q, i.e.,

dLγt = Lγ
t−
(−θtdBt + γtdMt) , Lγ0 = 1.

For anyQ ∈ M(P), we remark thatRXx,π,c+
∫ .
0 Rscsds is a positive (Q,G)-local martingale,

hence a supermartingale, so we have

EQ
(
RTX

x,π,c
T +

∫ T

0

Rscsds
)
≤ x , ∀ (π, c) ∈ A(x) ,

where EQ denotes the expectation w.r.t. the probability measure Q or equivalently

E
(
RTL

γ
TX

x,π,c
T +

∫ T

0

RsL
γ
scsds

)
≤ x , ∀ (π, c) ∈ A(x) . (5)

4.2 Dual optimization problem

We now define the dual problem associated to (2) according to the standard theory of convex

duality. For that, we consider the set Γ of dual admissible processes.

Definition 2. The set Γ of dual admissible processes is the set of G-predictable processes γ
such that there exists two constants A and C satisfying −1 < A ≤ γt ≤ C for any t ∈ [0, τ ]
and γt = 0 for any t ∈ (τ, T ].

It is interesting to work with this admissible set Γ throughout the sequel since, for any

γ ∈ Γ, the process Lγ is a positive G-martingale (indeed, due to the bounds on γ, the process

Lγ is a true martingale), and it satisfies the following integrability property which simplifies

some proofs in the sequel. Moreover, we consider that γ is null after the time τ since the value

of γ after τ does not interfere in the calculus, thus it is possible to fix any value for γ after τ .
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Lemma 3. For any γ ∈ Γ, the process Lγ satisfies

E
[

sup
t∈[0,T ]

(Lγt )
q
]
<∞ .

Proof. From Itô’s formula, we get

d(Lγt )
q = (Lγ

t−
)q
[(1

2
q(q−1)|θt|

2−qλGt γt+λ
G
t

(
(1+γt)

q−1
))
dt−qθtdBt+

(
(1+γt)

q−1
)
dMt

]
.

This can be written under the following form 1

(Lγt )
q = KtE

(
−

∫ .

0

qθsdBs +

∫ .

0

(
(1 + γs)

q − 1
)
dMs

)
t
,

where K is the bounded process defined by

Kt := exp
(∫ t

0

(1
2
q(q − 1)|θs|

2 − qλGs γs + λGs
(
(1 + γs)

q − 1
))
ds
)
.

Therefore, there exists a positive constant C such that

E
[

sup
t∈[0,T ]

(Lγt )
q
]
≤ CE

[
sup
t∈[0,T ]

E
(
−

∫ .

0

qθsdBs

)
t

]
.

We conclude by using the Burkholder-Davis-Gundy inequality.

From the conjugate relation (3), we get for any η > 0, γ ∈ Γ and (π, c) ∈ A(x)

E
[ ∫ T

0

U(cs)ds+ U(Xx,π,c
T )

]
≤ E

[ ∫ T

0

Ũ(ηRsL
γ
s )ds+ Ũ(ηRTL

γ
T )

]

+ ηE
[ ∫ T

0

RsL
γ
scsds+RTL

γ
TX

x,π,c
T

]
.

Using (5), the previous inequality gives for any η > 0, γ ∈ Γ and (π, c) ∈ A(x)

E
[ ∫ T

0

U(cs)ds+ U(Xx,π,c
T )

]
≤ E

[ ∫ T

0

Ũ(ηRsL
γ
s )ds+ Ũ(ηRTL

γ
T )

]
+ ηx .

Therefore, the following inequality holds for any (π, c) ∈ A(x)

E
[ ∫ T

0

U(cs)ds+ U(Xx,π,c
T )

]
≤ inf

η>0,γ∈Γ

(
E
[ ∫ T

0

Ũ(ηRsL
γ
s )ds+ Ũ(ηRTL

γ
T )

]
+ ηx

)
.

We thus obtain

sup
(π,c)∈A(x)

E
[ ∫ T

0

U(cs)ds+ U(Xx,π,c
T )

]
≤ inf

η>0,γ∈Γ

(
E
[ ∫ T

0

Ũ(ηRsL
γ
s )ds+ Ũ(ηRTL

γ
T )
]
+ ηx

)
. (6)

1
E(Y ) denotes the Doléans-Dade stochastic exponential process associated to a generic martingale Y .

7



We introduce the dual problem for any η > 0

Ṽ (η) = inf
γ∈Γ

E
[ ∫ T

0

Ũ(ηRsL
γ
s )ds+ Ũ(ηRTL

γ
T )

]

= −
ηq

q
inf
γ∈Γ

E
[ ∫ T

0

(RsL
γ
s )
qds+ (RTL

γ
T )
q
]
.

We thus consider the following optimization problem

inf
γ∈Γ

E
[ ∫ T

0

(RsL
γ
s )
qds+ (RTL

γ
T )
q
]
.

To solve this problem we use a similar approach to the one used in Cheridito and Hu [3]

which is linked to the dynamic programming principle. More precisely, we look for a family

of processes {(J
(d)
t (γ))t∈[0,T ] : γ ∈ Γ}, called the conditional gains, satisfying the following

conditions

(i) J
(d)
T (γ) = (RTL

γ
T )
q +

∫ T
0 (RsL

γ
s )
qds, for any γ ∈ Γ.

(ii) J
(d)
0 (γ1) = J

(d)
0 (γ2), for any γ1, γ2 ∈ Γ.

(iii) J (d)(γ) is a G-submartingale for any γ ∈ Γ.

(iv) There exists some γ∗ ∈ Γ such that J (d)(γ∗) is a G-martingale.

Under these conditions, we have

J
(d)
0 (γ∗) = inf

γ∈Γ
E
[ ∫ T

0

(RsL
γ
s )
qds+ (RTL

γ
T )
q
]
.

Indeed, using (i) and (iii), we have

J
(d)
0 (γ) ≤ E

[
J
(d)
T (γ)

]
= E

[ ∫ T

0

(RsL
γ
s )
qds+ (RTL

γ
T )
q
]
, (7)

for any γ ∈ Γ. Then, using (i) and (iv), we have

J
(d)
0 (γ∗) = E

[
J
(d)
T (γ∗)

]
= E

[ ∫ T

0

(RsL
γ∗

s )qds+ (RTL
γ∗

T )q
]
. (8)

Therefore, from (ii), (7) and (8), we get for any γ ∈ Γ

E
[ ∫ T

0

(RsL
γ∗

s )qds+(RTL
γ∗

T )q
]
= J

(d)
0 (γ∗) = J

(d)
0 (γ) ≤ E

[ ∫ T

0

(RsL
γ
s )
qds+(RTL

γ
T )
q
]
.

We can see that

J
(d)
0 (γ∗) = inf

γ∈Γ
E
[ ∫ T

0

(RsL
γ
s )
qds+ (RTL

γ
T )
q
]
.

We now construct a family of processes {(J
(d)
t (γ))t∈[0,T ] : γ ∈ Γ} satisfying the previous

conditions using BSDEs. For that we look for J (d)(γ) under the following form, which is based

on the dynamic programming principle,

J
(d)
t (γ) =

∫ t

0

(RsL
γ
s )
qds+ (RtL

γ
t )
qΦt , t ∈ [0, T ] , (9)
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where (Φ, ϕ̂, ϕ̃) is solution in S∞
G (0, T )×H2

G(0, T )×H2
G(M) to

Φt = 1−

∫ T

t

f(s,Φs, ϕ̂s, ϕ̃s)ds−

∫ T

t

ϕ̂sdBs −

∫ T

t

ϕ̃sdHs , (10)

where f is to be determined such that (iii) and (iv) above hold. In order to determine f , we write

J (d)(γ) as the sum of a martingale and a non-decreasing process that is null for some γ∗ ∈ Γ.

Applying integration by parts formula leads us to

d[(RtL
γ
t )
q] = (RtL

γ

t−
)q
[(1

2
q(q − 1)|θt|

2 + λt
(
(1 + γt)

q − 1
)
− q(λGt γt + rt)

)
dt

− qθtdBt +
(
(1 + γt)

q − 1
)
dMt

]
.

(11)

Taking into account (11) and applying integration by parts formula for the product of processes

(RLγ)q and Φ, we get

dJ
(d)
t (γ) = (RtL

γ

t−
)qAγt dt+(RtL

γ

t−
)q
(
(ϕ̂t−qθtΦt)dBt+

[
(Φt−+ϕ̃t)(1+γt)

q−Φt−
]
dMt

)
,

where the predictable finite variation part of J (d)(γ) is given by
∫ ·

0
(RsL

γ

s−
)qAγsds, where

Aγt := λGt at(γt) + 1 + f(t,Φt, ϕ̂t, ϕ̃t)− qrtΦt− +
1

2
q(q − 1)|θt|

2Φt− − λGt Φt− − qθtϕ̂t ,

with

at(x) := (Φt− + ϕ̃t)(1 + x)q − qΦt−x , t ∈ [0, T ] . (12)

In order to obtain a non-negative process Aγ for any γ ∈ Γ (to satisfy the condition (iii))

and that is null for some γ∗ ∈ Γ (to satisfy the condition (iv)), it is obvious that the family

{(Aγt )t∈[0,T ] : γ ∈ Γ} has to satisfy minγ∈ΓA
γ
t = 0. Assuming that there exists a positive

constantC such that Φt ≥ C and Φt−+ϕ̃t ≥ C for any t ∈ [0, τ), we remark that the minimum

is attained for γ∗ defined by

γ∗t :=
( Φt−

Φt− + ϕ̃t

) 1

q−1

− 1

so that

at := min
x>−1

at(x) = (1− q)Φp
t−
(Φt− + ϕ̃t)

1−p + qΦt− .

This leads to the following choice for the generator f

f(t, y, z, u) =
(
qrt −

1

2
q(q − 1)|θt|

2 + (1− q)λGt

)
y + qθtz

−(1− q)λGt (y + u)1−p yp − 1 . (13)

4.3 Solution of the BSDE (10)

We remark that the obtained generator (13) is non standard since it involves in particular the

term (y + u)1−pyp. We shall prove the following result

9



Theorem 1. The BSDE

Φt = 1−

∫ T

t

((
qrs −

1

2
q(q − 1)|θs|

2 + (1 − q)λGs
)
Φs + qθsϕ̂s

− (1− q)λGs (Φs + ϕ̃s)
1−p Φps − 1

)
ds−

∫ T

t

ϕ̂sdBs −

∫ T

t

ϕ̃sdHs ,

(14)

admits a solution (Φ, ϕ̂, ϕ̃) belonging to S∞,+
G (0, T )×H2

G(0, T )×H2
G(M), such that Φt− +

ϕ̃t ≥ 1.

We use the decomposition procedure introduced in [12] to prove Theorem 1. For that, we

transform the BSDE (14) into a recursive system of Brownian BSDEs. In a first step, for each

u ∈ [0, T ], we prove that the following BSDE has a solution on the time interval [u, T ]




dΦ1
t (u) =

[(
qr1t (u)−

1
2q(q − 1)|θ1t (u)|

2
)
Φ1
t (u) + qθ1t (u)ϕ̂

1
t (u)− 1

]
dt+ ϕ̂1

t (u)dBt ,

Φ1
T (u) = 1 ,

(15)

and that the initial value Φ1
u(u) of this BSDE is Fu-measurable. Then, in a second step, we

prove that the following BSDE has a solution on the time interval [0, T ]




dΦ0
t =

[(
qr0t −

1
2q(q − 1)|θ0t |

2 + (1− q)λFt
)
Φ0
t + qθ0t ϕ̂

0
t

−(1− q)λFt (Φ
1
t (t))

1−p(Φ0
t )
p
)
− 1

]
dt+ ϕ̂0

tdBt ,

Φ0
T = 1 ,

(16)

where Φ1 is part of the solution of the BSDE (15).

Proposition 1. For any u ∈ [0, T ], the BSDE (15) admits a unique solution (Φ1(u), ϕ̂1(u)) ∈
S∞
F (u, T )×H2

F(u, T ). Furthermore, 1 ≤ Φ1
t (u) ≤ C for any t ∈ [u, T ] where C is a constant

which does not depend on u.

Proof. Let us fix u ∈ [0, T ]. Since the BSDE (15) is linear with bounded coefficients, the

solution (Φ1(u), ϕ̂1(u)) ∈ S∞
F (u, T )×H2

F(u, T ) is given by

Φ1
t (u) = E

[
ΓtT (u) +

∫ T

t

Γts(u)ds
∣∣∣Ft

]
, t ∈ [u, T ] , (17)

where for a fixed t ∈ [u, T ], (Γts(u))t≤s≤T stands for the adjoint process defined by

Γts(u) = exp
( ∫ s

t

(
− qr1v(u) +

1

2
q(q − 1)|θ1v(u)|

2
)
dv

)
E
(
−

∫ ·

t

qθ1v(u)dBv

)
s
.

To prove that Φ1 is uniformly bounded, we introduce the probability measure Pu, defined on

Ft, for t ≤ T , by its Radon-Nikodym density Zt(u) := E(−
∫ ·

0 qθ
1
v(u)dBv)t, which is a true

martingale, and we denote by Eu the expectation under this probability. Then, by virtue of the

formula (17) and Bayes’ rule, we get

Φ1
t (u) = Eu

[
exp

( ∫ T

t

(
− qr1s(u) +

1

2
q(q − 1)|θ1s(u)|

2
)
ds
)∣∣∣Ft

]

+ Eu
[ ∫ T

t

exp
(∫ s

t

(
− qr1v(u) +

1

2
q(q − 1)|θ1v(u)|

2
)
dv

)
ds
∣∣∣Ft

]
.
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From (H3) and (H4), and since q < 0, there exists a positive constant C which is independent

of u such that 1 ≤ Φ1
t (u) ≤ C for any t ∈ [u, T ].

Proposition 2. The BSDE (16) admits a unique solution (Φ0, ϕ̂0) ∈ S∞,+
F (0, T )×H2

F(0, T ).

Proof. The generator of the BSDE (16) is not defined on the whole space [0, T ]× Ω× R× R
and the generator is not classical. So the proof of this proposition will be performed in several

steps. We first introduce a modified BSDE where the term yp is replaced by (y∨m)p (wherem
is a positive constant which is defined later) to ensure that the generator is well defined on the

whole space [0, T ]× Ω×R× R. We then prove via a comparison theorem that the solution of

the modified BSDE satisfies the initial BSDE. In the last step, we prove the uniqueness of the

solution.

Step 1. Introduction of the modified BSDE.

We consider {
−dYt = ḡ(t, Yt, ŷt)dt− ŷtdBt ,
YT = 1 ,

(18)

where the generator ḡ is given by

ḡ(t, y, z) := 1+
(1
2
q(q−1)|θ0t |

2−qr0t −(1−q)λFt

)
y−qθ0t z+(1−q)λFt (Φ

1
t (t))

1−p(y∨m)p ,

with m := exp
(
(q − 1)Λ

)
, and Λ is a constant such that λFt ≤ Λ for any t ∈ [0, T ].

Since p ∈ (0, 1), there exists a positive constant C such that (y ∨m)p ≤ C(1 + |y|). We

also have Φ1(.) is uniformly bounded, and using assumptions (H2), (H3) and (H4) we obtain

that ḡ has linear growth uniformly w.r.t. y. It follows from Fan and Jiang [6] that the BSDE

(18) has a unique solution (Y, ŷ) ∈ S∞
F (0, T )×H2

F(0, T ).

For the convenience of the reader, we recall the Fan and Jiang conditions, which, in our

setting, are obviously satisfied. The solution of the BSDE

−dYt = f(t, Yt, ŷt)dt− ŷtdBt , YT = 1

is unique if:

(1) the process (f(t, 0, 0))t∈[0,T ] ∈ L2(0, T ),
(2) (dP× dt) a.s., (y, z) → f(ω, t, y, z) is continuous,

(3) f is monotonic in y, i.e., there exists a constant µ ≥ 0, such that, (dP× dt) a.s.,

∀y1, y2, z,
(
f(ω, t, y1, z)− f(ω, t, y2, z)

)
(y1 − y2) ≤ µ(y1 − y2)

2 ,

(4) f has a general growth with respect to y, i.e., (dP × dt) .a.s.,

∀y, |f(ω, t, y, 0)| ≤ |f(ω, t, 0, 0)|+ ϕ(|y|)

where ϕ : R→ R+ is an increasing continuous function,

(5) f is uniformly continuous in z and uniform w.r.t. (ω, t, y), i.e., there exists a continuous,

non-decreasing function φ from R+ to itself with at most linear growth and φ(0) = 0 such that

(dP× dt) a.s.,

∀y, z1, z2, |f(ω, t, y, z1)− f(ω, t, y, z2)| ≤ φ(|z1 − z2|) .

11



Step 2. Comparison.

We now show that the solution of the BSDE (18) is lower bounded bym, and this is accom-

plished via a comparison result for solutions of Brownian BSDEs. We remark that the following

inequality holds

ḡ(t, y, z) ≥
(1
2
q(q − 1)|θ0t |

2 − qr0t − (1− q)λFt

)
y − qθ0t z =: g(t, y, z) .

Therefore, we introduce the following linear BSDE

{
−dZt = g(t, Zt, ẑt)dt− ẑtdBt ,
ZT = 1 .

(19)

In the same way as we proceed with the BSDE (15), we have an explicit form of the solution of

the BSDE (19) given by

Zt = E
(
ΥtT

∣∣Ft
)
,

where (Υts)t≤s≤T stands for the solution of the linear SDE

dΥts = Υts

[(1
2
q(q − 1)|θ0s |

2 − qr0s − (1− q)λFs

)
ds− qθ0sdBs

]
, Υtt = 1 .

We can rewrite the solution of the BSDE (19) under the following form

Zt = E
∗
[
exp

( ∫ T

t

(1
2
q(q − 1)|θ0s |

2 − qr0s − (1− q)λFs
)
ds
)∣∣∣Ft

]
,

where E∗ is the expectation under the probability P∗ defined by its Radon-Nikodym density

dP∗|Ft
= E(−

∫ ·

0 qθ
0
vdBv)tdP|Ft

for any t ∈ [0, T ]. By virtue of the assumption (H4), it

follows that

Zt ≥ E
∗
[
exp

(
−

∫ T

t

(1− q)λFsds
)∣∣∣Ft

]
≥ m .

From the comparison theorem for Brownian BSDEs, we obtain

Yt ≥ Zt ≥ m ,

which implies that Yt ∨m = Yt for any t ∈ [0, T ]. Therefore, (Y, ŷ) is a solution of the BSDE

(16) in S∞,+
F (0, T )×H2

F(0, T ).

Step 3. Uniqueness of the solution. Suppose that the BSDE (16) has two solutions (Y 1, Z1)
and (Y 2, Z2) in S∞,+

F (0, T ) × H2
F(0, T ). Thus, there exists a positive constant c such that

Y 1
t ≥ c and Y 2

t ≥ c for any t ∈ [0, T ]. In this case, (Y 1, Z1) and (Y 2, Z2) are solutions of the

following BSDE {
−dYt = h(t, Yt, ŷt)dt− ŷtdBt ,
YT = 1 ,

where the generator h is given by

h(t, y, z) := 1+
(
−qr0t +

1

2
q(q−1)|θ0t |

2−(1−q)λFt

)
y−qθ0t z+(1−q)λFt (Φ

1
t (t))

1−p(y∨c)p .

From [6], we know that this BSDE admits a unique solution, therefore we get Y 1 = Y 2.

12



We are now able to prove Theorem 1.

Proof. From Propositions 1 and 2 and Theorem 3.1 in [12], we obtain that the BSDE (14)

admits a solution (Φ, ϕ̂, ϕ̃) belonging to S∞
G (0, T )×H2

G(0, T )×H2
G(M) given by

Φt = Φ0
t1t<τ +Φ1

t (τ)1t≥τ ,

ϕ̂t = ϕ̂0
t1t≤τ + ϕ̂1

t (τ)1t>τ ,

ϕ̃t = (Φ1
t (t)− Φ0

t )1t≤τ .

(20)

Note that ϕ̂ and ϕ̃ are G-predictable processes. Moreover, from Propositions 1 and 2, there

exists a positive constant C such that Φt ≥ C. We also remark that

Φt− + ϕ̃t = Φ1
t (t)1t≤τ +Φ1

t (τ)1t>τ = Φ1
t (t ∧ τ) ,

which implies that Φt− + ϕ̃t ≥ 1.

Remark 2. We remark that if r1 and θ1 are deterministic, Φ1 is deterministic. Moreover, if r0,

θ0 and λF are deterministic, Φ0 is deterministic. More precisely, ϕ̂1
t (u) = ϕ̂0

t = 0, and the

BSDEs (15) and (16) turn into ODEs





dΦ1
t (u) =

[(
qr1t (u)−

1
2q(q − 1)|θ1t (u)|

2
)
Φ1
t (u))− 1

]
dt ,

Φ1
T (u) = 1 ,

and
{

dΦ0
t =

[(
qr0t −

1
2q(q − 1)|θ0t |

2 + (1− q)λFt

)
Φ0
t − (1− q)λFt (Φ

1
t (t))

1−p(Φ0
t )
p
)
− 1

]
dt ,

Φ0
T = 1 ,

with an explicit solution for the first equation.

Remark 3. If r1t (u) = r0t for any 0 ≤ u ≤ t ≤ T , there is no change of regime. Our result

is coherent with that obvious observation, since, in that case, we have that θ1t (u) = θ0t for any

0 ≤ u ≤ t ≤ T which implies Φ0
t = Φ1

t (t) for any t ∈ [0, T ].

4.4 A verification Theorem

We now turn to the sufficient condition of optimality. In this part, we prove that the family of

processes {(J
(d)
t (γ))t∈[0,T ] : γ ∈ Γ} defined by J (d)(γ) :=

∫ .
0(RsL

γ
s )
qds+(RLγ)qΦ with Φ

defined by (20) satisfies the conditions (i), (ii), (iii) and (iv). By construction, J (d)(γ) satisfies

the conditions (i) and (ii). As explained previously a candidate to be an optimal γ is a process

γ∗ such that J (d)(γ∗) is a G-martingale, hence this one is

γ∗t :=
( Φt−

Φt− + ϕ̃t

) 1

q−1

− 1 . (21)

Lemma 4. The process γ∗ defined by (21) is admissible.

Proof. By construction, γ∗ is G-predictable. Moreover, from Theorem 1, we remark that there

exists two constants A and C such that −1 < A ≤ γ∗t ≤ C for any t ∈ [0, T ] which implies

that γ∗ ∈ Γ.
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From the above results, J (d)(γ) is a semi-martingale with a local martingale part and a

non-decreasing predictable variation part and J (d)(γ∗) is a local martingale.

Proposition 3. The process J (d)(γ) is a G-submartingale for any admissible process γ ∈ Γ
and is a G-martingale for γ∗ given by (21).

Proof. From (11) and (14), we can rewrite the dynamics of J (d)(γ) under the following form

dJ
(d)
t (γ) = (RtL

γ

t−
)q
(
dMγ

t +Aγt dt
)
,

where

dMγ
t =

(
ϕ̂t − qθtΦt−

)
dBt +

(
(1 + γt)

q
(
Φt− + ϕ̃t

)
− Φt−

)
dMt ,

and

Aγt = λGt
[
at(γt)− at(γ

∗
t )
]
,

with a(.) defined by (12).

From (9), Lemma 3 and since Φ ∈ S∞
G (0, T ), we remark that for any γ ∈ Γ

E
[

sup
t∈[0,T ]

J
(d)
t (γ)

]
<∞ . (22)

For any γ ∈ Γ, we have that
∫ .
0(RsL

γ

s−
)qdMγ

s is a G-local martingale. Hence, there exists

an increasing sequence of G-stopping times (Tn)n∈N valued in [0, T ] satisfying limn→∞ Tn =

T , P − a.s. such that
∫ .∧Tn

0 (RsL
γ

s−
)qdMγ

s is a G-martingale for any n ∈ N. Therefore, we

obtain for any t ∈ [0, T ]

E
[
J
(d)
t∧Tn

(γ)
]
= J

(d)
0 (γ) + E

[ ∫ t∧Tn

0

(RsL
γ

s−
)qAγsds

]
.

Since (RLγ)qAγ ≥ 0, from (22) and using the monotone convergence theorem, we obtain

E
[ ∫ T

0

(RtL
γ

t−
)qAγt dt

]
<∞ .

From (22) and the previous inequality, we have

E
[

sup
t∈[0,T ]

∣∣∣
∫ t

0

(RsL
γ

s−
)qdMγ

s

∣∣∣
]
<∞ .

It follows that the local martingale
∫ .
0(RsL

γ

s−
)qdMγ

s is a true martingale and the process

J (d)(γ) is a G-submartingale for any γ ∈ Γ. We obtain with the same arguments that the

process J (d)(γ∗) is a martingale.

4.5 Uniqueness of the solution of the BSDE (10)

To solve the dual problem it is not necessary to prove the uniqueness of the solution of the

BSDE (10) but this one is useful to characterize the value function of the primal problem in the

last part of this paper. To prove the uniqueness we do not use a comparison theorem for BSDE

but the following dynamic programming principle.
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Lemma 5. Let Y be a process with YT = 1 such that
∫ .
0(RsL

γ
s )
qds + (RLγ)Y is a G-

submartingale for any γ ∈ Γ and there exists γ′ ∈ Γ such that
∫ .
0(RsL

γ′

s )qds + (RLγ
′

)Y
is a G-martingale. Then, we have

Yt = ess inf
γ∈Γ

{ 1

(RtL
γ
t )
q
E
[ ∫ T

t

(RsL
γ
s )
qds+ (RTL

γ
T )
q
∣∣∣Gt

]}
.

Proof. The following inequality holds for any γ ∈ Γ

Yt ≤
1

(RtL
γ
t )
q
E
[ ∫ T

t

(RsL
γ
s )
qds+ (RTL

γ
T )
q
∣∣∣Gt

]
.

Moreover, we know that

Yt =
1

(RtL
γ′

t )q
E
[ ∫ T

t

(RsL
γ′

s )qds+ (RTL
γ′

T )q
∣∣∣Gt

]
.

Therefore, we get

Yt = ess inf
γ∈Γ

{ 1

(RtL
γ
t )
q
E
[ ∫ T

t

(RsL
γ
s )
qds+ (RTL

γ
T )
q
∣∣∣Gt

]}
.

We now prove that any solution of the BSDE (10) satisfies the properties of Lemma 5.

Lemma 6. Let (Φ, ϕ̂, ϕ̃) ∈ S∞,+
G (0, T )×H2

G(0, T )×H2
G(M) be a solution of the BSDE (10).

Then, the process
∫ .
0(RsL

γ
s )
qds+(RLγ)Φ is aG-submartingale for any γ ∈ Γ and there exists

γ′ ∈ Γ such that
∫ .
0(RsL

γ′

s )qds+ (RLγ
′

)Φ is a G-martingale.

Proof. To simplify the notation we denote Wγ :=
∫ .
0
(RsL

γ
s )
qds + (RLγ)Φ. From Itô’s for-

mula, we get for any γ ∈ Γ

Wγ
t = (RtL

γ

t−
)q
{
λt
(
(at(γt)−at(γ

′
t))

)
dt+

(
ϕ̂t−qθtΦt

)
dBt+

(
(1+γt)

q(Φt+φ̃t)−Φt
)
dMt

}
,

where a(.) is defined by (12) and γ′t :=
(

Φ
t−

Φ
t−

+φ̃t

)p−1

− 1.

We know that E[sup0≤t≤T Wγ
t ] < ∞ from Lemma 3 and at(γt) ≥ at(γ

′
t) for any γ ∈ Γ

by definition of γ′. Therefore, using the same arguments as for the proof of Proposition 3 we

can prove that, for any γ ∈ Γ, the process
∫ .
0(RsL

γ
s )
qds + (RLγ)Φ is a G-submartingale and∫ .

0(RsL
γ′

s )qds+ (RLγ
′

)Φ is a G-martingale.

We can conclude from Lemmas 5 and 6 that there exists a unique solution of the BSDE (10)

in S∞,+
G (0, T )×H2

G(0, T )×H2
G(M).

5 Primal problem and optimal strategy

In this section, we deduce the solution of the primal problem (2) using the duality result of the

previous section, and we characterize the value function associated to the primal problem by the

solution of a BSDE which is in relationship with the BSDE (14) associated to the dual problem.

The following proposition shows the existence of an optimal solution for the primal problem

and characterizes this solution in terms of the solution of the dual problem.
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Proposition 4. The optimal strategy is given by

c∗t =
(
η∗RtL

γ∗

t−

) 1

p−1 , π∗
t =

1

σt

( ϕ̂t
Φt−

+
θt

1− p

)
, t ∈ [0, T ] , (23)

where η∗ is defined by

η∗ :=
( x

E
[ ∫ T

0
(RtL

γ∗

t )qdt+ (RTL
γ∗

T )q
]
)p−1

, (24)

and γ∗ is given by (21).

Before proving Proposition 4, we prove that the strategy (π∗, c∗) is admissible.

Lemma 7. The strategy (π∗, c∗) given by (23) is admissible and the wealth associated to

(π∗, c∗) is

Xx,π∗,c∗

t =
(
η∗RtL

γ∗

t

) 1

p−1Φt . (25)

Proof. Using assumptions (H3) and (H4), and the properties of (Φ, ϕ̂, ϕ̃) given by Theorem

1, we obtain that E(
∫ T
0
|π∗
sσs|

2ds) < ∞ and π∗ is G-predictable. Moreover, from (1), the

wealth process Xx,π∗,c∗ associated to the strategy (π∗, c∗) is defined by the SDE




Xx,π∗,c∗

0 = x ,

dXx,π∗,c∗

t = Xx,π∗,c∗

t

[(
rt − (q − 1)|θt|

2 + θt
ϕ̂t

Φ
t−

)
dt+

(
ϕ̂t

Φ
t−

− (q − 1)θt

)
dBt

]

−
(
η∗RtL

γ∗

t−

) 1

p−1 dt .
(26)

From Proposition 3, the process
∫ .
0
(RsL

γ∗

s )qds+(RLγ
∗

)qΦ is a G-martingale, which implies

Φ0 = E
[ ∫ T

0

(RtL
γ∗

t )qdt+ (RTL
γ∗

T )q
]
.

From the previous equality and (24), we remark that (η∗)
1

p−1Φ0 = x . Using Itô’s formula and

(14), we check that (η∗RLγ
∗

)
1

p−1Φ is a solution of the SDE (26). Moreover, this SDE admits

a unique solution. Therefore, we have

Xx,π∗,c∗

t = (η∗RtL
γ∗

t )
1

p−1Φt . (27)

Using the fact that c∗t ≥ 0 and Xx,π∗,c∗

t > 0 for any t ∈ [0, T ], we conclude the proof. In

particular, (η∗RTL
γ∗

T )
1

p−1 = Xx,π∗,c∗

T is hedgeable.

We now prove Proposition 4.

Proof. From (6), we obtain

sup
(π,c)∈A(x)

E
[ ∫ T

0

U(cs)ds+ U(Xx,π,c
T )

]
≤ inf

η>0,γ∈Γ

(
−
ηq

q
E
[ ∫ T

0

(RsL
γ
s )
qds+ (RTL

γ
T )
q
]
+ ηx

)
.

By the definition of γ∗ and η∗, the previous inequality is equivalent to

sup
(π,c)∈A(x)

E
[ ∫ T

0

U(cs)ds+ U(Xx,π,c
T )

]
≤
xp

p

(
E
[ ∫ T

0

(RsL
γ∗

s )qds+ (RTL
γ∗

T )q
])1−p

. (28)
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By definition of (π∗, c∗) and Lemma 7, we remark that

E
[ ∫ T

0

U(c∗s)ds+ U(Xx,π∗,c∗

T )
]
=
xp

p

(
E
[ ∫ T

0

(RsL
γ∗

s )qds+ (RTL
γ∗

T )q
])1−p

. (29)

Since (π∗, c∗) is admissible, from (28) and (29), we obtain

E
[ ∫ T

0

U(c∗s)ds+ U(Xx,π∗,c∗

T )
]
= sup

(π,c)∈A(x)

E
[ ∫ T

0

U(cs)ds+ U(Xx,π,c
T )

]
.

Therefore, (π∗, c∗) is an optimal solution of the primal problem (2).

We now characterize the value function associated to the primal problem using the dynamic

programming principle. For fixed t ∈ [0, T ] we denote by (πt, ct) a strategy defined on the

time interval [t, T ] and (Xt,x,πt,ct

s )s∈[t,T ] the wealth process associated to this strategy given

the initial value at time t is x > 0. We first define the set of control for a fixed t ≤ T .

Definition 3. The set At(x) of admissible strategies (πt, ct) from time t consists in the set ofG-

predictable processes (πts, c
t
s)s∈[t,T ] such that E(

∫ T
t
|πtsσs|

2ds) <∞, cts ≥ 0 andXt,x,πt,ct

s >
0 for any s ∈ [t, T ].

We define the value function at time t ≤ T for the primal problem as follows

V (t, x) :=
xp

p
Ψt(x) , (30)

where

Ψt(x) :=
1

xp
ess sup

(πt,ct)∈At(x)

E
[ ∫ T

t

(cts)
pds+ (Xt,x,πt,ct

T )p
∣∣∣Gt

]
.

For any (πt, ct) ∈ At(x), we define the strategy (π̂t, ĉt) by π̂t := πt and ĉt := ct/x. We

remark that (π̂t, ĉt) ∈ At(1) and Xt,x,πt,ct

T = xXt,1,π̂t,ĉt

T from (1). Combining the previous

relations with the definition of Ψt(x), we obtain Ψt(x) = Ψt(1). For the sake of brevity, we

shall denote Ψt instead of Ψt(1). The value function at time t ≤ T can be rewritten as follows

V (t, x) = xpΨt/p. From (30) and Proposition 4, we have

V (0, x) = E
[ ∫ T

0

(c∗s)
p

p
ds+

(Xx,π∗,c∗

T )p

p

]
= V (x) . (31)

Using dynamic control techniques, we derive the following characterization of the value func-

tion.

Proposition 5. For any (π, c) ∈ A(x),
∫ .
0

(cs)
p

p
ds+ V (., Xx,π,c) is a G-supermartingale and

there exists (π∗, c∗) ∈ A(x) such that
∫ .
0

(c∗s)
p

p
ds+ V (., Xx,π∗,c∗) is a G-martingale.

The proof of this proposition is given in El Karoui [5].

Using these properties, we can characterize the value function with a BSDE.

17



Proposition 6. The process Ψ satisfies the equality Ψ = Φ1−p. Moreover, the process Ψ is

solution of the BSDE

Ψt = 1−

∫ T

t

(
− (1− p)Ψqs − prsΨs +

1

2

p

p− 1
(|θs|

2Ψs +
ψ̂2
s

Ψs
) +

p

p− 1
θsψ̂s

)
ds

−

∫ T

t

ψ̂sdBs −

∫ T

t

ψ̃sdHs .

(32)

Proof. From (23), (25) and (30), we have

∫ T

0

(c∗s)
p

p
ds+ V (T,Xx,π∗,c∗

T ) =
(η∗)q

p

(∫ T

0

(RsL
γ∗

s )qds+ (RTL
γ∗

T )qΦT

)
.

From Propositions 3 and 5, the process
∫ .
0

(c∗s)
p

p
ds + V (., Xx,π∗,c∗

. ) and
∫ .
0
(RsL

γ∗

s )qds +

(RLγ
∗

)qΦ are G-martingales. Therefore, taking the conditional expectation for the above

equality, we obtain

∫ t

0

(c∗s)
pds+ (Xx,π∗,c∗

t )pΨt = (η∗)q
(∫ t

0

(RsL
γ∗

s )qds+ (RtL
γ∗

t )qΦt

)
.

Since c∗t = (η∗RtL
γ∗

t )
1

p−1 , the following relation holds for any t ∈ [0, T ]

(Xx,π∗,c∗

t )pΨt = (η∗)q(RtL
γ∗
t )qΦt . (33)

Therefore, from (27) and (33), we obtain

Φ1−p
t = Ψt .

Applying Itô’s formula to Φ1−p, we obtain

dΦ1−p
t = (1 − p)Φ−p

t−

((
qrt −

1

2
q(q − 1)|θt|

2 + λGt (1− q)
)
Φt + qθtϕ̂t − (1 − q)λGt (Φt− + ϕ̃t)

1−pΦpt

− 1−
1

2
pΦ−1

t ϕ̂2
t

)
dt+ (1 − p)ϕ̂tΦ

−p

t−
dBt +

(
(Φt− + ϕ̃t)

1−p − Φ1−p
t−

)
dHt .

Setting ψ̂ = (1 − p)ϕ̂Φ−p and ψ̃ = (Φ + ϕ̃)1−p − Φ1−p , we get that (Ψ, ψ̂, ψ̃) satisfies

(32).

The above result is not sufficient to characterize the value function of the primal problem

since it is not obvious that the BSDE (32) admits a unique solution. But thanks to the uniqueness

of the solution of the BSDE (14) we get the following characterization of the value function of

the primal problem.

Theorem 2. Ψ is the unique solution of the BSDE (32) in S∞,+
G (0, T )×H2

G(0, T )×H2
G(M).

Proof. Let (y, z, u) ∈ S∞,+
G (0, T )×H2

G(0, T )×H2
G(M) be a solution of the BSDE (32). We

define Yt := y1−qt , Zt := (1 − q)y−qt zt and Ut := (yt− + ut)
1−q − y1−q

t−
for any t ∈ [0, T ].

From Itô’s formula, we get that

dYt =
[(
qrt −

q(q − 1)

2
|θt|

2 + (1− q)λGt
)
Yt − (1− q)λGt (Ut + Yt)

1−pY pt

+qθtZt − 1
]
dt+ ZtdBt + UtdHt .
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Therefore, (Y, Z, U) is solution of the BSDE (14) and, from Subsection 4.5, we have by unique-

ness of the solution Y = Φ and from Proposition 6 we get that y = Ψ.

Remark 4. From Theorems 1 and 2 and Proposition 6, we can conclude that the BSDE (32),

which is associated to the primal problem (2), admits a unique solution (Ψ, ψ̂, ψ̃) belonging to

S∞,+
G (0, T ) × H2

G(0, T ) × H2
G(M). Solving this BSDE directly is not evident because of the

terms Ψq and ψ̂2

Ψ .

Remark 5. We point out that, in the case where the coefficients of the model are determin-

istic functions of some external economic factors and in a Brownian setting, the optimal con-

trol processes (π∗, c∗) have the same expressions that those obtained by Castañeda-Leyva and

Hernández-Hernández [2] (see Proposition 3.1. in [2]).

We also remark that, in a default-density setting, the optimal control processes (π∗, c∗) have the

same expressions that those obtained by Jiao and Pham [9]. In these two papers, the optimal

portfolio is given in terms of the value function of the primal problem or in terms of the solution

of the primal BSDE as

π∗
t =

1

(1− p)σt

( ψ̂t
Ψt−

+ θt

)
.

We have proved that 1
1−p

ψ̂t

Ψ
t−

= ϕ̂t

Φ
t−

, hence, the two solutions have the same form. In particu-

lar, after τ , our setting is that one of a complete market, and our formula is rather standard. In

particular, in the case where r1 and θ1 are deterministic, the investor is myopic, and the optimal

portfolio is π∗ = 1
1−p

θ
σ

. Before τ , the investor takes into account the fact that the interest rate

will change, since the after default value function appears in the before default value function

(this is the term Φ1
t (t) in the associated BSDE).

6 Conclusion

In this paper, we have studied the problem of maximization of expected power utility of both

terminal wealth and consumption in a market with a stochastic interest rate in a model where

immersion holds. We have derived the optimal strategy solving the associated dual problem.

Then, we have given the link between the value functions associated to the primal and dual

problems, which has allowed to characterize the value function of the primal problem by a

BSDE.

If one assumes that B is a G-semi-martingale with canonical decomposition of B in G of

the form

Bt = BG
t +

∫ t

0

µsds ,

with a bounded process µ and BG a G-Brownian motion, the price dynamics of the risky asset

can be rewritten as follows

dSt = St

(
(νt + σtµt)dt+ σtdB

G
t

)
,

where the coefficients ν and σ can be chosen G-predictable and bounded. In this case, the

e.m.m. can be written on the form (indeed, a predictable representation property holds for the

pair BG,M )

dLt = Lt−(atdB
G
t + γtdMt)
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and using the same methods and arguments, we can obtain similar results. The real difficulty is

that one has to assume that the process µ is bounded, and we do not know any condition on τ
which implies that fact.

Without any theoretical difficulty, we can generalize this paper to the case where there are

several ordered changes of regime of interest rate.
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