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Abstract: After a short review of properties of biological place cells, mainly found in the hippocampal region of
rodents, and a brief presentation of a biologically inspired navigation architecture relying on these cells, we will
show how contextual information could facilitate scale changes to large environments. We thus present a simple
model of spatial context allowing to both reduce noise effects on place cells (in biological model) and increase its
computational performance.

1 Introduction

The startling discovery by O’Keefe & Dostrovsky [15] of the spatial correlates of neural activity in the hip-
pocampal system of rodents was a first step to understand the mechanisms by which the brain processes spatial
information. This pioneer work has stimulated a substantial body of computational models to understand the
role of these place sensitive cells in spatial representation and navigation. These cells exhibit the property to
fire selectively in different regions of an environment and were named place cells (PC). PC regions of high
activity are termed place fields. Later, PC like property neurons have been detected in other structures near
the rodent hippocampus. Indeed, neurons of these regions also show significant activity in localized regions of
spatial environments while performing spatial tasks: the superficial [16, 17] and deep [7] entorhinal cortex (EC),
the dentrate gyrus (DG) [11] and the subiculum (SUB) [18] where also grid cells are found [10, 8].

Thus, ensembles of PC are thought to form spatial representations that can be used in navigation and
numerous models have been proposed, see [4] for a short rewiew of navigational model based on PC.

In previous papers [3, 5, 4], we had proposed a control architecture based on transition cells and a cognitive
map for planned navigation tasks (see figure 1). Whereas our model relies on transition cells to navigate, place
cells are still a key element of the system, since PC are constitutive elements of transition cells and successful
spatial task performance is associated with stable place fields (like in rodents). Without describing here the
whole model in detail, we just mention that this architecture has been already successfully tested on a robot
with a panoramic camera in several indoor environments (one room, two rooms and a corridors).

Instead of describing the global architecture, we will focus in this paper on its two main scaling problems
impairing navigation in large environments which have been shown by our last robotics experiments:

1. The computational cost of the PC layer is linear in the number of learned place cells, which itself increases
with the number of environments explored. Moreover this growing number of place cells involved in the
competitions increases the noise level.

2. In our architecture, planning relies on a single cognitive map. Problems appear when one wants to code
several different maps coding for different environments or subsets of a big environment.

A contextual information could overcome these difficulties for large scale navigation:

– First, contextual information could increase the reliability of PC response by selecting only a subset of
the PC population. Appropriate context activity and connectivity reduce the number of place cells in
competition and thus avoid false detection. Furthermore, from a computational point of view, we can also
use this contextual information to increase the simulation speed (reducing the number of place cells that
have to be computed).

– Second, each map could be linked with a kind of context signal (linked for instance to the global recognition
of a room) that should be able to ”reload” the previous learned map (or a part of it) into the different
neural structures used here.

Place fields of rodent hippocampal place cells are strongly determined by the local geometry of the environ-
ment. Thus spatial representations in the hippocampus proper are highly context-specific. It is well established
that modifications in environment change the spatial ring properties of PC, a phenomenon also known as
remapping. The dependencies of the place code on geometric information (visual cues) have been investigated
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Fig. 1. Control architecture for planned navigation involving a simplified view of the loop between the hippocampus,
the prefrontal cortex and the basal ganglia (here limited to ACC).

extensively [13, 14]. However, place representations also exhibit strong dependence on nongeometric informa-
tion such as sounds, odors, somatosensory stimuli and behavioral context [1, 6]. This suggests the existence of
a context-representation system which biases the hypocampal representations. We have chosen to begin our
study by focusing on the geometric information since they seem to be of importance for this context code [12].
Nethertheless, we still have in mind that context doesn’t rely exclusively on this sole information [1]. Future
works will try to integrate nongeometic information in the model (see section 4).

In the next sections, we will show how a simple mechanism, based on a PC system with several resolution
scales, could be a fisrt step toward the constitution of this contextual information. We will show some experiments
enlightening the interest of this model. Finally, we will discuss the results and the future extentions of the model.

2 Model

We present a model of modulation between two levels of PC (context and ECs). We show how such a modulation
could be modified by experience in a Hebbian manner, thus explaining the context specificity of PC.

In order to capture and learn geometric contextual information, context neurons are modelled by a specific
PC layer. We name context neurons (XContext), see figure 2. This new layer takes its inputs from a network
(PrPh) merging recognized landmarks and azimuths in a product space. One can refer to [4] for more details
on this process.

Activity of the the jth context neuron is expressed with the same equation than in our previous work, as
follows:
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With λ1 a decay term and λ2 a learning constant.
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Fig. 2. Our model with a PC layer linked to the context layer. Context neurons also exhibit PC properties but with a
larger firing field.

The recruitment of a new neuron for encoding a new location occurs during the exploration of an unknown
environment. This mechanism is performed autonomously, without any external signal, relying only on the PC
population activity. If the activity of any previously learned place cell is below a fixed recognition threshold
(RT), then a new neuron is recruited for coding this new location. We need PCs of the Context layer with bigger
place field than PCs on ECs. Place field size of the winning PC (or generalization) can be set by adjusting
this RT parameter. We thus choose a RT for the context population lower than the one chosen for the ECs

population (see section 3). If at a given place, several PC respond with an activity greater than the recognition
threshold, a competition takes place so that the most activated cell wins and codes the current location. How-
ever, place fields are overlapping.

The PC population previously identified in our model as cells in the enthorinal cortex (ECs) still also receive
inputs from PrPh. But ECs has now another input from the context layer (possibly located in a cortical area).
PCs are linked to contextual PC with a weigth equal to one. Hence, at the beginning, each PC can receive an
activity from all the context neurons. This choice has been ruled by the following modification of the activity
equation on the ECs layer: activity of a neuron XEC

i is modulated by active context neurons. Thus in the
beginning, since all weigths WContext−ECs

i,j are equal to 1, any PC on ECs can be activated and recruited. The
context modulation operates under a multiplicative form, according to the following equation:
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At this state, since there is always at least one context neuron activated (a large PC), the activity of the PCs
on ECs remains the same as without the context layer. But we want that each PC belongs only to coactivated
contexts and not to the others. This specialization process occurs online via the learning of links WContext−ECs

i,j

following a hebbian learning rule. Coactivation of a context neuron and a PC is detected and memorized (coact).
This information modulates the modification applied to the corresponding synaptic weight:

WContext−ECs

j,i (t) = (WContext−ECs

j,i (t − 1) + (XContext
j ) ∗ XEC

i ∗ c)) − α.(1 − coact) (4)

with α a penality term. If a coactivation has been already detected (c = 1) and both input (context) and PC
are activated, the weight is increased otherwise the weight remains inchanged. Otherwise, if no coactivation has
been yet detected (c = 0), the weight is decreased.

After some time exploring the environment, the PC only keep connections (WContext−ECs > 0) with very
few context neurons. A majority of PC are linked with one context neurons. We thus has constructed a two
resolutions PC system. Context neurons code for a broad and large zone of the environment, whereas ECs can
have a much better resolution. Only two levels of hierarchy have been used, but this could be generelized to
other level (for instance the landmark recognition,or a more generalcontext for PCs)...



3 Experiments

As our context neurons are themselve place cells, they are sensible to the same parameters: proximity of land-
marks (closer landmarks have greater angular displacement when moving) and the complexity of the environment
(number of room, gates etc...). Actually, more locations are learned near walls or doors due to the fast changes
in the angular position that can occur near landmarks, or in the (dis)appearance of landmarks caused by these
obstacles.

We have thus performed several experiments on differents large simulated environments (one room, three
rooms and nine rooms) with serveral RT for the context neurons see fig 3.

Fig. 3. Example of two enviroments. Blue crosses are landmarks. Each colored region represents the place field of a
particular place cell. After a complete exploration of the environment, the entire environment is covered by the place cell
population. Context place field are delimited in black.

For each one, we measure the number of PC linked to each context neuron and the number of context neuron
linked to each PC.

This preliminary statistical study implies very long experiment that can’t be easely performed on a real robot.
We thus use simulation performed over more than 400000 simulation step (around 56h on bi-core bi-processor PC
with 4Gb of ram). Simulation is alway different from real robot experiment; nethertheless simulations are based
on the results of real robotics experiments and some previous simulations were confirmed by real experiments.
Moreover real data experiment are currently performed on an image data base > 100 giga octets corresponding
to a loop of more than 30km and robotic tests will be performed to definitively validate this approach. We use
in our simulation a fixed RTPC since we already have studied the impact of this parameter over a population
of PC [4].

Table 1 show the mean number of cells recruited over several tries with (α = 1, RTPC = 0.966):

These results confirm several expectations:

– the number of PC associated to a given context increases when the context RT decreases (Context PCs
have larger place field)

– this number of PC associated to a given context decreases with the number of rooms. This was expected
since PC are sensible to the complexity induced by obstacle (hiding landmarks). Moreover the global size
of the whole environment remain inchanged for all the environments. Hence, combining the fact that rooms



Context R.T=0.65 1 room 3 rooms 9 rooms

PC recruited on ECs 243 525 647

Context neurons recruited 8 26 61

PC over context neurons 43.87 26.38 23.87

Context R.T=0.75 1 room 3 rooms 9 rooms

PC recruited on ECs 238 531 760

Context neurons recruited 13 51 101

PC over context neurons 43.87 26.38 23.8689

Context R.T=0.85 1 room 3 rooms 9 rooms

PC recruited on ECs 212 501 720

Context neurons recruited 29 106 244

PC over context neurons 17.51 12.38 10.36

Table 1. Mean results for different values of context R.T. and several environments. (See text for an explanation.)

in the three (and nine) rooms environment are much smaller and that landmarks are placed along the wall
leads to an increase of context and place cell neurons.

This last point can balance the apparently medium result found in the three and nine rooms environments,
since we know that, for a given RT, our PC place fields are homothetic: bigger in a large environment than in
a smaller one [9].

Figure 4 shows detailed histograms for the number of PC linked to each context neuron and for the number
of context neuron linked to each PC in two given experiments (one and three rooms environment). RT for the
context layer has been fixed to 0.75 in these simulations.

Finally, we analysed the impact of this contextual bias on the computationnal cost of the PC activity update.
Without contextual information, this cost is linear to the number of PC recruited in the whole environment.
Exploiting a contextual information allows us to only update PCs (compute the equation) linked with the
activated context neurons, since we know the other ones will have a very low activity. Figure 5 shows the number
of place cells updated at each iteration over a periode of 400000 iterations. This result shows an interesting
decrease of the updating process cost. After, the exploration of the entire environment (iteration 0.5105), this
cost is really reduce, divided by two compared to the number of recruted PC (500).

4 Conclusion

The results described in this paper confirm the validity and the computational interest of our model of the
interaction between place cells and contextual cells. However, this work is a very first step toward the constitution
of a context. The model still need to be enhanced, for example by adding other information (like idiothetic
information, other geometric or nongeometric information like sound). Nethertheless, even at this preliminary
stage, this first model leads to several interesting properties, since contextual PCs can:

– increase the reliability of the PC code by limiting the range of the neurons competing for a given place. For
example, a place cell a learned in a part of the environment coded by context neuron A can not pertubate
the competition taking place in another location belonging to a context neuron B if no link exist between
PC a and context neuron B.

– decrease the computatinal cost of the PC update process of the activity .
– provide a multiresolution localisation system to a more general navigation model.

We currently work on experimatal data (images and azimuth) acquired while a car perfomed a loop in the
city near over 30km. We will certainly have to introduce path integration information and to introduce grid cell
activity in order to discriminate ambiguous visual places when visual stimuli are ambiguous (long corridor for
instance). We will also perform experiments on a real robot over a whole floor to validate these first findings.

We also plan to modify the context layer to obtain a distributed code of context, whereby context information
is shared across a population of neurons. We think this kind of coding could take care of the remapping
phenomenon observed in rodent hippocampus as recent finding suggest it [2]. Furthermore, this code could
reduce the number of both needed PC and context neurons.
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Fig. 4. Histograms of the number of PCs linked to each context neuron and of the number of context neurons linked
to each PC respectively a) and b) for a given one room environment and c) and d) for agiven tree rooms environment.
R.T. for the context neurons have been set to 0.75. Histogram c) en d) show how are distributed PCs according to
context neurons. For the one room environment, the first two cells are linked with around half of the PC population size.
In the three room environment, more context neurons are recruited and consequently the distribution is more equally
dispatched, but there are still three major context neurons. Histrograms b) and d) show that the majority of PCs are
link with at most 2 context neurons.
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