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Abstract

We describe an algorithm which, given a factor of a Sturmian word, computes the next

factor of the same length in the lexicographic order in linear time. It is based on a combinatorial

property of Sturmian words which is related with the Burrows-Wheeler transformation.

1 Introduction

Sturmian words are infinite words over a binary alphabet that have exactly n + 1 factors of length
n for each n ≥ 0. Their origin can be traced back to the astronomer J. Bernoulli III. Their first
in-depth study is by Morse and Hedlund [11]. Many combinatorial properties were described in
the paper by Coven and Hedlund [5]. Sturmian words, also called mechanical words, are used in
computer graphics as digital approximation of straight lines. See [8] for a general exposition on
Sturmian words.

In this note, we describe an algorithm which, given a factor of a Sturmian word, computes the
next factor of the same length in the lexicographic order in linear time. It may be used to generate
the set of factors of a Sturmian word of given length in lexicographic order.

This algorithm is based on a characterization of the pairs of factors of the same length of a
Sturmian word which are consecutive in the lexicographic order (Theorem 2). This result is related
with several previously known results and in particular with those of [13], [7] and [3].

The characterization of consecutive pairs of factors is used to prove a combinatorial property
of the set of factors of given length of a Sturmian word (Proposition 3). It says that if one orders
this set lexicographically, the sequence of their last letters taken cyclically has exactly two changes
from a to b or conversely. This is shown to be related to a result of Mantaci, Sciortino and the
second author concerning the Burrows-Wheeler transform of a standard word [10].

The characterization is used in combination with classical algorithms on words (and, in partic-
ular, the algorithm computing the overlap of two words) to obtain a linear algorithm computing
the factor of the same length immediately following a given one in the lexicographic order. The
algorithm itself is used to show that one may generate the set of factors of a Sturmian word of
given length in lexicographic order in quadratic time (Proposition 5).

The paper is organized as follows. In the Section 2, we recall properties of Sturmian words and
their equivalence with mechanical words. In Section 3, we prove the result characterizing pairs of
consecutive factors (Theorem 2). In Section 4 we introduce the notion of right border of a set of
words. We prove that the right border of the set of factors of given length of a Sturmian word
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is conjugate to a word in a∗b∗ (Proposition 3). We also relate this result with that of Mantaci,
Restivo and Sciortino [10]. Finally, in Section 5, we show that one may compute in linear time the
factor of the same length following a given one. The algorithm is used to generate in quadratic
time the set of factors of a given length of a Sturmian word. This complements the results of [6],
of [2] and of [4] who give efficient algorithms to recognize or to generate finite Sturmian words,
which are by definition the finite factors of infinite Sturmian words.

2 Preliminaries

We fix the alphabet to be A = {a, b}. We denote by |w| the length of a word w and by |w|a, |w|b
the number of occurrences of the letters a, b in w.

An infinite word on A is Sturmian if it has for all n ≥ 1, n + 1 factors of length n.
A finite word w is called Sturmian if it is a factor of an infinite Sturmian word.

Example 1 Let f : A∗ → A∗ be the morphism defined by f(a) = ab and f(b) = a. The infinite
word s = limn→∞ fn(a) is a Sturmian word called the Fibonacci word. One has

s = abaababaabaab · · ·

The sequence of words defined by un = fn+1(b) for n ≥ −1 is the sequence of Fibonacci words.
One has un = un−1un−2 for n ≥ 1.

A factor u of a Sturmian word s is right special if ua, ub are factors of s. There is exactly one
right special factor of each length.

A set X of words over the alphabet A is balanced if for any u, v ∈ X with |u| = |v|, one has
||u|b − |v|b| ≤ 1. The set of factors of length n of a Sturmian word is balanced.

For two real numbers α and ρ with 0 ≤ α ≤ 1, we define an infinite word sα,ρ by

sα,ρ(n) =

{

a if ⌊α(n + 1) + ρ⌋ = ⌊αn + ρ⌋
b otherwise

A word of this form is called mechanical. The real number α is the slope of sα,ρ. The following
result is from [8] (Theorem 2.1.13).

Theorem 1 An infinite word s is Sturmian if and only if it is mechanical of irrational slope.

The real number α such that s = sα,ρ is called the slope of s. The word cα defined by sα,0 = acα

is called the characteristic word of slope α. It is a Sturmian word of slope α.
A Sturmian set is the set of factors of a Sturmian word. The slope of F is the slope of a

Sturmian word such that F = F (s). The characteristic word associated with F is the infinite word
cα. It is the unique characteristic word x such that F = F (x).

The right special words in F are the reversals of the prefixes of the characteristic word of the
same slope (Proposition 2.1.23 in [8]).

Example 2 The Fibonacci word is the characteristic word of slope α = 2

3+
√

5
. The word sα,0 is

represented in Figure 1. It is the broken line joining the integer points placed just below the line
y = αx.

2



!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!!

a a b a a b a b a

�
�

�
�

�
�

�
�

�

Figure 1: The word sα,0.

The following result is from [8] (see the proof of Proposition 2.1.17).

Proposition 1 Let s be a Sturmian word with slope α. Then w ∈ F (s) if and only if for any
factor u of w one has

|u|b − 1 < α|u| < |u|b + 1. (1)

Corollary 1 Let F be a Sturmian set. If ra, rba ∈ F , then rab ∈ F .

Proof Let α be the slope of F . Let u be a factor of rab. If u is a factor of ra, then Inequality (1)
holds. Otherwise, u is a suffix of rab. If u is a suffix of ab, then Inequality (1) holds because
ab ∈ F . Otherwise u = tab where t is a suffix of r. Since rba ∈ F , Inequality (1) holds for tba and
thus it holds for tab.

Corollary 2 Let F be a Sturmian set. If rabsa, rbasb, bsb ∈ F , then rabsb ∈ F .

Proof Let α be the slope of F . Let u be a factor of rabsb. We show that Inequality (1) holds for
u and thus that rabsb ∈ F by Proposition 1. If u is a factor of rabs, it is a factor of rabsa ∈ F
and thus Inequality (1) holds. Assume next that u is a suffix of rabsb. If absb is a suffix of u, set
u = wabsb. Since |u|b = |wbasb|b and since wbasb is a factor of rbasb ∈ F , (1) holds for u. Finally,
if u is a suffix of bsb ∈ F , then Inequality (1) holds for u.

Note that the conclusion of Corollary 2 expresses the fact that the word rabs is right special.
A standard pair is a a pair (u, v) of words obtained starting from the pair (a, b) using the two

transformations Γ, ∆ defined by

Γ(u, v) = (u, uv), ∆(u, v) = (vu, v).

A word is standard if it appears as a component of a standard pair.

Example 3 The Fibonacci words are standard. Indeed, (u0, u−1) = (a, b) and for n ≥ 1,
(u2n+2, u2n+1) = ∆Γ(u2n, u2n+1).
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Let (d1, d2, . . . , dn, . . .) be a sequence of integers with d1 ≥ 0 and dn > 0 for n > 1. To such a
sequence, we associate a sequence (sn)n≥−1 of words by

s−1 = b, s0 = a, sn = sdn

n−1
sn−2 (n ≥ 1). (2)

The sequence (sn)n≥−1 is a standard sequence and the sequence (d1, d2, . . .) is its directive sequence.
Every standard word occurs in some standard sequence and every word occurring in a standard
sequence is standard [8].

Example 4 The standard sequence associated with the sequence (1, 1, . . .) is the sequence of
Fibonacci words.

We denote by [a0, a1, · · · ] the continuous fraction

a0 +
1

a1 +
1

.. .

and by [a0, a1, . . . , an] the corresponding truncated fraction. For an infinite continuous fraction
α = [a0, a1, . . .], the rational numbers [a0, a1, . . . , an] for n ≥ 0 are called the convergents to α. It
is classical that [a0, . . . , an] = pn/qn where the integers pn, qn are given by p0 = a0, p1 = a1a0 + 1,
q0 = 1, q1 = a1 and the recurrence relations

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2 (3)

for n ≥ 2.

Example 5 The continuous fraction developement of α = 2/(3 +
√

5) is [0, 2, 1, 1, . . .]. The se-
quence of convergents is 1

2
, 1

3
, 2

5
, . . ..

Let α < 1 be an irrational number and let F be the Sturmian set with slope α. Let α =
[0, 1 + d1, d2, . . .] be the continuous fraction expansion of the irrational α and let (sn) be the
standard sequence associated with (d1, d2, . . .). Then the words sn are prefixes of the characteristic
word cα and for any n ≥ 1, all conjugates of sn are in F . Every element of F of length |sn| is a
conjugate of sn except one called the singular factor of length |sn|. Moreover, a singular factor is
of the form aua or bub (see [13] or Exercise 2.2.15 in [8]).

By Proposition 2.2.15 in [8], for any pair h, m of relatively prime integers with 1 ≤ h < m,
there are exactly two standard words with h ocurrences of b and m−h occurrences of a, which are
of the form zab and zba. The words azb and bza are called Christoffel words.

Let α < 1 be an irrational number and let [0, 1+d1, d2, . . .] be the continuous fraction expansion
of α. Let (sn) be the standard sequence associated with the sequence (d1, d2, . . .). The comparison
of the recurrence relations given in Equations (2) and (3) shows that the sequence of convergents
pn/qn of the continuous fraction expansion of α is related to the sequence (sn) of standard words
by

pn = |sn|b, qn = |sn| (4)
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3 Consecutive factors

We will use the following characterization of consecutive elements in a Sturmian set.

Theorem 2 Let F be a Sturmian set. Two words u, v of F of the same length are consecutive in
the lexicographic order if and only if u = rabs and v = rbas or if u = ra and v = rb.

This result can be obtained from previously known properties of Sturmian words. We first describe
these connections and then give a direct proof to make this paper self-contained.

The fact that the condition is sufficient is a direct consequence of the balance property of
standard words (this argument is detailed below in the direct proof of the theorem). To see that
it is necessary, consider a Christoffel word of length n of the form w = aub. Then two conjugates
of w which are consecutive for the lexicographic order are of the form rabs and rbas (Corollary
5.1 in [3]). This gives Theorem 2 since any factor of a Sturmian word is a factor of some standard
factor.

Another deduction of Theorem 2 can be made using results from [7] and a result from [12]
asserting that if axb and bxa are Sturmian, then they are conjugate. It follows then that if x = rs,
then rabs and rbas are Sturmian whence our statement.

Note that Theorem 2 is not true for consecutive Sturmian words (not necessarily factors of
the same Sturmian word). Indeed, for any n ≥ 2, abn and ban are consecutive Sturmian words of
length n + 1 but they are not of the indicated form.
Proof of Theorem 2. Assume first that u = rabs and v = rbas. If u, v are not consecutive, we have
s = taw with rabtb ∈ F . Since v = rbas, the word ata is in F . But the fact that btb and ata are
in F contradicts the balance property. Thus u, v are consecutive. This shows that the condition is
sufficient.

Let us prove the converse. We may assume that bb /∈ F . Since u, v are consecutive, we have
u = raw and v = rbx for some r ∈ F and w, x ∈ F of the same length. We may assume that w, x
are not empty. Since bb /∈ F , we have x = az. Assume that the first letter of w is a. By Corollary 1,
we have rab ∈ F . Since rab is a prefix of a word w of F of length n and since u < w < v, this
contradicts the hypothesis that u, v are consecutive. Thus the first letter of w is b. Set w = by.
We have therefore

u = raby, v = rbaz.

Let us show by induction on the length of y, z that y = z.
The property is true if y, z are empty. Assume the contrary. Then, by induction hypothesis,

we have y, z ∈ sA for some word s.
Let us first show that y = sa and z = sb is impossible. Since s is right special, one of as, bs

has to be right special. If bs is right special, then rabs is right special by Corollary 2. But then
u = rabsa < rabsb < rbasb = v contrary to the assumption that u, v are consecutive. Similarly, if
as is right special, we obtain rbasa ∈ F by the symmetric statement of Corollary 2 obtained by
exchanging a and b. Thus u < rbasa < rbasb, a contradiction.

Assume next that y = sb and z = sa. We would then have asa, bsb ∈ F , a contradiction with
the balance property of F .

Thus either y = sa, z = sa or y = sb, z = sb and thus y = z.

The following statement is a direct consequence of Theorem 2.
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Corollary 3 Let F be a Sturmian set and let n ≥ 1. For any word u in F ∩ An which is not
maximal for the lexicographic order in F ∩An, there is a prefix r of u such that

(i) r is right special,

(ii) u = rabs or u = ra.

The element of F ∩An following u is the word rbas (or rb if u = ra) where r is the longest prefix
of u such that conditions (i) and (ii) hold.

The longest prefix of u such that conditions (i) and (ii) hold is called the principal prefix of u.
We add the following statement to Theorem 2. It complements the description of the cycle

formed by consecutive elements with the first following the last one.

Proposition 2 Let F be a Sturmian set and let n ≥ 1. The first and the last elements of F ∩An

have the form u = as, v = bs.

Proof Let us prove the assertion by induction on n. It is true for n = 1. Next, suppose that n ≥ 2.
By induction hypothesis, the first and the last elements of F ∩ An−1 have the form as, bs. Thus
u ∈ asA and v ∈ bsA. We cannot have u = asa and v = bsb by the balance property. We cannot
have either u = asb and v = bsa. Indeed, either as or bs is right special and thus either asa or bsb
is in F , a contradiction. This proves that u = asa, v = bsa or u = asb, v = bsb.

Note that the word s in Proposition 2 is the left special factor of length n − 1. In a similar way,
the word s of Theorem 2 is left special.

Note additionally that proposition 2 can also be deduced from the fact that if n is the length
of a standard factor of a Sturmian word, the lexicographic minimal and maximal elements of its
conjugacy class have the form aub and bua (see [3] for example).

Example 6 Let F be the Fibonacci set. The words of F of length at most 10 appear in Figure 2.
Note that the first and the last element have the form as, bs where s is the prefix of length 9 of
the Fibonacci word.

4 Right borders

Let X be a finite set of nonempty words, let (u0, u1, . . . , un) be the list of elements of X in increasing
lexicographic order and let ai be the last letter of ui for 0 ≤ i ≤ n. The right border of X is the
word a0a1 · · · an. We use Theorem 2 to prove the following result.

Proposition 3 For n ≥ 1, the right border of the set F ∩An is conjugate to a word in a∗b∗.

Proof Set F ∩ An = {u0, u1, . . . , un} and let vn = a0a1 · · · an be the right border of F ∩ An.
For n = 1, we have a0 = a and a1 = b and thus v1 = ab. Assuming that bb /∈ F , we have
F ∩A2 = {aa, ab, ba} and thus v2 = aba. Thus the property holds for n ≤ 2.

Assume now that n ≥ 2. For 0 ≤ i ≤ n, let wi, zi be the prefixes of ui of length n − 1, n− 2
respectively. Let i0 be the least index such that wi is right special and i1 be the least index such
that zi is right special.

6



a

b

a

b

a

b

a

a

b

a

a

b

b

a

a

b

b

a

a

a

b

a

a

a

a

b

b

a

a

a

b

b

b

a

a

b

b

b

a

a

a

a

a

b

a

a

a

a

a

b

b

b

b

a

a

a

b

b

b

b

a

a

a

a

a

Figure 2: The Fibonacci set

We claim that ai = ai+1 for all indices i such that 0 ≤ i < n and i 6= i0, i1. Indeed, by
Theorem 2, we have ui = rabs and ui+1 = rbas with s 6= 1 and thus ai, ai+1 are equal to the last
letter of s. Moreover a0 = an by Proposition 2. We have

vn =

{

ai0+1bi1−i0an−i1 if i0 < i1

bi1+1ai0−i1bn−i0 otherwise

This proves that vn is conjugate to a word in a∗b∗.

Note that Proposition 3 can also be stated in an equivalent way as follows. Let M be the n×n
matrix with elements in A such that its i-th row is, for 1 ≤ i ≤ n, the i-th element of F ∩ An in
lexicographic order (we identify a word with an n-vector with elements in A). Then Proposition 3
is equivalent to the assertion that each column of M is conjugate to a word in a∗b∗. Indeed, let uj

be the j-th element of F ∩Ai in the lexicographic order and let nj be the number of elements in
F ∩An which have uj as a prefix. Then the i-th column ci of M is obtained from the border wi of
the set F ∩Ai by repeating nj times the j-th letter of wi. The fact that wi is conjugate to a word
in a∗b∗ implies clearly that ci has the same property.

Example 7 Let F be the Fibonacci set. The set of words of F of length 10 is listed in Table 1.
For each word except for the maximal one, we have indicated its principal prefix. Note that the
lengths of the principal prefixes are all distinct, as a consequence of the fact that a principal prefix
is right special.

Proposition 3 is related with another result proved in [10] that we introduce now.
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a a b a a b a b a a

a a b a b a a b a a

a a b a b a a b a b

a b a a b a a b a b

a b a a b a b a a b

a b a b a a b a a b

a b a b a a b a b a

b a a b a a b a b a

b a a b a b a a b a

b a b a a b a a b a

b a b a a b a b a a

Table 1: The factors of length 10 of the Fibonacci word

a a b r a c a d a b r
a b r a a b r a c a d
a b r a c a d a b r a
a c a d a b r a a b r
a d a b r a a b r a c
b r a a b r a c a d a
b r a c a d a b r a a
c a d a b r a a b r a
d a b r a a b r a c a
r a a b r a c a d a b
r a c a d a b r a a b

Table 2: The Burrows-Wheeler transform

The Burrows-Wheeler transform of a primitive word w is the word denoted T (w) which is the
right border of the set of conjugates of w.

Example 8 We have T (abracadabra) = rdarcaaaabb as shown in Table 2

The following result appears in [10] (Theorem 9).

Theorem 3 One has T (w) = bpaq with p, q relatively prime if and only if w is a conjugate of a
standard word.

Example 9 The Fibonacci word w = abaababa is standard and T (w) = b3a5.

Let F be Sturmian set of slope α. Let (sn) be the standard sequence associated with the
characteristic word cα. For any integer m of the form |sn|, the set F ∩ Am is the union of the
set X of conjugates of sn and of the singular factor of length m. Since the right border of X and
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F ∩Am differ by one letter, the fact that the first is conjugate to a word in a∗b∗ (the only if part
of Theorem 3) follows also from Proposition 3.

Note also that the singular factor is always the first or the last element word in F ∩ Am. Let
indeed sn = pnxy with x, y ∈ A. Then pn is palindromic and the singular factor of length m = |sn|
is wn = xsny−1 = xpnx. For x = a, wn is the first element of F ∩Am and for x = b, it is the last
one.

Example 10 The set Y of factors of length 8 of the Fibonacci word is represented in Table 3. The
associated standard sequence is the Fibonacci sequence (b, a, ab, aba, abaab, abaababa, . . .). Thus the
set Y is formed of the set X of conjugates of abaababa and the singular factor babaabab (represented
in boldface). The right border of Y is b3a5b while the right border of X is b3a5.

a a b a a b a b
a a b a b a a b
a b a a b a a b
a b a a b a b a
a b a b a a b a
b a a b a a b a
b a a b a b a a
b a b a a b a a
b a b a a b a b

Table 3: The factors of length 8 of the Fibonacci word

5 Generating Sturmian sets

We show in this section that Theorem 2 can be used to compute in linear time the factor of the
same length of a Sturmian word which follows a given one in the lexicographic order. We use this
algorithm to generate the set of elements of a Sturmian set F of length n in time O(n2).

We assume that the Sturmian set F is given by a function Characteristic(α, n) which returns
the prefix of length n of the characteristic word associated with F . Thus the right special factor
of length n is the reversal of Characteristic(α, n). The implementation of the function Char-

acteristic(α, n) is a standard task (see [1]). Its complexity is linear in n. The implementation
can be done from some representation of the real number α as follows.

Characteristic(α, n)

1 y ← α
2 for i← 1 to n do

3 z ← y
4 y ← y + α
5 if ⌊y⌋ = ⌊z⌋ then

6 s[i]← a
7 else s[i]← b
8 return s

9



The implementation can also be done using only integers. One starts with a rational approx-
imation v/u of α and uses the following algorithm (reproduced from [1] with a shift by 1 of the
indices and a minor correction).

Characteristic(u, v, n)

1 d← v
2 for i← 1 to n do

3 if d + v < u then

4 d← d + v
5 s[i]← a
6 else d← d + v − u
7 s[i]← b
8 return s

Both algorithms give the same result when v/u is a continued fraction approximation of α and
n ≤ u − 2. Indeed, for any pair u, v of relatively prime integers with 1 ≤ v < u, the word az
with z =Characteristic(u, v, u− 1) is a Christoffel word. Thus Characteristic(u, v, n) is the
prefix of length n of the standard prefix of length u of the characteristic word.

Example 11 Let F be the Fibonacci set, which has slope α = 2/(3+
√

5). The continued fraction
expansion of α is [0, 2, 1, 1, . . .] and the corresponding sequence of convergents is 1/2, 1/3, 2/5, 3/8,
5/13, . . .. The sequence of values of d and s in the execution of Characteristic(13, 5, 11) are
represented below.

i 1 2 3 4 5 6 7 8 9 10 11
d 10 2 7 12 4 9 1 6 11 3 8
s a b a a b a b a a b a

The computation of the principal prefix of a word u is realized by the following algorithm.

PrincipalPrefix(u)

1 n← Length(u)
2 x← Reverse(Characteristic(α, n− 1))
3 if u = Cat(x, a) then

4 return x
5 x← Suffix(x, n− 2)
6 if u = Cat(x, ab) then

7 return x
8 x← Cat(x, ab)
9 t← Overlap(x, u)

10 m← Length(t)
11 if m ≤ 1 then

12 return −1
13 else r ← Prefix(t, m− 2)
14 return r

In the fuction PrincipalPrefix, we use the following functions.

10



• Reverse(x) which returns the reversal of the word x,

• Length(u) which returns the length of a word u,

• Cat(x, y) to concatenate two words,

• Overlap(x, y) which returns the longest proper suffix of x which is also a proper prefix of
y,

• Prefix(x, n) and Suffix(x, n) which return respectively the prefix or the suffix of the word
x of length n.

The following result is a direct consequence of Corollary 3.

Proposition 4 The function PrincipalPrefix(u) returns the principal prefix of u if u is not
maximal in the set of elements of F of the same length and −1 otherwise.

It is well-known that the function Overlap(x, y) can be implemented to compute its result in
time O(|x| + |y|) (see [9] for example). Thus the function Principalprefix(u) returns its value
in time O(|u|).

Using the function PrincipalPrefix, it is easy to obtain a function which computes the next
element of the same length in the set F .

Next(u)

1 n← Length(u)
2 r ← PrincipalPrefix(u)
3 m← Length(r)
4 if n = m + 1 then

5 return Cat(r, b)
6 else s← Suffix(u, n−m− 2)
7 return Cat(r, ba, s)

Finally, the following function generates all elements of F of length n by visiting them in turn.

Sturm(n)

1 x← Characteristic(α, n− 1)
2 u← Cat(a, x)
3 v ← Cat(b, x)
4 while u 6= v do

5 Visit(u)
6 u← Next(u)
7 Visit(v)

Since Next operates in linear time, we obtain the result announced earlier.

Proposition 5 The algorithm Sturm generates the elements of length n of a Sturmian set in
lexicographic order in quadratic time O(n2).

Note that the algorithm is quadratic in n but actually linear in the size of the set of elements of
length n of a Sturmian set F since Card(F ∩An) = n(n + 1).
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