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Abstract

This paper focuses on the computation of the Generalized Ambiguity Function (GAF)

of a Multiple Antennas Multiple Frequencies Radar system (MAMF). This study provides

some insights into the definition of resolution parameters of a MAMF Radar system. It turns

out that the range and azimuth resolutions are not the most suitable criteria to specify the

MAMF Radar resolution. Therefore a new set of resolution parameters is introduced like

the resolution ellipse which expresses the resolution anywhere in the image plane or ~δmax,

(~δmin) which expresses the highest (lowest) bound of the spatial Radar resolution. To point

out the pertinence of our study, we illustrate it with a MAMF Radar system built around

GPS satellites. The effect of the Radar system geometry on resolution is investigated. For

several scenarios, the General Ambiguity Function (GAF) and its numerical form, the Point

Spread Function (PSF), are computed and their results are compared.

Keywords: Ambiguity Function, Point Spread Function, Resolution, Bistatic SAR, Multistatic

SAR, Passive SAR.

1 Introduction

Monostatic Radar systems where the transmitting and the receiving antennas are located on the

same platform, have been the subject of a great deal of research and development over the past
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few decades. Their spatial performances are well known: the range resolution is determined by

the frequency bandwidth and the azimuth resolution is defined from the integration time and

the carrier frequency [1]. Recently, a growing interest in bistatic and multistatic Radar system

has appeared (MAMF Radar system) [2, 3, 4, 5, 6, 7, 8]. A bistatic Radar is defined as a Radar

using antennas at different locations for transmission and reception. A Multistatic Radar can

be considered as a set of Ms bistatic Radar. The MAMF geometry fits well with the use of

non-cooperative transmitters such as TV or FM broadcasts [9, 10, 11, 12] or GNSS signals and

allows for example the discreet survey of a specific zone.

Several papers treat of bistatic and/or multistatic radar performance subject. For example Tsao

and al. [13] compute the ambiguity function for a bistatic radar. They show that the bistatic

geometry plays a role in the shape of the ambiguity function. Two examples are provided to

compare the monostatic ambiguity function with the bistatic one. Plots in delay-Doppler plane

for the monostatic ambiguity function and in range-velocity plane for the bistatic ambiguity

function show the effect of the bistatic geometry on the radar performances. Bradaric and al. [14]

define an ambiguity function for a single transmitter, multiple receivers system. The ambiguity

response is determined as a function of the range from the transmitter and of the relative speed in

a fixed direction. The authors address the rules to select the weights for fusing multiple receiver

signals in order to reach specified performances. Sensor placement in bistatic and multistatic

radar systems and how it relates to the system resolution has been studied in [15], [16] and [17]

by calculating the Cramer-Rao lower bounds (CRLBs) for bistatic radar channel.

In this paper, we evaluate the displacement effect of the radar system on its ability to separate two

very close motionless targets. We measure this effect according to the transmitter and receiver

trajectories and to the signal characteristics. We start with the Generalized Ambiguity Function

(GAF) in the bistatic context. Here, the ambiguity function is not analyzed with the usual

delay and Doppler variables and the performances are not described in term of range-velocity

parameters ; we chose to work in the (x, y) plane in order to give tools to a radar engineer to

evaluate the spatial performances from a given multistatic Radar. Then the ellipse resolution

is plotted in the (x, y) plane. This ellipse is defined as the contour line at 1/
√

2 of the map of

the normalized ambiguity function. In this way, we expand the work of [13] and show the same

result : the ambiguity function needs to be considered with respect to the bistatic geometry ; plot

in the Delay-Doppler plane is not efficient. In the (x, y) plane, we derive formulas to evaluate

the maximum and minimum spatial resolutions
(

~δmax, ~δmin

)

. They express the bounds on the

spatial resolution of a bistatic Radar system.

From the bistatic case we expand the definition of the resolution parameters to the multistatic
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case. The incoherent summation of the bistatic ambiguity functions leads to equation (21) which

is equivalent to the multistatic ambiguity function described in [14]. An additional contribution of

our work comparing to [14] is the second ways to fuse the bistatic data : the coherent summation

of the ambiguity functions. Note that here again we define all the resolution parameters in the

(x, y) plane.

An outline of this paper is as follows. In section II, we describe a MAMF Radar system. Section III

studies the performances of a bistatic Radar system. Under several assumptions, we analytically

characterize bistatic Radar resolution by evaluating the bistatic Generalized Ambiguity Function

(GAF) [18]. Section IV generalizes the bistatic study to the multistatic case. We point out

the effect of several transmitters on the resolution parameters. In this part we introduce new

pertinent parameters to characterize the spatial resolution of a MAMF Radar systems. We

summarize our conclusions in section V. In section VI, we evaluate the pertinence of our method :

the system impulse response (Point Spread Function) of a MAMF Radar passive system based

on GPS signal is numerically computed via the PFA algorithm [19]. GAF and PSF results are

then compared. Finally we summarize our conclusions in section VII.

2 System overview

Figure 1: Bistatic geometry. The (x, y) plane is the ground
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The aim of this study is to apply bistatic imaging methods to a multistatic context. Figure

1 shows a bistatic configuration with a motionless target, a transmitter located at ~LE and a

receiver located at ~LR. The displacement of the transmitter and (or) the receiver during the

integration time T forms the synthetic aperture. The localization of the transmitter and of the

receiver at time u along the aperture is given by ~LE(u) and by ~LR(u). The variable u is called

long time, in contrast with t the wave propagation time, called the fast time. The multistatic

configuration is defined as a combination of several bistatic configurations.

The center of the illuminated area is arbitrarily set at the origin. The following vectors are

defined:

• ~LE (u) =

[

LE (u) cos θe (u) cos ϕe (u) LE (u) cos θe (u) sinϕe (u) LE (u) sin θe (u)

]T

is

the transmitter location,

• ~LR (u) =

[

LR (u) cos θr (u) cos ϕr (u) LR (u) cos θr (u) sinϕr (u) LR (u) sin θr (u)

]T

is

the receiver location,

• L̂E (u) = ~LE (u) /
∥

∥

∥

~LE (u)
∥

∥

∥ is the unit vector in the transmitter direction,

• L̂R (u) = ~LR (u) /
∥

∥

∥

~LR (u)
∥

∥

∥
is the unit vector in the direction of receiver,

• ~β (u) = L̂E (u) + L̂R (u) is the bisector of the bistatic angle β =

(

ˆ̂LE , L̂R

)

∈ [−π, π]

(figure 2). Its magnitude is given by:

∥

∥

∥

~β (u)
∥

∥

∥ = 2 cos

(

β (u)

2

)

(1)

• β̂ (u) =

[

cos γ (u) cos α (u) sin γ (u) cos α (u) sinα (u)

]T

=
~β(u)

‖~β(u)‖ , is the unit vector

in the direction of vector ~β.

• β̂g (u) =

[

cos γ (u) sin γ (u) 0

]T

, and β̂g cos α is the projection of β̂ on the (x, y)

plane.
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Figure 2: Direction and magnitude of
−→
β

For monostatic systems, the transmitter and receiver are located at the same position. Therefore

L̂E = L̂R and the bistatic angle β is equal to 0. For a MAMF Radar system, the bistatic angle

is non-zero and varies. This effect is studied in the next paragraph.

In the following, k = 2πf/c denotes the wave-number, λ = c/f is the wavelength, f is the

frequency and c the speed of light.

3 Bistatic Generalized Ambiguity Function

For a monostatic Radar system, spatial performance is given by two parameters: range and

azimuth resolutions (δr, δa). Range resolution is related to the transmitted pulse width (or its

frequency bandwidth B) [1]. Azimuth resolution is determined by the integration time T and by

the carrier frequency f0. In the bistatic case, we define the vector ~δ which describes the contour

line at 1/
√

2 of the map of the normalized ambiguity function. The vector ~δ describes an ellipse

called the resolution ellipse. This ellipse is fully defined by its semi major axis ~δmax/2 = max
(

~δ
)

and by ~δmin/2 = min
(

~δ
)

its semi minor axis.

For a monostatic Radar system, the relationships between (δr, δa) and
(∥

∥

∥

~δmax

∥

∥

∥ ,
∥

∥

∥

~δmin

∥

∥

∥

)

, are

obvious. In fact (δr, δa) =
(∥

∥

∥

~δmax

∥

∥

∥ ,
∥

∥

∥

~δmin

∥

∥

∥

)

(or
(∥

∥

∥

~δmin

∥

∥

∥ ,
∥

∥

∥

~δmax

∥

∥

∥

)

). In the case of a bistatic

Radar system, the relationships between the parameters of interest
(∥

∥

∥

~δmax

∥

∥

∥ ,
∥

∥

∥

~δmin

∥

∥

∥

)

and

(δr, δa) are not obvious because of the bistatic geometry. In this section, we evaluate the spatial

performance of a bistatic system by computing
(

~δmax, ~δmin

)

.
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3.1 Generalized Ambiguity Function (GAF)

Usually, for a monostatic Radar system, the Radar ambiguity function is defined as [20]:

|χ (τd, fd)| =

∣

∣

∣

∣

∫

p (t) p∗ (t + τd) exp (j2πfdt) dt

∣

∣

∣

∣

(2)

where p(t) is the complex signal envelope, τd the differential delay and fd the Doppler frequency.

The notion of Radar ambiguity function has been extended to the bistatic Radar by Tao Zeng

and al. [18]. Thus they define a Generalized Ambiguity Function (GAF) as:

χ
(−→
OA,

−−→
OB

)

= K

∫

sA (t, u) s∗B (t, u) dtdu (3)

where sA (t, u) and sB (t, u) are the base-band signals returned by a point target with unit Radar

cross section and located at the ground points A and B. K is used as normalization parameter

such as
∣

∣

∣χ
(−→
OA,

−→
OA
)∣

∣

∣ = 1.

The distance between points A and B is small comparing to the distances transmitter-target

and target-receiver. With an hypothesis of narrow band for the transmitted signal, equation (3)

becomes (demonstration given in appendix 9.1):

χ (~r) = K1g (τd (~r))M (fd (~r)) (4)

with K1 a normalization constant and ~r =
−→
OA −−−→

OB =
−−→
BA.

Equation (4) corresponds to the matched filter output of the receiver when a delay τd and a

Doppler frequency fd occur. Consequently, it gives the Radar ability to separate two close

targets separated by ~r. Therefore the spatial resolution must be investigated by studying (4).

The differential delay τd is related to the geometry by:

τd =
~β (u0) � ~r

c
=

2 cos β(u0)
2

(

β̂ (u0) �
−→r
)

c
(5)

u0 is the value of the long time u evaluated at the midpoint of the integration time T (i.e. u ∈

[u0 − T/2, u0 + T/2]). Function g (t) is related to the inverse Fourier transform of |P (f − f0)|2

the demodulated signal power spectrum. We assume that the transmitted pulses P (f) have

uniform power P0 over the frequency range: f ∈ [f0 − B/2, f0 + B/2]. With this assumption,

g (τd) is given by:
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g (τd) = P0B
sin (πBτd)

πBτd
(6)

Parameter fd is the differential Doppler frequency:

fd = f0
dτd

du
=

1

λ0

d
−→
β (u0)

du
�
−→r (7)

with λ0 = c/f0. Function M (fd) is the inverse Fourier transform of m (u), constant during the

integration time T (The antennas are supposed to be isotropic):

M (fd) = T
sin πTfd

πTfd
(8)

In the next paragraphs, for the sake of clarity, the parameter u0 is omitted. For instance ~β (u0)

is now written as ~β. Thus, when no parameter is specified, u = u0.

3.2 Resolution parameters

Equation (4) expresses that the spatial performances of a Radar by the product of two functions

g and M . In monostatic case, properties of g gives the range resolution and examination of M

leads to the azimuth resolution. We extend these names to the bistatic case.

In the following, we consider several numerical examples to explain our method. These examples

are detailed in section 6.
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3.2.1 Range resolution
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Figure 3: Map of normalized |g| function in the (x, y) plane, for B = 1MHz and ~β = 0.134x̂ −
0.873ŷ+0.983ẑ (i.e. for the satellite B3 with the experimental configuration described afterward).

Dashed lines give the contour line at 1/
√

2, solid line indicates the β̂g direction.

Function g gives the Radar spatial performance in the range domain. The designation “range” is

chosen to be consistent with the monostatic case. It describes the effect of the signal bandwidth

on the resolution parameter. Starting with (6) and supposing the Radar geometry well known,

map of
∣

∣

∣

g
max(g)

∣

∣

∣ is generated as a function of x and y (Figure 3). From figure 3, it can be noted

that the ground range resolution is not defined in the orthogonal direction of β̂g . It is minimum

when vectors ~r and β̂g are collinear. In this way, range resolution δr is defined as a measure of

the target resolvability in the range domain by a given Radar signal g(t) , when ~r is pointing

along β̂g. In this situation, we have:

~rmin =
δr

2
β̂g (9)

Substituting (5 and 9) into (6) to solve for δr:

sin
(

πB
c

∥

∥

∥

~β
∥

∥

∥
cos α δr

2

)

πB
c

∥

∥

∥

~β
∥

∥

∥ cos α δr

2

=
1√
2

(10)

it turns out:
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δr =
0.886c

2B cos
(

β
2

)

cos α
(11)

As equation (11) shows, in a bistatic Radar system, δr varies with angle β. Hence, the range

resolution depends on the target position relatively to the transmitter and receiver locations.

Thus, when the transmitter, the target and the receiver are strung together (forward scattering),

β = π and range resolution disappears. The range resolution is maximum when β = 0, i.e. in

the monostatic configuration.

In our example (figure 3), the length of the solid line segment is δr = 301m.

3.2.2 Azimuth resolution
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Figure 4: Map of normalized |M | function in the (x, y) plane, for T = 6s, f0 = 1575.42MHz and

d ~βg/du = 1.10−4 (−1.34x̂ + 0.567ŷ + 0.11ẑ) (i.e. for the satellite B3 with the experimental con-
figuration described afterward). Dashed lines give the contour line at 1/

√
2, solid line indicates

the dβ̂g/du direction.

The azimuth resolution δa is expressed from the function M . Figure 4 shows the plot of M

in the ground plane. The azimuth resolution δa is defined in the direction of the projection of

vector d~β
du on the plane (x, y) . It is given by (appendix 9.2):

δa =
0.886λ0

T

√

(

dβ
du sin

(

β
2

)

cos α + 2dα
du cos

(

β
2

)

sin α
)2

+
(

2dγ
du cos

(

β
2

)

cos α
)2

(12)
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As above, the azimuth resolution varies with the geometric configurations. In our example (figure

4), equation (12) gives δa = 193m.

In a 2D bistatic Radar system, equation (12) reduces to:

δa =
0.886λ0

T

√

(

dβ
du sin

(

β
2

))2

+
(

2dγ
du cos

(

β
2

))2
(13)

Interpretation

In order to better understand equation (13), let us consider the 2D tomography system :

β (u) = θe (u) − θr (u) (14)

γ (u) =
θe (u) + θr (u)

2

In (14), θe is the angular location of the transmitter and θr the orientation of the receiver.

Assuming the equality of the receiver and the transmitter velocities (i.e. dθe

du = dθr

du ), equation

(13) becomes:

δa =
0.886λ0

2T
∣

∣

dθ
du

∣

∣ cos β
2

(15)

In the monostatic case (β = 0), ground azimuth resolution δa is minimal. It increases with the

bistatic angle. Now, let us assume that the receiver and the transmitter velocities magnitude

are equal but in the opposite direction (i.e. dθe

du = −dθr

du ), (13) becomes:

δa =
0.886λ0

2T
∣

∣

dθ
du

∣

∣

∣

∣

∣
sin β

2

∣

∣

∣

(16)

Hence, δa is minimal when the receiver and the transmitter are strung together (β = π) and

maximal in the monostatic case. This basic example shows that the azimuth resolution depends

on the bistatic angle and on the sensor velocities.
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3.2.3 Resolution ellipse

x (m)

y 
(m

)

−600 −400 −200 0 200 400 600

−500

−400

−300

−200

−100

0

100

200

300

400

500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5: Map of normalized product function |Mg| in the (x, y) plane, for T = 6s, B =
1MHz and f0 = 1575.42MHz for the satellite B3 (with the experimental configuration described
afterward). Solid line gives the contour line at 1/

√
2 (i.e. resolution ellipse), dashed line indicates

the dβ̂g/du direction, dotted line indicates the β̂g direction.

A more general way to compute the bistatic Radar system resolution δθ in the ground plane in

any arbitrary direction θ is to solve the following expression:

g





2 cos β
2

(

β̂ �
~δ
)

c



M

(

1

λ0

d
−→
β

du
�
~δ

)

=
P0BT√

2
(17)

In (17), ~δ =

[

xδ = δθ

2 cos θ yδ = δθ

2 sin θ

]T

is the resolution vector, with δθ the magnitude and

θ the direction. Parameter δθ is a more general resolution parameter than the classical range or

azimuth resolutions. It varies with: ~β, the bandwidth, the central frequency of the signal and the

integration time. Figure 5 shows the map of the product
∣

∣

∣

Mg
P0BT

∣

∣

∣
in the ground plane. Dashed

line represents the resolution ellipse: it is the locus of all points in the plane (x, y) satisfying

(17). Appendix (9.3) describes the method used to compute this resolution ellipse:

(xδ, yδ) = F

(

δr, δa, α, γ,
dα

du
,
dγ

du

)

(18)
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Figure 6: Resolution parameters

With equation (17), new bistatic resolution parameters are defined (figure 6):

• ~δmax=2 max(~δ) describes the magnitude and orientation of the maximum value of the

resolution δθ,

• ~δmin=2 min(~δ) is the minimum value of δθ,

• δx = 2
∥

∥

∥

~δ
∥

∥

∥θ=0 is the resolution in the x̂ direction; δy = 2
∥

∥

∥

~δ
∥

∥

∥

θ=π/2
is the resolution in the

ŷ direction,

• Ae is the ellipse resolution area.

These parameters characterize the spatial performance of a bistatic Radar system.

Let us now introduce a new parameter µ called ambiguity angle, define as follows:

cos µ =
~βg �

d~βg

du
∥

∥

∥

~βg

∥

∥

∥

∥

∥

∥

d~βg

du

∥

∥

∥

=
− sin

(

β
2

)

cos αdβ
du − 2 cos

(

β
2

)

dα
du sinα

√

(

dβ
du sin

(

β
2

)

cos α + 2dα
du cos

(

β
2

)

sinα
)2

+
(

2dγ
du cos

(

β
2

)

cos α
)2

(19)

µ gives useful information on the resolution capabilities of a bistatic Radar system. In order to

study (19), let us first consider a 2D Radar system (i.e. when α = 0). In this case β̂g = β̂ the

bisector of the bistatic system. Eq. 19 becomes:
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cos µ =
− sin

(

β
2

)

dβ
du

√

4 cos2
(

β
2

)∥

∥

∥

dβ̂g

du

∥

∥

∥

2

+
(

dβ
du

)2

sin2
(

β
2

)

(20)

For the monostatic case (β = 0), equation (20) gives cos µ = 0, i.e. µ = π
2 . Then, vector ~βg is

perpendicular to
d~βg

du . In this context, range and azimuth resolution parameters are pertinent:

each of them gives the resolution in the two orthogonal directions β̂g and
dβ̂g

du , i.e. (δa, δr) =
(∥

∥

∥

~δmax

∥

∥

∥ ,
∥

∥

∥

~δmin

∥

∥

∥

)

(figure 6).

In a 2D bistatic Radar system, the same result is achieved if β angle remains constant during

the integration time. On the other hand the normalized dot product in (20) gives -1 (i.e µ = π)

when angle β = π or/and
∥

∥

∥

dβ̂g

du

∥

∥

∥ = 0. The first case corresponds to the forward direction. In

the second case, there is no variation of the vector β̂g direction during the integration time.

4 Multistatic Generalized Ambiguity Function (MGAF)

Multistatic Radar can be seen as a set of Ms bistatic Radar. In this way, several sets of data

are available (i.e. one for each bistatic system). There are two options to perform the data

fusion [21]: (i) a coherent summation between them or (ii) an incoherent summation. The

coherent summation gives a multistatic GAF plot with a well-defined central response at the

target position surrounded by a series of secondary peaks. These peaks may be considered

similar to grating lobes in standard antenna array theory. Hence the side lobe ratio is very large,

making the detection process more difficult. For the incoherent summation, multistatic GAF

plot has only one larger peaks centered at the target location. Indeed, since only the magnitude

response of each bistatic Radar is summed, the array beam forming effect does not exist.

In this paper, the performances of a MAMF Radar system are only determined by the evaluation

of the multistatic incoherent GAF:

χinc (~r) =

Ms
∑

n=1

gnMn =

Ms
∑

n=1

PnBnTn

∣

∣

∣

∣

∣

∣

sin
(

πBn

c
~βn � ~r

)

πBn

c
~βn � ~r

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

sin
(

knTn

2
d ~βn

du � ~r
)

knTn

2
d ~βn

du � ~r

∣

∣

∣

∣

∣

∣

(21)

In (21), Ms is the total number of transmitter-receiver pairs and kn = 2πf0n/c is the wave

number for the considered bistatic system. f0n is the carrier frequency of the transmitted signal,

Bn its bandwidth and Pn its power. Tn is the integration time for the considered transmitter-

receiver pair.

As in the bistatic Radar system case, performances for a MAMF Radar system are given by

~δmax, ~δmin, δx, δy and Ae. These parameters are derived from equation (22):
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Ms
∑

n=1

∣

∣

∣

∣

∣

∣

sin
(

πBn

c
~βn � ~r

)

πBn

c
~βn � ~r

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

sin
(

knTn

2
d ~βn

du � ~r
)

knTn

2
d ~βn

du � ~r

∣

∣

∣

∣

∣

∣

=
Ms√

2
(22)

5 Synthesis

Table 1: Pertinence of the resolution parameters

δr δa
~δmax

~δmin δx δy µ Ae

- - +++ +++ + + +++ ++

A summary of our results is given in Table 1. The pertinence of the bistatic and multistatic

resolution parameters are described above. Range and azimuth resolutions δr and δa are the less

valuables: the range resolution δr is not only a function of the bandwidth of the transmitted

signal but depends on ~β. Similarly the azimuth resolution δa is not only a function of the carrier

frequency and of the integration time, but also a function of the Radar geometry. δr and δa

describe the effect of the bandwidth and the integration time but not directly the capacity of

the Radar system to separate two close targets. Therefore, several new parameters have been

introduced:

• Parameter ~δmax defined as the minimum distance between two close targets detected by the

Radar system. ~δmax is characterized by its magnitude and orientation (in respect with the

x axis). It expresses the lowest length and establishes the upper bound of the resolution.

• Parameter ~δmin evaluates the lower bound.

• δx and δy are the magnitude of ~δ evaluated on the x and y axis.

• The ellipse area Ae describes the detection area (i.e. the surface described by equation

18).

• The parameter µ is used to illustrate the capability of a bistatic Radar system to give a

good resolution. It can be used in order to introduce an additional constraint in the choice

of sensor configurations for a MAMF experiment.

All the resolution parameters are space dependent. As the illuminated area is small, the resolu-

tion parameters are given for a target located at the center of the studied area.
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6 Validation

Bistatic/multistatic Radar system allows the use of transmitters of opportunity, such as GNSS

satellites. Now to illustrate our work, we characterize the spatial resolution on a bistatic/multistatic

Radar system based on GPS satellites.

6.1 System overview

The studied MAMF Radar system is built with GPS satellites as non-cooperative transmitters

[22] and with one motionless receiver localized on the ground (figure 7). The center of the scene

to be imaged is located at the origin of coordinates and the ground plane is the (x, y) plane.

The satellite location at time u is given by ~LE(u) . Similarly, the receiver location is ~LR. GPS

satellites transmit two low power radio signals, called L1 and L2. We use the open GPS signal L1

with a frequency f0 = 1575.42MHz. L1 is Bipolar-Phase Shift Key (BPSK) modulated with a

Pseudo Random Noise (PRN) 1.023MHz code known as the Coarse/Acquisition (C/A) code. For

sake of clarity, we assume that transmitted pulses have uniform power over the frequency range:

f ∈ [f0 − B/2, f0 + B/2] with B = 1MHz. The target is assumed located on the ground near

the town of Saint Emilion (small city near Bordeaux - France - North 45°, East 0°). During the

integration time (u ∈ [−T/2, T/2]), the target is seen simultaneously by 3 or 4 GPS satellites

(figure 8). In this work, satellites called ’A1’, ’B3’ and ’F1’ are used as transmitters. The

elevation cut-off is equal to 45° (i.e. we exclude satellites below that elevation).

The MAMF Radar system parameters are listed in table 2. Note that in all cases the antenna

gain patterns (transmitters and receivers) are considered isotropic.

Table 2: MAMF Radar system parameters
Parameters Symbol Values

Carrier frequency f0 1575.42MHz
Transmitted signal bandwidth B 1MHz

Integration time T 60s
Receiver position (xr, yr) (0,-2000)m
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Figure 7: MAMF Radar system geometry

Figure 8: Satellites visibility [22]. Elevation cut-off equal 45°

Table 3 shows the change of the azimuth and elevation angles of A1, B3 and F1 transmitters

during the integration time. For instance, the satellite A1 has a mean azimuth angle equal to

147° with 1.45° of angular variation and a mean elevation angle of 74° with 0.25° of change.

These very small changes observed during T , set a poor resolution capability.

Table 3: Transmitter location as a function of integration time - T=60s
Sat. θe (u0) ϕe (u0) ∆θe ∆ϕe

A1 74° 147° 0.248° 1.45°
B3 79.3° 43.4° 0.204° 2.48°
F1 78.9° 265° 0.284° 2.06°
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6.2 Point Spread Function (PSF)

The system impulse response (the Point Spread Function) is computed to evaluate resolution

parameters and to validate the results obtained with the GAF computation. The target, a single

point target reflector, is localized at the origin of coordinates. With these assumptions, the PSF

function is given by:

PSF (−→r ) =

u0+T/2
∫

u0−T/2

f0+B/2
∫

f0−B/2

exp

(

−j
2πf

c

−→
β (u) �

−→r
)

dfdu (23)

(23) is computed as follow: first, a regular grid of spatial frequency (kx, ky) of the image plane

is generated. This grid is determined by the extension of the image plane (2Xmaxby 2Ymax):

kx (i) = −π
∆x

+ i π
Xmax

ky (i) = −π
∆y

+ i π
Ymax

(24)

In (24), ∆x,y are the pixel size.

Secondly, for each measurement data, i.e. for each pair (f, u), the experimental spatial frequency

components are computed:

kxm (f, u) = 2πf
c

−→
β (u) � x̂

kym (f, u) = 2πf
c

−→
β (u) � ŷ

(25)

In (25) kxm and kym are not uniformly spaced to use a FFT. So a neighborhood interpolation is

applied to create a regular mapping between the measurement plane (kxm, kym) and the image

plane (kx, ky). Unitary amplitude stands on this corresponding frequency place. Then (23) is

computed through two fast Fourier transforms. This method is based on the classical Polar

Format Algorithm, used in many monostatic Radar system [23]. Finally, the resolution ellipse

is computed:

PSF (~r) =
1√
2

(26)

6.3 Simulation results

In this part, PSF and GAF are computed and compared. First the bistatic scenarios are studied,

then the multistatic case is considered.
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6.3.1 Bistatic scenarios

Table 4 gives bistatic resolution parameters computed with (18):

• The poorest resolution capability (i.e. 20.8m ≤ δθ ≤ 1340m) is obtained with the satellite

A1. This is mainly due to the A1 satellite location. This effect is highlighted with the

ambiguity angle µ = 13°.

• The range and azimuth resolutions are not relevant to define the capability of a Radar.

Indeed, although range resolution obtained with satellites A1 and B3 are similar, the spatial

performances achieved with B3 satellite are much better than those achieved with satellite

A1.

• In all the three cases, the resolution capability is poor and not efficient to detect two close

targets with an integration time of 60s.

Table 4: Bistatic resolution parameters - T=60s - (x,y) plane

Sat. δr δa

∥

∥

∥

~δmax

∥

∥

∥

∥

∥

∥

~δmin

∥

∥

∥
δx δy µ Ae

ref. (m) (m) (m) (m) (m) (m) (°)
(

m2
)

A1 302 20.8 1340 20.8 513 20.8 13 2.2 104

B3 301 19.3 354 19.3 20.4 49.9 58.3 5.36 103

F1 223 19.9 258 19.9 23.7 38.7 59.6 4.03 103

Figures (9, 10 and 11) show the map of (23) in the ground plane. The dotted line, is the

resolution ellipses computed with (18) and the solid one is the ellipses determined with (26). In

all cases, the same orientation of the ellipse is found with both methods. Only small differences

are observed on the magnitude. This is due to the assumptions used to calculate (4). Results

are presented on table (5).

Table 5: Resolutions parameters computed with (18) and (23) (magnitude, direction )

Sat. ~δmax
~δmax

~δmin
~δmin

ref. (18) (26) (18) (26 )

A1 (1340 m,178°) (1278 m,178°) (20.8 m,272°) (20.4 m,270°)
B3 (354 m,247°) (292 m,247°) (19.3 m,335°) (19 m,335°)
F1 (258 m,120°) (221 m,120°) (19.9 m,29.5°) (19.6 m,31°)

In terms of resolution performances, the three bistatic systems presented here are quite different

(figure 9, 10 and 11). Bistatic radar with satellite A1 has the poorest resolution capability.

Satellites B3 and F1 provide similar resolution parameters but the orientations of their resolution

ellipses are different. This analysis gives good insight for the use of these satellites in a MAMF

Radar system.
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Figure 9: Map of PSF for sat. A1 in the ground plane. Solid line gives the resolution ellipse
computed with (18). Dotted line indicates the resolution ellipse obtained with (23).
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Figure 10: Map of PSF for sat. B3 in the ground plane. Solid line gives the resolution ellipse
computed with (18). Dotted line indicates the resolution ellipse obtained with (23).
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Figure 11: Map of PSF for sat. F1 in the ground plane. Solid line gives the resolution ellipse
computed with (18). Dotted line indicates the resolution ellipse obtained with (23).

6.3.2 Multistatic context

To evaluate the performance of the MAMF Radar system built with satellites A1, B3 and F1,

we compute: (i) the Multistatic GAF (M-GAF) (equations (21)) and (ii) the Multistatic PSF

(equation (23)).

In table 6 are resumed the resolution parameters obtained from MGAF. In comparison with the

bistatic system, the unfavorable resolution resolution parameter (
∥

∥

∥

~δmax

∥

∥

∥) is divided by 10: The

multisatic system strongly improve the Radar resolution.

Table 6: Theoretical values of the multistatic resolution parameters - T=60s - (x,y) plane
~δmax (m,°) ~δmin(m,°) δx(m) δy(m) Ae(m

2)

(31.2m,101°) (27.2m,19°) 27.6 31 666

Table 7 and figure 12 show comparison between MGAF and MPSF. A very small difference is

visible on
∥

∥

∥

~δmax

∥

∥

∥ but the error is negligible (less than 1.5%).

Table 7: Resolutions parameters computed with MPSF and MGAF (magnitude, direction )
~δmax

~δmin

MGAF MPSF MGAF MPSF

(31.2 m,101°) (30.8 m,101°) (27.2 m,19°) (27.1 m,17°)

The multistatic ambiguity shape represents an intersection of the bistatic ellipsoids. Each bistatic

ellipsoid is a function of the positions of the target, the transmitter and receiver. The resolution
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ellipse for each bistatic link can be computed (eq 18). Resolution parameters for the multistatic

system are evaluated from the shape of the intersection of the resolution ellipses. They are

calculated by a graphical method or by a numerical approach. Here, the transmitted signal

for all the transmitters have the same properties. In the same way, the satellites velocities are

equivalent. With this example, parameters
∣

∣

∣

~δmin

∣

∣

∣ for all the bistatic links are approximately

identical. As result, the multistatic ambiguity shape is near a circle with a radius given by
∣

∣

∣

~δmin

∣

∣

∣.
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Figure 12: Map of MPSF on the ground plane. Integration time: 60s. Solid line gives the
resolution ellipse computed with MGAF.

7 Conclusion

In this paper, the performance of bistatic/multistatic Radar system are investigated. Two meth-

ods are presented: one is a theoretical study of the Generalized Ambiguity Function (GAF); the

second is the numerical study of the Point Spread Function (PSF). In the first case, our main

concern is to establish analytical forms for the range and azimuth resolutions in a bistatic Radar

system configuration. We point out that range and azimuth resolution are not the most relevant

parameters to describe the spatial performance of the bistatic Radar: they do not evaluate the

capability of the Radar system to separate two close targets. In this way, we define a new set of

resolution parameters:

• ~δmax (magnitude and orientation) describes the minimum distance between two close tar-

gets detected by the Radar. It expresses the upper bound of the resolution, i.e. the poorest

case.
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• In the same way ~δmin gives the lower bound.

• The multistatic ambiguity shape represents the intersection of the bistatic ellipsoids. Each

bistatic ellipsoid is a function of the positions of the target, of the transmitter and of the

receiver. The resolution ellipse for each bistatic link is computed. Resolution parameters

for the multistatic system are evaluated from the shape of the intersection of the resolution

ellipses. They are calculated by a graphical method or by a numerical approach. With

our example, the transmitted signal for all the transmitters have the same properties. In

the same way, the satellites velocities are equivalent. Then, parameters
∣

∣

∣

~δmin

∣

∣

∣ for all the

bistatic links are approximately identical. As result, the multistatic ambiguity shape is

near a circle with a radius given by
∣

∣

∣

~δmin

∣

∣

∣.

• A more general way to study Radar performance, is to evaluate the resolution δθ for a

given orientation θ. It is computed through the evaluation of the amplitude of the GAF

and gives the resolution ellipse.

• New other parameters are also introduced, as the ambiguity angle µ, the ellipse area and

parameters δx, δy.

The resolution performances of a Radar system are also computed with the Point Spread Func-

tion. They are evaluated by using the Polar Format Algorithm. Comparison with the GAF

shows very good agreement and allows to validate the theoretical approach. We show also, that

resolution parameters may be improved by considering multiple transmitters.
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9 APPENDIXES

9.1 GAF computation

In this part, the GAF computation is presented; we start with the following equation (27):

χ
(−→

A,
−→
B
)

= K

∫

sA (t, u) s∗B (t, u) dtdu (27)

where sA (t, u) and sB (t, u) are the demodulated measured signals each returned by a point

target with unit Radar cross section at points A and B:
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sA (t, u) = p
(

t − RA

c

)

exp (−j2πf0t)

sB (t, u) = p
(

t − RB

c

)

exp (−j2πf0t)
(28)

In (28), f0 is the carrier frequency and RA and RB the distances between the transmitter, the

target and the receiver. They are given by:

RA ⋍ LR + LE − ~A �
~β (u)

RB ⋍ LR + LE − ~B �
~β (u)

(29)

We use the following assumptions:



































‖ ~A‖
LE

≪ 1

‖ ~A‖
LR

≪ 1

‖ ~B‖
LE

≪ 1

‖ ~B‖
LR

≪ 1

(30)

In the frequency domain, equation (27) becomes:

χ (~r) = K

∫ ∫

|P (f − f0)|2 exp
(

−jk~r �
~β
)

exp
(

jk0~r �
~β
)

dfdu (31)

with ~r = ~A − ~B.

Vector ~β is approximated by its first order Taylor expansion at u = u0, the integration time at

midpoint:

~β ⋍
~β (u0) + (u − u0)

d~β

du
(u0) (32)

With the assumption B < 2c

πT~r�

d~β
du

(u0)
, i.e the transmitted signal is narrow band, equation (31)

becomes:

χ (~r) = K1

B/2
∫

−B/2

|P (f − f0)|2 exp
(

−jk~r �
~β (u0)

)

df

∞
∫

−∞

m (u) exp

(

jk0u~r �

d~β

du
(u0)

)

du (33)

with m (u) = 1 if |u − u0| < T/2 otherwise m (u) = 0.

By using the Fourier properties, equation (33) becomes :
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χ (~r) = K1g

(

~r �
~β (u0)

c

)

M

(

~r �
d~β
du (u0)

λ0

)

(34)

with g(t) the inverse Fourier transform of the signal power spectrum |P (f − f0)|2 and M (f) the

IFT of m(u).

9.2 Azimuth resolution

We start with:

d~β

du
=

−→
U + U1ẑ (35)

In (35),
−→
U is the projection of d~β

du on the (x, y) plane. Ground azimuth resolution is found in

the direction
−→
U

∥

∥

∥

∥

−→
U
∥

∥

∥

∥

, hence we set:

~r =

−→
U
∥

∥

∥

−→
U
∥

∥

∥

δa

2
(36)

The dot product d~β
du � ~r is obtained:

d~β

du
� ~r =

∥

∥

∥

−→
U
∥

∥

∥

δa

2
(37)

To evaluate
∥

∥

∥

−→
U
∥

∥

∥, we write vector ~β as follows:

~β = 2 cos

(

β

2

)

(

β̂g cos α + sinαẑ
)

(38)

with β̂g = cos γx̂ + sin γŷ. After some calculations, vector
−→
U can be expressed as follows:

−→
U = β̂g

(

− sin

(

β

2

)

cos α
dβ

du
− 2 cos

(

β

2

)

dα

du
sin α

)

+ 2 cos

(

β

2

)

cos α
dβ̂g

du
(39)

Hence:

∥

∥

∥

−→
U
∥

∥

∥ =

√

√

√

√

(

sin

(

β

2

)

cos α
dβ

du
+ 2 cos

(

β

2

)

dα

du
sin α

)2

+

(

2 cos

(

β

2

)

cos α

)2
∥

∥

∥

∥

∥

dβ̂g

du

∥

∥

∥

∥

∥

2

(40)

with
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∥

∥

∥

∥

∥

dβ̂g

du

∥

∥

∥

∥

∥

2

=

(

dγ

du

)2

(41)

so:

∥

∥

∥

−→
U
∥

∥

∥ =

√

(

dβ

du
sin

(

β

2

)

cos α + 2
dα

du
cos

(

β

2

)

sinα

)2

+

(

2
dγ

du
cos

(

β

2

)

cos α

)2

(42)

Thus:

δa =
0.886λ0

T

√

(

dβ
du sin

(

β
2

)

cos α + 2dα
du cos

(

β
2

)

sin α
)2

+
(

2dγ
du cos

(

β
2

)

cos α
)2

(43)

9.3 Ellipse computation

Figure 13: Ellipse resolution assembly

The first step is to compute the lengths δ1 and δ2 of the sides of the resolution parallelogram

(figure 13). They are given by:

δ1 = δr

sin γ

δ2 = δa

sin γ

(44)

Then, we evaluate the orientation γ and φ of vectors ~βg and
d~βg

du :
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γ = arctan

(

~βg � ŷ

~βg � x̂

)

(45)

and for
d~βg

du :

φ = arctan

(

sinα sin γ dα
du − cos α cos γ dγ

du

sinα cos γ dα
du + cos α sin γ dγ

du

)

(46)

The next step is to evaluate ~δmax and ~δmin. To do this, we apply the following algorithm:

• if δ1 > δ2 then ~δmax =

[

−δ1 sinφ δ1 cos φ

]T

, ~δmin =

[

δ2 cos φ δ2 sinφ

]T

, else

~δmax =

[

−δ2 sin γ δ2 cos γ

]T

and ~δmin =

[

δ1 cos γ δ2 sin γ

]T

.

With these parameters, the ellipse equation is computed:

xe =
∥

∥

∥

~δmax

∥

∥

∥ cos Φ

ye =
∥

∥

∥

~δmin

∥

∥

∥ sin Φ
(47)

with 0 ≤ Φ ≤ 2π. Then the resolution ellipse in the image plane is evaluated:

xδ = xe cos
(

arg
(

~δMAX

))

− ye sin
(

arg
(

~δmax

))

yδ = xe sin
(

arg
(

~δMAX

))

+ ye cos
(

arg
(

~δmax

)) (48)
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