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Introduction

Monostatic Radar systems where the transmitting and the receiving antennas are located on the same platform, have been the subject of a great deal of research and development over the past few decades. Their spatial performances are well known: the range resolution is determined by the frequency bandwidth and the azimuth resolution is defined from the integration time and the carrier frequency [START_REF] Willis | Bistatic Radar[END_REF]. Recently, a growing interest in bistatic and multistatic Radar system has appeared (MAMF Radar system) [START_REF] Giroux | An omega-k algorithm for sar bistatic systems[END_REF][START_REF]Frequency domain algorithm for bistatic sar[END_REF][START_REF] Comblet | Bistatic sar: Theory and simulation[END_REF][START_REF] Cherniakov | Space surface bistatic sar with spaceborne non-cooperative transmitters[END_REF][START_REF] Cantalloube | A first bistatic airborne sar interferometry experiment -preliminary results[END_REF][START_REF] Soumekh | Bistatic synthetic aperture radar imaging using wide-bandwidth continuouswave sources[END_REF][START_REF] Walterscheid | Bistatic sar processing and experiments[END_REF]. A bistatic Radar is defined as a Radar using antennas at different locations for transmission and reception. A Multistatic Radar can be considered as a set of M s bistatic Radar. The MAMF geometry fits well with the use of non-cooperative transmitters such as TV or FM broadcasts [START_REF] Ginolhac | Multifrequency and multistatic inverse synthetic aperture radar, with application to fm passive radar[END_REF][START_REF] Wu | Multistatic Synthetic Aperture Imaging of Aircraft using Reflected Television Signals, ser. Algorithms for Synthetic Aperture Radar Imaging VIII[END_REF][START_REF] Howland | Fm radio bistatic radar[END_REF][START_REF] Howland | Target tracking using television-based bistatic radar[END_REF] or GNSS signals and allows for example the discreet survey of a specific zone.

Several papers treat of bistatic and/or multistatic radar performance subject. For example Tsao and al. [START_REF] Tsao | Ambiguity function for a bistatic radar[END_REF] compute the ambiguity function for a bistatic radar. They show that the bistatic geometry plays a role in the shape of the ambiguity function. Two examples are provided to compare the monostatic ambiguity function with the bistatic one. Plots in delay-Doppler plane for the monostatic ambiguity function and in range-velocity plane for the bistatic ambiguity function show the effect of the bistatic geometry on the radar performances. Bradaric and al. [START_REF] Bradaric | Multistatic radar systems signal processing[END_REF] define an ambiguity function for a single transmitter, multiple receivers system. The ambiguity response is determined as a function of the range from the transmitter and of the relative speed in a fixed direction. The authors address the rules to select the weights for fusing multiple receiver signals in order to reach specified performances. Sensor placement in bistatic and multistatic radar systems and how it relates to the system resolution has been studied in [START_REF] Fogle | Optimal geometry designs for unconstrained and topologically constrained multistatic sensors[END_REF], [START_REF] Farina | Optimal selection of the tx-rx pair in a multistatic radar system[END_REF] and [START_REF] Bradaric | Sensor placement for improved target resolution in distributed radar systems[END_REF] by calculating the Cramer-Rao lower bounds (CRLBs) for bistatic radar channel.

In this paper, we evaluate the displacement effect of the radar system on its ability to separate two very close motionless targets. We measure this effect according to the transmitter and receiver trajectories and to the signal characteristics. We start with the Generalized Ambiguity Function (GAF) in the bistatic context. Here, the ambiguity function is not analyzed with the usual delay and Doppler variables and the performances are not described in term of range-velocity parameters ; we chose to work in the (x, y) plane in order to give tools to a radar engineer to evaluate the spatial performances from a given multistatic Radar. Then the ellipse resolution is plotted in the (x, y) plane. This ellipse is defined as the contour line at 1/ √ 2 of the map of the normalized ambiguity function. In this way, we expand the work of [START_REF] Tsao | Ambiguity function for a bistatic radar[END_REF] and show the same result : the ambiguity function needs to be considered with respect to the bistatic geometry ; plot in the Delay-Doppler plane is not efficient. In the (x, y) plane, we derive formulas to evaluate the maximum and minimum spatial resolutions δ max , δ min . They express the bounds on the spatial resolution of a bistatic Radar system.

From the bistatic case we expand the definition of the resolution parameters to the multistatic case. The incoherent summation of the bistatic ambiguity functions leads to equation [START_REF] Derham | Ammbiguity function for spatially coherent and incoherent multistatic radar[END_REF] which is equivalent to the multistatic ambiguity function described in [START_REF] Bradaric | Multistatic radar systems signal processing[END_REF]. An additional contribution of our work comparing to [START_REF] Bradaric | Multistatic radar systems signal processing[END_REF] is the second ways to fuse the bistatic data : the coherent summation of the ambiguity functions. Note that here again we define all the resolution parameters in the (x, y) plane.

An outline of this paper is as follows. In section II, we describe a MAMF Radar system. Section III studies the performances of a bistatic Radar system. Under several assumptions, we analytically characterize bistatic Radar resolution by evaluating the bistatic Generalized Ambiguity Function (GAF) [START_REF] Zeng | Generalized approach to resolution analysis in bsar[END_REF]. Section IV generalizes the bistatic study to the multistatic case. We point out the effect of several transmitters on the resolution parameters. In this part we introduce new pertinent parameters to characterize the spatial resolution of a MAMF Radar systems. We summarize our conclusions in section V. In section VI, we evaluate the pertinence of our method :

the system impulse response (Point Spread Function) of a MAMF Radar passive system based on GPS signal is numerically computed via the PFA algorithm [START_REF] Soumekh | Synthetic Aperture Radar Signal Processing with MATLAB Algorithms[END_REF]. GAF and PSF results are then compared. Finally we summarize our conclusions in section VII. The aim of this study is to apply bistatic imaging methods to a multistatic context. Figure 1 shows a bistatic configuration with a motionless target, a transmitter located at L E and a receiver located at L R . The displacement of the transmitter and (or) the receiver during the integration time T forms the synthetic aperture. The localization of the transmitter and of the receiver at time u along the aperture is given by L E (u) and by L R (u). The variable u is called long time, in contrast with t the wave propagation time, called the fast time. The multistatic configuration is defined as a combination of several bistatic configurations.

System overview

The center of the illuminated area is arbitrarily set at the origin. The following vectors are defined:

• L E (u) = L E (u) cos θ e (u) cos ϕ e (u) L E (u) cos θ e (u) sin ϕ e (u) L E (u) sin θ e (u)
T is the transmitter location, (figure 2). Its magnitude is given by:

• L R (u) = L R (u) cos θ r (u) cos ϕ r (u) L R (u) cos θ r (u) sin ϕ r (u) L R (u) sin θ r (u) T is the receiver location, • LE (u) = L E (u) / L E (u) is the unit vector in the transmitter direction, • LR (u) = L R (u) / L R (u)
β (u) = 2 cos β (u) 2 (1) 
• β (u) = cos γ (u) cos α (u) sin γ (u) cos α (u) sin α (u)

T = β(u) β(u)
, is the unit vector in the direction of vector β.

• βg (u) = cos γ (u) sin γ (u) 0 T , and βg cos α is the projection of β on the (x, y) plane. For monostatic systems, the transmitter and receiver are located at the same position. Therefore LE = LR and the bistatic angle β is equal to 0. For a MAMF Radar system, the bistatic angle is non-zero and varies. This effect is studied in the next paragraph.

In the following, k = 2πf /c denotes the wave-number, λ = c/f is the wavelength, f is the frequency and c the speed of light.

Bistatic Generalized Ambiguity Function

For a monostatic Radar system, spatial performance is given by two parameters: range and azimuth resolutions (δ r , δ a ). Range resolution is related to the transmitted pulse width (or its frequency bandwidth B) [START_REF] Willis | Bistatic Radar[END_REF]. Azimuth resolution is determined by the integration time T and by the carrier frequency f 0 . In the bistatic case, we define the vector δ which describes the contour line at 1/ √ 2 of the map of the normalized ambiguity function. The vector δ describes an ellipse called the resolution ellipse. This ellipse is fully defined by its semi major axis δ max /2 = max δ and by δ min /2 = min δ its semi minor axis.

For a monostatic Radar system, the relationships between (δ r , δ a ) and δ max , δ min , are obvious. In fact (δ r , δ a ) = δ max , δ min (or δ min , δ max ). In the case of a bistatic

Radar system, the relationships between the parameters of interest δ max , δ min and (δ r , δ a ) are not obvious because of the bistatic geometry. In this section, we evaluate the spatial performance of a bistatic system by computing δ max , δ min .

Generalized Ambiguity Function (GAF)

Usually, for a monostatic Radar system, the Radar ambiguity function is defined as [START_REF] Richards | Fundamentals of radar signal processing[END_REF]:

|χ (τ d , f d )| = p (t) p * (t + τ d ) exp (j2πf d t) dt (2) 
where p(t) is the complex signal envelope, τ d the differential delay and f d the Doppler frequency.

The notion of Radar ambiguity function has been extended to the bistatic Radar by Tao Zeng and al. [START_REF] Zeng | Generalized approach to resolution analysis in bsar[END_REF]. Thus they define a Generalized Ambiguity Function (GAF) as:

χ -→ OA, --→ OB = K s A (t, u) s * B (t, u) dtdu (3) 
where s A (t, u) and s B (t, u) are the base-band signals returned by a point target with unit Radar cross section and located at the ground points A and B. K is used as normalization parameter

such as χ -→ OA, -→ OA = 1.
The distance between points A and B is small comparing to the distances transmitter-target and target-receiver. With an hypothesis of narrow band for the transmitted signal, equation

becomes (demonstration given in appendix 9.1):

χ ( r) = K 1 g (τ d ( r)) M (f d ( r)) (4) 
with K 1 a normalization constant and r = -→ OA ---→ OB = --→ BA.

Equation (4) corresponds to the matched filter output of the receiver when a delay τ d and a Doppler frequency f d occur. Consequently, it gives the Radar ability to separate two close targets separated by r. Therefore the spatial resolution must be investigated by studying [START_REF] Comblet | Bistatic sar: Theory and simulation[END_REF].

The differential delay τ d is related to the geometry by:

τ d = β (u 0 ) r c = 2 cos β(u0) 2 β (u 0 ) -→ r c ( 5 
)
u 0 is the value of the long time u evaluated at the midpoint of the integration time T (i.e. u ∈

[u 0 -T /2, u 0 + T /2]). Function g (t) is related to the inverse Fourier transform of |P (f -f 0 )| 2
the demodulated signal power spectrum. We assume that the transmitted pulses P (f ) have uniform power P 0 over the frequency range:

f ∈ [f 0 -B/2, f 0 + B/2]. With this assumption, g (τ d
) is given by:

g (τ d ) = P 0 B sin (πBτ d ) πBτ d (6) 
Parameter f d is the differential Doppler frequency:

f d = f 0 dτ d du = 1 λ 0 d -→ β (u 0 ) du -→ r (7) 
with

λ 0 = c/f 0 . Function M (f d )
is the inverse Fourier transform of m (u), constant during the integration time T (The antennas are supposed to be isotropic):

M (f d ) = T sin πT f d πT f d (8) 
In the next paragraphs, for the sake of clarity, the parameter u 0 is omitted. For instance β (u 0 )

is now written as β. Thus, when no parameter is specified, u = u 0 .

Resolution parameters

Equation ( 4) expresses that the spatial performances of a Radar by the product of two functions g and M . In monostatic case, properties of g gives the range resolution and examination of M leads to the azimuth resolution. We extend these names to the bistatic case.

In the following, we consider several numerical examples to explain our method. These examples are detailed in section 6. ) is generated as a function of x and y (Figure 3). From figure 3, it can be noted that the ground range resolution is not defined in the orthogonal direction of βg . It is minimum when vectors r and βg are collinear. In this way, range resolution δ r is defined as a measure of the target resolvability in the range domain by a given Radar signal g(t) , when r is pointing along βg . In this situation, we have:

r min = δ r 2 βg (9) 
Substituting (5 and 9) into (6) to solve for δ r :

sin πB c β cos α δr 2 πB c β cos α δr 2 = 1 √ 2 (10) 
it turns out:

δ r = 0.886c 2B cos β 2 cos α (11) 
As equation [START_REF] Howland | Fm radio bistatic radar[END_REF] shows, in a bistatic Radar system, δ r varies with angle β. Hence, the range resolution depends on the target position relatively to the transmitter and receiver locations.

Thus, when the transmitter, the target and the receiver are strung together (forward scattering), β = π and range resolution disappears. The range resolution is maximum when β = 0, i.e. in the monostatic configuration.

In our example (figure 3), the length of the solid line segment is δ r = 301m. The azimuth resolution δ a is expressed from the function M . Figure 4 shows the plot of M in the ground plane. The azimuth resolution δ a is defined in the direction of the projection of vector d β du on the plane (x, y) . It is given by (appendix 9.2):

δ a = 0.886λ 0 T dβ du sin β 2 cos α + 2 dα du cos β 2 sin α 2 + 2 dγ du cos β 2 cos α 2 (12) 
As above, the azimuth resolution varies with the geometric configurations. In our example (figure 4), equation [START_REF] Howland | Target tracking using television-based bistatic radar[END_REF] gives δ a = 193m.

In a 2D bistatic Radar system, equation ( 12) reduces to:

δ a = 0.886λ 0 T dβ du sin β 2 2 + 2 dγ du cos β 2 2 (13) 

Interpretation

In order to better understand equation ( 13), let us consider the 2D tomography system :

β (u) = θ e (u) -θ r (u) (14) 
γ (u) = θ e (u) + θ r (u) 2 
In ( 14), θ e is the angular location of the transmitter and θ r the orientation of the receiver.

Assuming the equality of the receiver and the transmitter velocities (i.e. dθe du = dθr du ), equation ( 13) becomes:

δ a = 0.886λ 0 2T dθ du cos β 2 (15) 
In the monostatic case (β = 0), ground azimuth resolution δ a is minimal. It increases with the bistatic angle. Now, let us assume that the receiver and the transmitter velocities magnitude are equal but in the opposite direction (i.e. dθe du = -dθr du ), ( 13) becomes:

δ a = 0.886λ 0 2T dθ du sin β 2 (16)
Hence, δ a is minimal when the receiver and the transmitter are strung together (β = π) and maximal in the monostatic case. This basic example shows that the azimuth resolution depends on the bistatic angle and on the sensor velocities. A more general way to compute the bistatic Radar system resolution δ θ in the ground plane in any arbitrary direction θ is to solve the following expression:

g   2 cos β 2 β δ c   M 1 λ 0 d -→ β du δ = P 0 BT √ 2 (17) 
In [START_REF] Bradaric | Sensor placement for improved target resolution in distributed radar systems[END_REF], δ = x δ = δ θ 2 cos θ y δ = δ θ 2 sin θ T is the resolution vector, with δ θ the magnitude and θ the direction. Parameter δ θ is a more general resolution parameter than the classical range or azimuth resolutions. It varies with: β, the bandwidth, the central frequency of the signal and the integration time. Figure 5 shows the map of the product M g P0BT in the ground plane. Dashed line represents the resolution ellipse: it is the locus of all points in the plane (x, y) satisfying [START_REF] Bradaric | Sensor placement for improved target resolution in distributed radar systems[END_REF]. Appendix (9.3) describes the method used to compute this resolution ellipse: With equation ( 17), new bistatic resolution parameters are defined (figure 6):

(x δ , y δ ) = F δ r , δ a , α, γ, dα du , dγ du (18) 
• δ max =2 max( δ) describes the magnitude and orientation of the maximum value of the resolution δ θ ,

• δ min =2 min( δ) is the minimum value of δ θ ,

• δ x = 2 δ θ=0 is the resolution in the x direction;

δ y = 2 δ θ=π/2
is the resolution in the ŷ direction,

• A e is the ellipse resolution area.

These parameters characterize the spatial performance of a bistatic Radar system.

Let us now introduce a new parameter µ called ambiguity angle, define as follows:

cos µ = β g d βg du β g d βg du = -sin β 2 cos α dβ du -2 cos β 2 dα du sin α dβ du sin β 2 cos α + 2 dα du cos β 2 sin α 2 + 2 dγ du cos β 2 cos α 2 (19) 
µ gives useful information on the resolution capabilities of a bistatic Radar system. In order to study [START_REF] Soumekh | Synthetic Aperture Radar Signal Processing with MATLAB Algorithms[END_REF], let us first consider a 2D Radar system (i.e. when α = 0). In this case βg = β the bisector of the bistatic system. Eq. 19 becomes:

cos µ = -sin β 2 dβ du 4 cos 2 β 2 d βg du 2 + dβ du 2 sin 2 β 2 (20) 
For the monostatic case (β = 0), equation [START_REF] Richards | Fundamentals of radar signal processing[END_REF] gives cos µ = 0, i.e. µ = π 2 . Then, vector β g is perpendicular to d βg du . In this context, range and azimuth resolution parameters are pertinent: each of them gives the resolution in the two orthogonal directions βg and d βg du , i.e. (δ a , δ r ) = δ max , δ min (figure 6).

In a 2D bistatic Radar system, the same result is achieved if β angle remains constant during the integration time. On the other hand the normalized dot product in [START_REF] Richards | Fundamentals of radar signal processing[END_REF] gives -1 (i.e µ = π)

when angle β = π or/and d βg du = 0. The first case corresponds to the forward direction. In the second case, there is no variation of the vector βg direction during the integration time.

Multistatic Generalized Ambiguity Function (MGAF)

Multistatic Radar can be seen as a set of M s bistatic Radar. In this way, several sets of data are available (i.e. one for each bistatic system). There are two options to perform the data fusion [START_REF] Derham | Ammbiguity function for spatially coherent and incoherent multistatic radar[END_REF]: (i) a coherent summation between them or (ii) an incoherent summation. The coherent summation gives a multistatic GAF plot with a well-defined central response at the target position surrounded by a series of secondary peaks. These peaks may be considered similar to grating lobes in standard antenna array theory. Hence the side lobe ratio is very large, making the detection process more difficult. For the incoherent summation, multistatic GAF plot has only one larger peaks centered at the target location. Indeed, since only the magnitude response of each bistatic Radar is summed, the array beam forming effect does not exist.

In this paper, the performances of a MAMF Radar system are only determined by the evaluation of the multistatic incoherent GAF: 

χ inc ( r) =
In [START_REF] Derham | Ammbiguity function for spatially coherent and incoherent multistatic radar[END_REF], M s is the total number of transmitter-receiver pairs and k n = 2πf 0n /c is the wave number for the considered bistatic system. f 0n is the carrier frequency of the transmitted signal, B n its bandwidth and P n its power. T n is the integration time for the considered transmitterreceiver pair.

As in the bistatic Radar system case, performances for a MAMF Radar system are given by δ max , δ min , δ x , δ y and A e . These parameters are derived from equation ( 22): 

Synthesis

Table 1: Pertinence of the resolution parameters δ r δ a δ max δ min δ x δ y µ A e --+++ +++ + + +++ ++ A summary of our results is given in Table 1. The pertinence of the bistatic and multistatic resolution parameters are described above. Range and azimuth resolutions δ r and δ a are the less valuables: the range resolution δ r is not only a function of the bandwidth of the transmitted signal but depends on β. Similarly the azimuth resolution δ a is not only a function of the carrier frequency and of the integration time, but also a function of the Radar geometry. δ r and δ a describe the effect of the bandwidth and the integration time but not directly the capacity of the Radar system to separate two close targets. Therefore, several new parameters have been introduced:

• Parameter δ max defined as the minimum distance between two close targets detected by the Radar system. δ max is characterized by its magnitude and orientation (in respect with the x axis). It expresses the lowest length and establishes the upper bound of the resolution.

• Parameter δ min evaluates the lower bound.

• δ x and δ y are the magnitude of δ evaluated on the x and y axis.

• The ellipse area A e describes the detection area (i.e. the surface described by equation 18).

• The parameter µ is used to illustrate the capability of a bistatic Radar system to give a good resolution. It can be used in order to introduce an additional constraint in the choice of sensor configurations for a MAMF experiment.

All the resolution parameters are space dependent. As the illuminated area is small, the resolution parameters are given for a target located at the center of the studied area.

Validation

Bistatic/multistatic Radar system allows the use of transmitters of opportunity, such as GNSS satellites. Now to illustrate our work, we characterize the spatial resolution on a bistatic/multistatic

Radar system based on GPS satellites.

System overview

The studied MAMF Radar system is built with GPS satellites as non-cooperative transmitters

[22] and with one motionless receiver localized on the ground (figure 7). The center of the scene to be imaged is located at the origin of coordinates and the ground plane is the (x, y) plane.

The satellite location at time u is given by L E (u) . Similarly, the receiver location is L R . GPS satellites transmit two low power radio signals, called L1 and L2. We use the open GPS signal L1 with a frequency f 0 = 1575.42M Hz. L1 is Bipolar-Phase Shift Key (BPSK) modulated with a Pseudo Random Noise (PRN) 1.023MHz code known as the Coarse/Acquisition (C/A) code. For sake of clarity, we assume that transmitted pulses have uniform power over the frequency range:

f ∈ [f 0 -B/2, f 0 + B/2] with B = 1MHz.
The target is assumed located on the ground near the town of Saint Emilion (small city near Bordeaux -France -North 45°, East 0°). During the integration time (u ∈ [-T /2, T /2]), the target is seen simultaneously by 3 or 4 GPS satellites (figure 8). In this work, satellites called 'A1', 'B3' and 'F1' are used as transmitters. The elevation cut-off is equal to 45°(i.e. we exclude satellites below that elevation).

The MAMF Radar system parameters are listed in table 2. Note that in all cases the antenna gain patterns (transmitters and receivers) are considered isotropic. These very small changes observed during T , set a poor resolution capability. 

Point Spread Function (PSF)

The system impulse response (the Point Spread Function) is computed to evaluate resolution parameters and to validate the results obtained with the GAF computation. The target, a single point target reflector, is localized at the origin of coordinates. With these assumptions, the PSF function is given by:

P SF ( -→ r ) = u0+T /2 u0-T /2 f0+B/2 f0-B/2 exp -j 2πf c -→ β (u) -→ r df du (23) 
(23) is computed as follow: first, a regular grid of spatial frequency (k x , k y ) of the image plane is generated. This grid is determined by the extension of the image plane (2X max by 2Y max ):

k x (i) = -π ∆x + i π Xmax k y (i) = -π ∆y + i π Ymax (24) 
In (24), ∆ x,y are the pixel size.

Secondly, for each measurement data, i.e. for each pair (f, u), the experimental spatial frequency components are computed:

k xm (f, u) = 2πf c -→ β (u) x k ym (f, u) = 2πf c -→ β (u) ŷ (25) 
In (25) k xm and k ym are not uniformly spaced to use a FFT. So a neighborhood interpolation is applied to create a regular mapping between the measurement plane (k xm , k ym ) and the image plane (k x , k y ). Unitary amplitude stands on this corresponding frequency place. Then ( 23) is computed through two fast Fourier transforms. This method is based on the classical Polar Format Algorithm, used in many monostatic Radar system [START_REF] Brian | Polar format algorithm for bistatic sar[END_REF]. Finally, the resolution ellipse is computed:

P SF ( r) = 1 √ 2 (26) 

Simulation results

In this part, PSF and GAF are computed and compared. First the bistatic scenarios are studied, then the multistatic case is considered.

Bistatic scenarios

Table 4 gives bistatic resolution parameters computed with (18):

• The poorest resolution capability (i.e. 20.8m ≤ δ θ ≤ 1340m) is obtained with the satellite A1. This is mainly due to the A1 satellite location. This effect is highlighted with the ambiguity angle µ = 13°.

• The range and azimuth resolutions are not relevant to define the capability of a Radar.

Indeed, although range resolution obtained with satellites A1 and B3 are similar, the spatial performances achieved with B3 satellite are much better than those achieved with satellite A1.

• In all the three cases, the resolution capability is poor and not efficient to detect two close targets with an integration time of 60s.

Table 4: Bistatic resolution parameters -T=60s -( Figures (9, 10 and 11) show the map of [START_REF] Brian | Polar format algorithm for bistatic sar[END_REF] in the ground plane. The dotted line, is the resolution ellipses computed with [START_REF] Zeng | Generalized approach to resolution analysis in bsar[END_REF] and the solid one is the ellipses determined with (26). In all cases, the same orientation of the ellipse is found with both methods. Only small differences are observed on the magnitude. This is due to the assumptions used to calculate (4). Results are presented on table [START_REF] Cherniakov | Space surface bistatic sar with spaceborne non-cooperative transmitters[END_REF]. In terms of resolution performances, the three bistatic systems presented here are quite different (figure 9, 10 and 11). Bistatic radar with satellite A1 has the poorest resolution capability.

. δ r δ a δ max δ min δ x δ y µ A e ref. (m) (m) x,y) plane Sat 
Satellites B3 and F1 provide similar resolution parameters but the orientations of their resolution ellipses are different. This analysis gives good insight for the use of these satellites in a MAMF Radar system. 

Multistatic context

To evaluate the performance of the MAMF Radar system built with satellites A1, B3 and F1, we compute: (i) the Multistatic GAF (M-GAF) (equations ( 21)) and (ii) the Multistatic PSF (equation ( 23)).

In table 6 are resumed the resolution parameters obtained from MGAF. In comparison with the bistatic system, the unfavorable resolution resolution parameter ( δ max ) is divided by 10: The multisatic system strongly improve the Radar resolution. The multistatic ambiguity shape represents an intersection of the bistatic ellipsoids. Each bistatic ellipsoid is a function of the positions of the target, the transmitter and receiver. The resolution ellipse for each bistatic link can be computed (eq 18). Resolution parameters for the multistatic system are evaluated from the shape of the intersection of the resolution ellipses. They are calculated by a graphical method or by a numerical approach. Here, the transmitted signal for all the transmitters have the same properties. In the same way, the satellites velocities are equivalent. With this example, parameters δ min for all the bistatic links are approximately identical. As result, the multistatic ambiguity shape is near a circle with a radius given by δ min . 

Conclusion

In this paper, the performance of bistatic/multistatic Radar system are investigated. Two methods are presented: one is a theoretical study of the Generalized Ambiguity Function (GAF); the second is the numerical study of the Point Spread Function (PSF). In the first case, our main concern is to establish analytical forms for the range and azimuth resolutions in a bistatic Radar system configuration. We point out that range and azimuth resolution are not the most relevant parameters to describe the spatial performance of the bistatic Radar: they do not evaluate the capability of the Radar system to separate two close targets. In this way, we define a new set of resolution parameters:

• δ max (magnitude and orientation) describes the minimum distance between two close targets detected by the Radar. It expresses the upper bound of the resolution, i.e. the poorest case.

• In the same way δ min gives the lower bound.

• The multistatic ambiguity shape represents the intersection of the bistatic ellipsoids. Each bistatic ellipsoid is a function of the positions of the target, of the transmitter and of the receiver. The resolution ellipse for each bistatic link is computed. Resolution parameters for the multistatic system are evaluated from the shape of the intersection of the resolution ellipses. They are calculated by a graphical method or by a numerical approach. With our example, the transmitted signal for all the transmitters have the same properties. In the same way, the satellites velocities are equivalent. Then, parameters δ min for all the bistatic links are approximately identical. As result, the multistatic ambiguity shape is near a circle with a radius given by δ min .

• A more general way to study Radar performance, is to evaluate the resolution δ θ for a given orientation θ. It is computed through the evaluation of the amplitude of the GAF and gives the resolution ellipse.

• New other parameters are also introduced, as the ambiguity angle the ellipse area and parameters δ x , δ y .

The resolution performances of a Radar system are also computed with the Point Spread Function. They are evaluated by using the Polar Format Algorithm. Comparison with the GAF shows very good agreement and allows to validate the theoretical approach. We show also, that resolution parameters may be improved by considering multiple transmitters.
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APPENDIXES

GAF computation

In this part, the GAF computation is presented; we start with the following equation ( 27):

χ -→ A , -→ B = K s A (t, u) s * B (t, u) dtdu (27) 
where s A (t, u) and s B (t, u) are the demodulated measured signals each returned by a point target with unit Radar cross section at points A and B:

s A (t, u) = p t -R A c exp (-j2πf 0 t) s B (t, u) = p t -R B c exp (-j2πf 0 t) (28) 
In (28), f 0 is the carrier frequency and R A and R B the distances between the transmitter, the target and the receiver. They are given by:

R A ⋍ L R + L E -A β (u) R B ⋍ L R + L E -B β (u) (29) 
We use the following assumptions: Vector β is approximated by its first order Taylor expansion at u = u 0 , the integration time at midpoint:

                 A L E ≪ 1 A L R ≪ 1 B L E ≪ 1 B L R ≪ 1 ( 
β ⋍ β (u 0 ) + (u -u 0 ) d β du (u 0 ) (32) 
With the assumption B < 

Azimuth resolution

We start with:

d β du = -→ U + U 1 ẑ (35) 
In (35), -→ U is the projection of d β du on the (x, y) plane. Ground azimuth resolution is found in the direction -→ U -→ U , hence we set:

r = -→ U -→ U δ a 2 (36) 
The dot product d β du r is obtained:

d β du r = -→ U δ a 2 (37) 
To evaluate -→ U , we write vector β as follows:

β = 2 cos β 2 βg cos α + sin αẑ (38) 
with βg = cos γ x + sin γ ŷ. After some calculations, vector -→ U can be expressed as follows:

- 

Ellipse computation

Figure 1 :

 1 Figure 1: Bistatic geometry. The (x, y) plane is the ground

  is the unit vector in the direction of receiver, • β (u) = LE (u) + LR (u) is the bisector of the bistatic angle β = LE , LR ∈ [-π, π]

Figure 2 :

 2 Figure 2: Direction and magnitude of -→ β

Figure 3 : 2 ,

 32 Figure 3: Map of normalized |g| function in the (x, y) plane, for B = 1MHz and β = 0.134x -0.873ŷ+0.983ẑ (i.e. for the satellite B3 with the experimental configuration described afterward). Dashed lines give the contour line at 1/ √ 2, solid line indicates the βg direction.

Figure 4 :

 4 Figure 4: Map of normalized |M | function in the (x, y) plane, for T = 6s, f 0 = 1575.42MHz and d β g /du = 1.10 -4 (-1.34x + 0.567ŷ + 0.11ẑ) (i.e. for the satellite B3 with the experimental configuration described afterward). Dashed lines give the contour line at 1/ √ 2, solid line indicates the d βg /du direction.

Figure 5 :

 5 Figure 5: Map of normalized product function |M g| in the (x, y) plane, for T = 6s, B = 1MHz and f 0 = 1575.42MHz for the satellite B3 (with the experimental configuration described afterward). Solid line gives the contour line at 1/ √ 2 (i.e. resolution ellipse), dashed line indicates the d βg /du direction, dotted line indicates the βg direction.

Figure 6 :

 6 Figure 6: Resolution parameters

P n B n T n sin πBn c β n r πBn c β n r sin knTn 2

 2 

Figure 7 :Figure 8 :

 78 Figure 7: MAMF Radar system geometry

Figure 9 :

 9 Figure 9: Map of PSF for sat. A1 in the ground plane. Solid line gives the resolution ellipse computed with (18). Dotted line indicates the resolution ellipse obtained with (23).

Figure 10 :

 10 Figure 10: Map of PSF for sat. B3 in the ground plane. Solid line gives the resolution ellipse computed with (18). Dotted line indicates the resolution ellipse obtained with (23).

Figure 11 :

 11 Figure 11: Map of PSF for sat. F1 in the ground plane. Solid line gives the resolution ellipse computed with (18). Dotted line indicates the resolution ellipse obtained with (23).

Figure 12 :

 12 Figure 12: Map of MPSF on the ground plane. Integration time: 60s. Solid line gives the resolution ellipse computed with MGAF.

  30)In the frequency domain, equation (27) becomes:χ ( r) = K |P (f -f 0 )| 2 exp -jk r β exp jk 0 r β df du(31)with r = A -B.

1 B/ 2 -B/ 2 |P

 122 e the transmitted signal is narrow band, equation (31) becomes:χ ( r) = K (f -f 0 )| 2 exp -jk r β (u 0 ) df ∞ -∞ m (u) exp jk 0 u r d β du (u 0 ) du (33) with m (u) = 1 if |u -u 0 | < T /2 otherwise m (u) = 0.By using the Fourier properties, equation (33) becomes :χ ( r) = K 1 g r β (u 0 ) t)the inverse Fourier transform of the signal power spectrum |P (f -f 0 )| 2 and M (f ) the IFT of m(u).

Figure 13 :

 13 Figure 13: Ellipse resolution assembly

Table 2

 2 

	: MAMF Radar system parameters
	Parameters	Symbol	Values
	Carrier frequency	f 0	1575.42MHz
	Transmitted signal bandwidth	B	1MHz
	Integration time	T	60s
	Receiver position	(x r , y r )	(0,-2000)m

Table 3 :

 3 Transmitter location as a function of integration time -T =60s Sat. θ e (u 0 ) ϕ e (u 0 ) ∆θ

	e	∆ϕ e

1 78.9°265°0.284°2.06°1

Table 5 :

 5 Resolutions parameters computed with (18) and (23) (magnitude, direction )

	Sat.	δ max	δ max	δ min	δ min
	ref.	(18)	(26)	(18)	(26 )
	A1 (1340 m,178°) (1278 m,178°) (20.8 m,272°) (20.4 m,270°)
	B3	(354 m,247°)	(292 m,247°)	(19.3 m,335°)	(19 m,335°)
	F1	(258 m,120°)	(221 m,120°) (19.9 m,29.5°) (19.6 m,31°)

Table 6

 6 

	: Theoretical values of the multistatic resolution parameters -T=60s -(x,y) plane
	δ max (m,°)	δ min (m,°)	δ x (m) δ y (m) A e (m 2 )
	(31.2m,101°) (27.2m,19°)	27.6	31	666

Table 7

 7 and figure12show comparison between MGAF and MPSF. A very small difference is visible on δ max but the error is negligible (less than 1.5%).

	Table 7: Resolutions parameters computed with MPSF and MGAF (magnitude, direction )
	δ max		δ min	
	MGAF	MPSF	MGAF	MPSF
	(31.2 m,101°) (30.8 m,101°) (27.2 m,19°) (27.1 m,17°)