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Performance of two Low-Rank STAP Filters in

a Heterogeneous Noise
Guillaume Ginolhac, Philippe Forster, Member, IEEE,

Frédéric Pascal, Member, IEEE and Jean-Philippe Ovarlez

Abstract

This paper considers the Space Time Adaptive Processing (STAP) problem where the disturbance

is modeled as the sum of a Low-Rank (LR) Spherically Invariant Random Vector (SIRV) clutter and a

zero-mean white Gaussian noise. To derive our adaptive LR-STAP filters, the estimation of the projector

onto the clutter subspace is performed from the Sample Covariance Matrix (SCM) and the Normalized

Sample Covariance Matrix (NSCM). We compute the theoretical performance of both corresponding

LR-STAP filters through the analysis of the Signal to Interference plus Noise Ratio (SINR) Loss, based

on a perturbation analysis. Numerical simulations validate the theoretical formula and allow to show that

the LR-STAP filter built from the SCM performance does not depend on the heterogeneity of the SIRV

clutter whereas the LR-STAP filter built from the NSCM performance does.

Index Terms

SIRV, Low-Rank Clutter, STAP, Normalized Sample Covariance Matrix, perturbation method.

I. INTRODUCTION

Space Time Adaptive Processing (STAP) is a technique used in airborne phased array radar to detect

moving target embedded in an interference background such as jamming or strong clutter [1]. While

conventional radars are capable of detecting targets both in the time domain related to target range and

in the frequency domain related to target velocity, STAP uses an additional domain (space) related to

the target angular localization. The consequence is a two-dimensional adaptive filtering technique which
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uses jointly temporal and spatial dimensions to cancel interference and to improve target detection. In

most works on radar, the clutter is assumed to be a simple Gaussian process. But firstly, the increase of

the radar resolution leads to a higher scene heterogeneity where the clutter can be no longer modeled

by a Gaussian process [2], [3]. To take this heterogeneity into account, one can use the Spherically

Invariant Random Vector (SIRV) product model, first introduced by Yao [4] in the information theory

community. This is a compound-Gaussian model, well-known for its good statistical properties and for

its good correspondence to several real data sets [5], [6]. Secondly in side-looking STAP (as considered

in this paper), the ground clutter can be shown to have a Low Rank (LR) structure from Brennan rule [7].

In this paper, the disturbance is then modeled as the sum of a LR-SIRV clutter and a zero-mean white

Gaussian noise.

In practice, the disturbance covariance matrix is generally unknown and an estimate is required to

perform the STAP processing. This estimation procedure requires the so-called secondary data which

are assumed to be independent and share the same distribution as the observation under test. In a STAP

framework, the dimension of the covariance matrix is important (number of sensors times number of

pulses). Commonly, the number of secondary data has to be upper than two times this dimension to

ensure the classical 3dB loss for the performance results [8]. One of the advantage of the LR techniques

is that this rule can be strongly relaxed to preserve such a performance [9], [10], [11], [12]. Another

problem in STAP comes from these secondary data which are often contaminated by the secondary

lobes of the target under study or other targets with same angular and velocity properties. It is also

possible to have outliers in the STAP data cube like for example in highway STAP data with cars

traffic-jam or convoys tracking. In such cases, LR techniques exhibit another advantage on classical

methods: for a quite low Signal-to-Clutter Ratio (SCR), LR techniques are robust to secondary data

contamination, see e.g., [9], [13]. This robustness directly relies on the choice of the covariance matrix

estimate, from which the projector estimate will be derived. It seems obvious that the well-known Sample

Covariance Matrix (SCM) is not adapted to strong contamination problems since this estimate depends

on the power of each data sample. Thus, it is interesting to consider other covariance matrix estimates,

independent of the data power, i.e. self-normalized estimates. This is the case of the Normalized Sample

Covariance Matrix (NSCM) [14]. We then proposed in [15] to build the clutter subspace projector on

the NSCM. The corresponding LR-STAP filter exhibits interesting results: it is more robust to secondary

data contamination by target components than the LR-STAP filter obtained from the SCM. Moreover, we

showed in [16] that the projector onto the clutter subspace built from the NSCM is a consistent estimate

of the true one when the disturbance is modeled as the sum of a LR-SIRV clutter and a white Gaussian
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noise.

Under the two hypotheses of Gaussian clutter plus noise and orthogonality of the target signal with

respect to the clutter subspace, the theoretical analysis of LR-STAP filters has been conducted in the

seminal works [9], [11], [12] (with SCM) and next in [17] (with NSCM). In this paper, we relax the

first hypothesis and we consider the much more realistic case of a LR-SIRV clutter plus white Gaussian

noise. However, for mathematical tractability the second hypothesis is kept. Our work studies the Signal

to Interference plus Noise Ratio (SINR) Loss by means of a perturbation analysis [18]. Numerical

simulations validate our results even in a case of non orthogonality of the target signal with respect

to the clutter subspace and give a comparison between the filters performance.

The following convention is adopted: italic indicates a scalar quantity, lower case boldface indicates a

vector quantity and upper case boldface a matrix. T denotes the transpose operator and H the transpose

conjugate. E [ ] is the expected value operator. C N (a,M) is a complex Gaussian vector of mean a and

of covariance matrix M. Im is the m×m-identity matrix. χ2(n) is a Chi-square random variable with

n degrees of freedom.

II. LOW-RANK STAP FILTERS

In STAP [1], the radar receiver consists in an array of N antenna elements processing M pulses in

a coherent processing interval. Let us set m = NM . In this framework, we receive a signal x ∈ Cm

consisting in a known complex signal d corrupted by an additive disturbance n. We also have K secondary

data xk which only contain the disturbance:

x = αd + n

xk = nk k = 1, . . . ,K
, (1)

where α is a deterministic complex attenuation and d has unit norm. We assume that n and nk are

independent and share the same statistical distribution. They are modeled as the sum of a clutter, c or

ck, and a white Gaussian noise, b or bk. The processes b and bk are modeled as zero-mean complex

Gaussian noises C N (0, λIm). Concerning the clutter c and ck, we consider that its power in each cell

k and in the cell under test is different. In such a situation, it is common to model this kind of clutter by

a SIRV [19], [20], [21]. A SIRV [4] is a non-homogeneous Gaussian random vector with random power:

its randomness is induced by spatial variation in the radar backscattering. Therefore, c (resp. ck) is the

product of a positive random variable τ (resp. τk), called the texture, and a m-dimensional independent
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complex Gaussian vector C N (0,C) g (resp. gk), called the speckle:

c =
√
τg

ck =
√
τkgk k = 1, . . . ,K

. (2)

In side-looking STAP, we are able to evaluate the clutter rank thanks to Brennan rule [7] which leads to

a low rank structure for the STAP clutter c and ck, i.e. rank (C) = r � m. Let λ1 > λ2 > . . . > λr >

0 = . . . = 0 and {u1, . . . ,ur,ur+1, . . . ,um} be the eigensystem of C. The covariance matrix of n and

nk is then given by:

Σ = E(τ)C + λIm = SΣ + λIm, (3)

with corresponding eigensystem E(τ)λ1 + λ > E(τ)λ2 + λ > . . . > E(τ)λr + λ > λ = . . . = λ and

{u1, . . . ,ur,ur+1, . . . ,um}. We define the projector onto the clutter subspace Πc and the projector onto

the orthogonal of the clutter subspace Π⊥c = Im −Πc [9], [11]:

Π⊥c = Im −
r∑
i=1

uiu
H
i . (4)

The optimal STAP filter wopt is [1]:

wopt = Σ−1d. (5)

In the low-rank assumption, this optimal filter is approximated by [9], [11]: wlr−opt ≈ Π⊥c d.

In practical cases, since the covariance matrix Σ (and therefore also Π⊥c ) is unknown, it is necessary

to estimate them from the secondary data {xk}k∈(1,K). The common way to estimate the projector Π⊥c is

based on the Sample Covariance Matrix (SCM). From its Eigenvalue Decomposition (EVD), we obtain

the estimated projector onto the clutter subspace [9], [11]:

Π̂⊥cSCM = Im −
r∑
i=1

ûiû
H
i . (6)

For the case of SIRV clutter without white Gaussian noise, it is well known that the NSCM [14] allows

to reach better detection performances than the SCM. Therefore, we proposed in [15] to build Πc from

the NSCM. Indeed, even if the NSCM is a biased estimate of the covariance matrix Σ, we showed

in [16] that the associated projector estimate is consistent when the disturbance is a LR-SIRV clutter plus

a white Gaussian noise. Moreover, the corresponding LR-STAP filter allows to reach good robustness to

data contamination [15]. The NSCM is defined as:

R̂NSCM =
m

K

K∑
k=1

xkx
H
k

xHk xk
. (7)
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From its EVD, we obtain another estimated projector onto the clutter subspace [9], [11]:

Π̂⊥cNSCM = Im −
r∑
i=1

û
′

iû
′H
i . (8)

The two sub-optimal STAP filters ŵ studied in this paper are:

ŵSCM = Π̂⊥cSCMd

ŵNSCM = Π̂⊥cNSCMd
. (9)

III. THEORETICAL SINR LOSS

As in previous works on LR-STAP theoretical performance analysis [11], the following usual assump-

tion is made for mathematical tractability: the projection of the steering vector on the true interference

subspace is negligible, i.e. uHi d ≈ 0 for i = 1, . . . , r. This just means that the target is not fully embedded

in the clutter ridge. We will check in next section by simulations that the theoretical result is also valid

even in a case of non orthogonality of the target signal with respect to the clutter subspace. From the

structure of Σ, we have the following relations:

Σd = λd , Σ−1d = 1
λd and Π⊥c d = d . (10)

The generic STAP filter output is y = wHx = αwHd + wHn. The SINR at the filter output SINRout

is:

SINRout =
|α|2|wHd|2

E (wHnnHw)
=
|α|2|wHd|2

wHΣw
. (11)

SINRout is maximum when w = wopt and its value is SINRmax = |α|2dHΣ−1d. The SINR loss,

denoted by ρ, is the loss of performance when w = ŵ (ŵSCM or ŵNSCM ):

ρ =
SINRout
SINRmax

=
|ŵHd|2(

ŵHΣŵ
) (

dHΣ−1d
) . (12)

From Eq. (9) and (10) the SINR losses, ρSCM or ρNSCM , of Eq. (12) can be rewritten as:

ρ = λ

(
dHΠ̂⊥d

)2

dHΠ̂⊥ΣΠ̂⊥d
, (13)

where Π̂⊥ = Π̂⊥SCM or Π̂⊥ = Π̂⊥NSCM . The aim of this section is to compute the mean SINR losses

E [ρSCM ] and E [ρNSCM ]. Results are given in the following proposition.

Proposition 3.1:

E [ρSCM ] = 1− 1

K

r∑
i=1

(
E [τ ]λi + λ

E [τ ]λi

)2

. (14)
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E [ρNSCM ] = 1− 1

K

r∑
i=1

2
E(τ)λi + λ

(µi − µ)2
E


(τλi + λ)χ2

i (2)(
r∑

j=1

(τλj + λ)χ2
j (2) + λχ2

r+2(2(m− r))

)2

 , (15)

where µ1, . . . , µr, µ are the eigenvalues of R = E
[
R̂NSCM

]
given in [16] as a function of λ1, . . . , λr, λ.

Proof: Since all considered estimators have been shown consistent, the SINR loss is evaluated for

large K by means of a perturbation analysis [18]. Starting from the perturbations on R̂, Π̂c and Π̂⊥c ,

the SINR loss ρ of Eq. (13) is reduced in a compact form thanks to a second order approximation. Let

us start by E [ρSCM ].

First, let us introduce the pseudo-inverse, MSCM , of SΣ (see Eq. (3)):

MSCM =

r∑
i=1

1

E(τ)λi
uiu

H
i . (16)

Let ∆Σ = R̂SCM −Σ be the covariance estimation error on Σ. This estimation error induces an error

on the estimates Π̂cSCM and Π̂⊥cSCM . It is shown in [18] that the projector estimates are given up to

the second order with respect to ∆Σ by:

Π̂cSCM ≈ Πc + δΠc + δ2Πc

Π̂⊥cSCM ≈ Π⊥c − δΠc − δ2Πc

, (17)

where δΠc and δ2Πc are equal to:

δΠc = Π⊥c ∆ΣMSCM + MSCM∆ΣΠ⊥c

δ2Πc = Π⊥c γMSCM + MSCMγHΠ⊥c + ΠcβΠc + Π⊥c ∆ΣM2
SCM∆ΣΠ⊥c

, (18)

where matrices γ and β are second order terms with respect to ∆Σ. In what follows, all equalities are

valid up to the second order with respect to ∆Σ.
The second-order approximation of the denominator of Eq. (13) yields:

dHΠ̂⊥
cSCMΣΠ̂⊥

cSCMd =

dHΠ⊥
c ΣΠ⊥

c d− dHΠ⊥
c ΣδΠcd− dHδΠcΣΠ⊥

c d + dHδΠcΣδΠcd− dHδ2ΠcΣΠ⊥
c d− dHΠ⊥

c Σδ2Πcd
. (19)

The first term is equal to λ from Eq. (10). The second and the third term are equal to 0 since Π⊥c ΣMSCM =

0 and MSCMd = 0. Therefore:

dHΠ̂⊥cSCMΣΠ̂⊥cSCMd = λ+ dHδΠcΣδΠcd− 2λdHδ2Πcd

= λ+ dH∆ΣMSCMΣMSCM∆Σd− 2λdH∆ΣM2
SCM∆Σd.

(20)

We have from Eq. (3) and Eq. (16):

MSCMΣMSCM = MSCM (SΣ + λIm)MSCM = MSCM + λM2
SCM . (21)

September 17, 2012 DRAFT



SUBMISSION TO IEEE TRANS. ON SIGNAL PROCESS., 2012 7

From Eq. (21), Eq. (20) becomes:

dHΠ̂⊥cSCMΣΠ̂⊥cSCMd = λ+ dH∆Σ
(
MSCM − λM2

SCM

)
∆Σd. (22)

Secondly, let us compute the numerator of Eq. (13). We have:

dHΠ̂⊥SCMd = dHΠ⊥c d− dHδΠcd− dHδ2Πcd. (23)

Since Π⊥c d = d and MSCMd = 0, Eq. (23) is equivalent to:

dHΠ̂⊥cSCMd = 1− dH∆ΣM2
SCM∆Σd. (24)

and thus: (
dHΠ̂⊥cSCMd

)2
= 1− 2dH∆ΣM2

SCM∆Σd. (25)

Finally, the second order expression of the SINR loss of Eq. (13) is:

ρSCM = λ

(
dHΠ̂⊥cSCMd

)2

dHΠ̂⊥cSCMΣΠ̂⊥cSCMd
= 1− dH∆Σ

(
1

λ
MSCM + M2

SCM

)
∆Σd. (26)

As MSCMΣd = 0 (since uHi d ≈ 0 for i ≤ r), we can substitute R̂SCM for ∆Σ in Eq. (26):

ρSCM = 1− dHR̂SCM

(
1

λ
MSCM + M2

SCM

)
R̂SCMd = 1− ‖

(
1

λ
MSCM + M2

SCM

)1/2

R̂SCMd‖2. (27)

Let us set: (
1

λ
MSCM + M2

SCM

)1/2

=

r∑
i=1

aiuiu
H
i with ai =

1

E [τ ]λi

√
E [τ ]λi + λ

λ
(28)

and
zk =

(
1
λMSCM + M2

SCM

)1/2
xkx

H
k d

z =
(

1
λMSCM + M2

SCM

)1/2
R̂SCMd = 1

K

∑K
k=1 zk.

(29)

We have:

ρSCM = 1− ‖z‖2 (30)

For large K, as assumed in this paper, the central limit theorem ensures that z is Gaussian distributed.
Its first and second order moments follow from those of zk and will be now investigated. The SINR loss
distribution will be obtained from these results. The first order moment of zk is:

E (zk) =

(
1

λ
MSCM + M2

SCM

)1/2

E
(
xkxH

k

)
d =

(
1

λ
MSCM + M2

SCM

)1/2

Σd = 0, (31)

since uHi d ≈ 0 for i ≤ r. Let us now compute the second order moments of zk. Let us recall that

xk = ck + bk and introduce the following new parameter:

yk = [u1 . . .ur d]H xk. (32)
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Conditionally to τk, xk is complex zero-mean Gaussian and its covariance eigensystem is τkλ1 + λ >

τkλ2 + λ > . . . > τkλr + λ > λ = . . . = λ and {u1, . . . ,ur,ur+1, . . . ,um}. Consequently, each

component of yk, conditionally to τk, can be written as follows:

(yk)i =
√

1
2(τkλi + λ)χ2

k,i(2) exp (jθk,i) i = 1, . . . , r

(yk)r+1 =
√

1
2λχ

2
k,r+1(2) exp (jθk,r+1)

, (33)

where θk,i is uniformly distributed on [0, 2π]. All random variables are mutually independent. Therefore,

we obtain:

zk =

r∑
i=1

ai(u
H
i xk)(x

H
k d)ui =

r∑
i=1

ai(yk)i(y
H
k )r+1ui. (34)

The second order moments of zk is easily computed from Eqs. (33) and (34): E
(
zkz

T
k

)
= 0 and

E
(
zkzH

k

)
=

r∑
i=1

a2i
4
E
[
(τkλi + λ)λχ2

i (2)χ
2
r+1(2)

]
uiu

H
i =

r∑
i=1

a2i (E [τ ]λi + λ)λuiu
H
i . (35)

The SINR loss distribution follows from Eq. (30), (35) and the central limit theorem:

ρSCM = 1− 1
2K

r∑
i=1

(
E [τ ]λi + λ

E [τ ]λi

)2

χ2
i (2). (36)

Taking the expectation of Eq. (36) completes the proof for E [ρSCM ].

The proof for E [ρNSCM ] is very similar and is omitted.

Remark: In STAP context, the hypothesis of a strong clutter in comparison to the white Gaussian

noise is often valid. In this particular case, the SINR losses of proposition 3.1 admit simplified expressions:

E [ρSCM ] ≈ 1− r

K
. (37)

E [ρNSCM ] ≈ 1− 1

K

r∑
i=1

2
E(τ)λ2

i

µ2
i

E

[
1

τ

]
E


χ2
i (2)(

r∑
j=1

λjχ
2
j (2)

)2

 . (38)

Indeed, we have in the case of a strong clutter E [τ ]λi � λ for i = 1, . . . , r. For E [ρSCM ] in Eq. (14),

Eq. (37) is then easily deduced. Concerning E [ρNSCM ], it may be shown from [16] that µ1, . . . , µr � µ

when λ is small. Expression (38) follows from Eq. (15) for small λ.

Eq. (37) is similar to the classical result of [9], [11] with Gaussian clutter. This shows that the texture

τ has no influence on the SINR loss ρSCM in a strong clutter hypothesis. Concerning the behaviour of

the SINR loss ρNSCM of Eq. (38) in a strong clutter context, we notice that E [ρNSCM ] does depend

on the texture distribution.
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IV. NUMERICAL SIMULATIONS

We consider the following side-looking STAP configuration to check the theoretical SINR losses of

proposition 3.1. The number of sensors is N = 8 and the number of coherent pulses is M = 8. Angles of

arrival are measured with respect to broadside. The center frequency and the bandwidth are respectively

equal to f0 = 450 MHz and B = 4 MHz. The radar velocity is V = 100 m/s. The inter-element spacing

is d = c
2f0

(c is the speed of light) and the pulse repetition frequency is fr = 600 Hz. The clutter rank is

computed from Brennan rule [7]: r = 15 (r = 15 < NM = 64). The covariance matrix of the Gaussian

clutter is simulated thanks to the modelling presented in [1]. To simulate the SIRV clutter, we choose

for the texture τ a Gamma distribution with shape parameter ν and scale parameter 1/ν (which results

in E [τ ] = 1). The identity matrix is next added to build the covariance matrix Σ of Eq. (3). The Clutter

to Noise Ratio (CNR) is set to 25 dB. The clutter ridge spans the angles between -90o and 90o and the

speeds between -100 m/s and 100 m/s. The target velocity is 40 m/s with an angle of arrival equal to

-20o. In this configuration, we have maxi∈{1,r}(|uHi d|) = 0.1. Therefore, we consider a case with the

property of non-orthogonality between the target and the clutter subspaces: a simple matched filter is not

sufficient to detect the target.

The theoretical LR-SCM and LR-NSCM SINR losses are computed using Eq. (14) and Eq. (15). For

the last one, the expectations involving the texture are evaluated by 100000 Monte Carlo trials. The

numerical LR-SCM and LR-NSCM SINR losses of Eq. (13) are estimated using 10000 Monte-Carlo

trials.

Figure 1 displays the numerical and theoretical SINR losses as a function of K for the LR-STAP

filters built from the SCM and NSCM in the case of a LR-SIRV clutter of parameter ν = 2 and ν = 1.

The second case simulates a strong non-homogeneous clutter. For the LR-STAP filter built from the

SCM, numerical and theoretical SINR losses are close for both ν. This validates Eq. (14) as well as the

approximate expression (37) (texture has no influence on ρSCM ). For the LR-STAP filter built from the

NSCM, numerical and theoretical SINR losses are close for ν = 2. When ν = 1, the theoretical result is

correct for large K (which validates Eq. (15)) but more mitigated for small K. Note also as expected in

Eq. (38) that the texture distribution has a strong influence on the SINR loss of the LR-STAP filter built

from the NSCM (numerical and theoretical) which is not the case for the LR-STAP filter built from the

SCM.
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Fig. 1. Theoretical (solid line) and Numerical (dashed line and stars) SINR losses for LR-STAP filters built from the SCM

(left) and the NSCM (right) as a function of K. The LR-SIRV clutter is simulated by a Gamma distribution of parameter ν = 1

(red) and ν = 2 (blue)

V. CONCLUSION

In this paper, we analyzed the theoretical performance of two LR-STAP filters built from the SCM and

the NSCM by deriving SINR loss expressions based on a perturbation analysis. Compared to previous

works, disturbance was modeled as the sum of a Low-Rank SIRV clutter and a zero-mean white Gaussian

noise. Numerical simulations validated the theoretical formula even in a case of non orthogonality of the

target signal with respect to the clutter subspace and allowed to show that the LR-STAP filter built from

the SCM has better performance than the one built from the NSCM. For strong clutter to noise ratio, we

also proved that the LR-STAP filter built from the SCM leads to the same performance as in Gaussian

clutter.

In a future work, we propose to investigate the performance of the LR-STAP filter built from the

NSCM for small K according to the distribution of the texture. It will be also interesting to investigate

how the SINR losses will be affected by a wrong estimation of r.
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