Duc Manh Nguyen
email: nguyendu@ensta-bretagne.fr

Frédéric Dambreville

Abdelmalek Toumi
email: toumiab@ensta-bretagne.fr

Jean-Christophe Cexus
email: cexusje@ensta-bretagne.fr

Ali Khenchaf
email: khenchal@ensta-bretagne.fr

A column generation based label correcting approach for the sensor management in an information collection process

Keywords: Sensor management, Information collection, Vehicle Routing Problem, Column generation, Mixed integer linear programming

This paper deals with problems of sensor management in a human driven information collection process. This applicative context results in complex sensor-to-task assignment problems, which encompass several difficulties. First of all, the tasks take the form of several information requirements, which are linked together by logical connections and priority rankings. Second, the assignment problem is correlated by many constraint paradigms. Our problem is a variant of Vehicle Routing Problem with Time Windows (VRPTW), and it also implements resource constraints including refuelling issues. For solving this problem, we propose a column generation approach, where the label correcting method is used to treat the sub-problem. The efficiency of our approach is evaluated by comparing with solution given by CPLEX on different scenarios.

Introduction

Sensor planning is a research domain that treats the problem of how to manage or coordinate the usage of a suite of sensors or measurement devices in a dynamic, uncertain environment, to improve the performance of data fusion and ultimately that of perception [START_REF] Xiong | Multi-sensor management for information fusion : issues and approaches[END_REF]. It is also beneficial to avoid overwhelming storage and computational requirements in a sensor and data rich environment by controlling the data gathering process such that only the truly necessary data are collected and stored [START_REF] Schaefer | Sensor management in a sensor rich environment[END_REF]. The literature on sensor planning closely followed the appearance of the first significant sensor capacity, and its history tracks back to the seminal works of Koopman during World War II [START_REF] Koopman | The theory of search. iii. the optimum distribution of searching effort[END_REF][START_REF] Washburn | Search for a moving target : The FAB algorithm[END_REF]. Nowadays, because sensors are becoming more complex with the advances in sensor technology and also due to the perplexing nature of the environment to be sensed, sensor planning has evolved out of the need for some form of assigning and scheduling tasks to the sensors [START_REF] Ng | Sensor management -what, why and how[END_REF].

Sensor planning has been studied extensively and is becoming increasingly important due to its practical implementations and applications. Besides several military applications, sensor planning currently deals with the general domain of search and surveillance [START_REF] Frost | Principle of search theory[END_REF][START_REF] Haley | Search Theory and Applications[END_REF], and also is one of the key points to optimize the performance of a sensor network [START_REF] Chakrabarty | Grid coverage for surveillance and target location in distributed sensor networks[END_REF][START_REF] Jayaweera | Optimal node placement in decision fusion wireless sensor networks for distributed detection of a randomly-located target[END_REF]. In sensor planning, the global issue is to optimize an implementation of sensors in order to maximize the positive effect of subsequent data processing in regards to mission objectives. Therefore, we have to deal with both the optimization of implementation of sensors and the information processing (typically data fusion). From this point of view, sensor planning is also related to difficult topics in robotice.g. Partially Observable Markov Decision Process [START_REF] Tremois | Optimal observer trajectory in bearings-only tracking for maneuvering sources[END_REF][START_REF] Dambreville | Cross-entropic learning of a machine for the decision in a partially observable universe[END_REF].

In this paper, we will consider the planing of sensors, which are monitored by human teams. This problem is reduced to a generalization of Vehicle Routing Problem with Time Windows (VRPTW). Therefore, it is a NP-complete problem. For solving this problem, we introduce an approach based on the column generation method [START_REF] Desrosiers | Routing With Time Windows by Column Generation[END_REF][START_REF] Desrosiers | Lagrangian Relaxation Methods for Solving the Minimum Fleet Size Multiple Traveling Salesman Problem With Time Windows[END_REF], which is one of the most famous methods in the literature for solving VRPTW. In order to successfully apply the column generation method, we propose an suitable integer programming formulation of this problem, and then develop a label correcting method [START_REF] Feillet | An exact algorithm for the elementary shortest path problemwith resource constraints: application to some vehicle routing problems[END_REF] for treating the sub-problem. The numerical results will show the efficiency of our approach.

The rest of paper is organized as follows. In Section 2, we introduce the considered sensor planing problem and its formulation. Our column generation based label correcting approach for solving this problem is presented in Section 3. Numerical experiments are reported in Section 4 while some conclusions and perspectives are discussed in Section 5.

Problem formulation

When sensors are planned by human teams, the planning process is typically divided into two stages: the first is purely human driven, and results in the definition of an assignment problem with time and travel constraints; the second is based on optimization processes and results from the formalization of the first step. In such case, the human interaction with the optimization process is fundamental. Therefore, the human operators should be highly skilled in their domain, and may provide useful information to the optimization processes. Moreover, the human operators need to know, to understand and to interact with the optimization processes. These requirements quite often lead to the intricate sensor planning problems, for instance, the sensor-to-task assignment problems [START_REF] Thi | A DC programming approach for planning a multisensor multizones search for a target[END_REF][START_REF] Simonin | A hierarchical approach for planning a multisensor multizone search for a moving target[END_REF], or the variants of the vehicle routing problem with time constraint satisfaction [START_REF] Janez | Optimization method for sensor planning[END_REF], etc.

In this work, we are interested by the second step of the planning. Our problem is to design the trajectories for a set of sensors in order to perform a set of missions with maximum performance. Besides taking into account several constraints (trajectory constraints, time windows constraints) like those in the Vehicle Routing Problem with Time Windows (VRPTW), we have to deal with both refuelling steps and a plan evaluation doctrine. Our problem could be considered as a generalization of the VRPTW. This sensor planning problem is characterized by the following objects:

Formal Information Requirements: we have a set F of formal information requirements (FIR) needed to be satisfied. For each requirement u ∈ F , we have a set of missions corresponding µ(u) to satisfy this requirement.

Here, we suppose that µ(u) ∩ µ(v) = ∅ if u = v, and denote M = u∈F µ(u) the set of all missions for all requirements.

Sensors: A sensor is a resource unit which may be used for some FIR acquisition. We denote K the set of all sensors.

Starting points: A starting point is a possible state from which a sensor have to start. S is the set of all starting points. Refuelling centres: A refuelling centre is a possible state where a sensor will reset its autonomy levels. R is the set of all refuelling centres. Arrival points: An arrival point is a possible state where a sensor have to end. E is the set of all arrival points (endpoints).

Sensor states: In our model, starting points, refuelling centres and ending points could be considered as particular cases of missions, and represent a possible state of the sensor. For this reason, we denote N = S ∪ M ∪ R ∪ E the set of all possible states (also called tasks, or points). Some states may be incompatible with some sensors. Thus, for each state i ∈ N , we define K(i) ⊂ K the set of all sensors being compatible with state i. Also, the following definitions will be useful: S(k) ⊂ S is the set of all starting points for sensor k ∈ K; E(k) ⊂ E is the set of all arrival points for sensor k ∈ K.

Variables for trajectories and affectations: The boolean variables x and y are used for modelling edges and vertices of the sensors trajectories.

y ik = 1 if sensor k performs task i, 0 otherwise,
x ijk = 1 if sensor k performs task j after task i, 0 otherwise.

Moreover, the following instrumental variable will be used in order to prevent any cyclic trajectory:

ω ik ∈ IR is a counting variable for the passed states of the trajectories. Constant parameters for performances and costs: Performances are evaluated by means of the degrees of importance of the FIR and by means of precomputed evaluations of the efficiency of any sensor in performing a mission:

• p u is the weight of requirement u ∈ F with respect to its priority;

• g ik is the efficiency of sensor k ∈ K in performing mission i ∈ M ;

• c ijk evaluates the resources expended by sensor k ∈ K while performing state j ∈ N after state i ∈ N ; • d ijk evaluates the distance travelled by sensor k ∈ K while performing state j ∈ N after state i ∈ N.

The following corrected cost is defined by weighting the actual cost and the distance:

• c ijk = ǫ 1 (c ijk + ǫ 2 d ijk)
is the corrected cost for i, j ∈ N and k ∈ K. Here ǫ 1 , ǫ 2 ∈ IR + are small positive numbers.

Variables and constant parameters for resources: Depending on the nature of the state (e.g. is it a refuelling centre or not?), the resources of each sensor may be replenished or not after each state. We consider the following variables:

• α ik is the level of autonomy of sensor k ∈ K after performing state i ∈ N and before a possible refuelling; • β ik is the level of autonomy of sensor k ∈ K after a possible refuelling at state i ∈ N . By the way, the levels of supply, after possible refuelling, are also defined as constant parameters:

• A ik is the level of supply of sensor k ∈ K after leaving state i ∈ S ∪ R.

Variables and constant parameters for time:

• [a i , b i]
is the time windows related to the state i ∈ N ;

• o ik is the starting time of state i ∈ N for sensor k ∈ K;

• ∆ ik is the necessary time period for sensor k ∈ K to perform state i ∈ N ; (execution time) • t ijk is the necessary time period for sensor k ∈ K to move from state i ∈ N to state j ∈ N. (transition time) As a conclusion: the variables of the problem are x, y, ω, α and β. Next paragraphs will present the relationship between these parameters and variables, under the form of constraints and optimization criterion.

Trajectory constraints: We consider the constraints which link variables x, y and ω, and which state that the sensors perform non cyclic states trajectories, from starting points to arrival points:

y ik + y jk ≥ 2x ijk , ∀i, j ∈ N, k ∈ K, (1) 1 +
i,j∈N

x ijk = i∈N y ik , ∀k ∈ K, (2)
i∈N x ihk = i∈N x hjk , ∀h ∈ M ∪ R, k ∈ K, (3)
ω jk ≥ ω ik + 1 + ∞ × (1 -x ijk), ∀i, j ∈ N, k ∈ K, (4)
x ijk = 0, ∀i ∈ N, k ∈ K, j ∈ S, (5)
x ijk = 0, ∀j ∈ N, k ∈ K, i ∈ E, (6)
i∈S(k)

y ik = 1; i∈E(k) y ik = 1, ∀k ∈ K. (7
)
Time windows constraints:

o ik + ∆ ik + t ijk -∞ × (1 -x ijk) ≤ o jk , ∀i, j ∈ N, k ∈ K, (8)
ai ≤ o ik , o ik + ∆ ik ≤ bi, ∀k ∈ K, ∀i ∈ S ∪ R ∪ E, (9)
ai ≤ o ik , o ik + ∆ ik ≤ bi, ∀k ∈ K, for all reconnaissance mission i, (10)
o ik ≤ ai, bi ≤ o ik + ∆ ik , ∀k ∈ K, for all surveillance mission i. (11
)
Resource constraints:

α jk ≤ β ik -c ijk + ∞ × (1 -x ijk), ∀i, j ∈ N, k ∈ K, (12)
β ik = A ik , ∀i ∈ S ∪ R, (fuelled/refuelled) (13
)
β ik = α ik , ∀i ∈ M ∪ E, (not refuelled) (14) α ≥ 0, β ≥ 0. (15
)
Also we consider the following constraint:

i∈µ(u) k∈K y ik ≤ 1, ∀u ∈ F. (16
)
Our purpose is to maximize a global criterion which is a balance between the satisfaction of the FIR and the expense. Thus, we have the following optimization problem :

     max x,y,u,o,α,β u∈F pu i∈µ(u) k∈K y ik g ik - i∈N j∈N k∈K c ijk x ijk
subject to: from (1) to (16). [START_REF] Nguyen | A column generation method for solving the sensor management in an information collection process[END_REF] This is a linear mixed 0-1 programming. This problem is NP-complete, since it is a generalization of VRPTW. Therefore, our considered problem is very hard to solve, even for reasonably sized cases.

A column generation approach

While several successful methods for solving several VRPTW variants have been proposed in the literature [1-3, 6, 7, 20, 21], one of the most famous approach is column generation. The embedding of column generation techniques within a linear-programming-based branch-and-bound framework, introduced by Desrosiers et al. [START_REF] Desrosiers | Routing With Time Windows by Column Generation[END_REF] for solving the VRPTW, became classic. It contributed as the key step in the design of exact algorithms for a large class of integer programs [START_REF] Lübbecke | Selected Topics in Column Generation[END_REF]. Nowadays, column generation is a prominent method to cope with a huge number of variables, and numerous integer programming column generation applications have been developed (see e.g. [START_REF] Lübbecke | Selected Topics in Column Generation[END_REF] for an overview). As a generalization of the VRPTW, our sensor planning has some good properties (for instance, trajectory constraints and time windows constraints) for a column generation based approach. Therefore, we will investigate the column generation approach for solving the problem [START_REF] Nguyen | A column generation method for solving the sensor management in an information collection process[END_REF] in this section.

Column generation

Applying the methodology described in [START_REF] Desrosiers | Routing With Time Windows by Column Generation[END_REF], the column generation approach will be based on the notion of feasible routes for the sensors. A feasible route of a sensor k ∈ K is a route starting from a compatible departure, going to a compatible endpoint, satisfying all constraints and visiting at least one mission i ∈ M . We denote by Ω k the set of all feasible routes for sensor k, and Ω = k∈K Ω k the set of all feasible routes.

Let r = (r 1 , r 2 , ..., r m) ∈ Ω k ⊂ Ω be a route, where r 1 , • • • , r m ∈ N are the states visited by the sensor k. The performance of this route, denoted by f (r), is computed as follows:

f (r) = u∈F :µ(u)∩{r 2 ,...,r m-1 }={r h } pug r h ,k g(r) - m-1 i=1 c r i ,r i+1 ,k c(r) . (18
)
In this formula, g(r) is the gain of route r, and c(r) is the cost of route r. Now we define the parameter a ru , u ∈ F by:

aru = 1 if µ(u) ∩ {r2, ..., rm-1} = ∅ , 0 otherwise. (19
)
The sensor planning problem (17) is reformulated as:

               max k∈K r∈Ω k f (r).θr s.t. k∈K r∈Ω k aruθr ≤ 1, ∀u ∈ F, r∈Ω k aruθr ≤ 1, ∀k ∈ K, θr ∈ {0, 1}, ∀r ∈ Ω. (20
)
The variable θ r ∈ {0, 1} is a decision variable which describes whether a route r is chosen or not. The first constraint specifies that each requirement u ∈ F is satisfied at most one time while the second constraint ensures that each sensor k ∈ K does at most one feasible route.

Because of the first constraint, the condition θ r ∈ {0, 1}, ∀r ∈ Ω can be replaced by θ r ∈ IN, ∀r ∈ Ω. The linear relaxation of problem [START_REF] Solomon | Algorithms for the Vehicle Routing and Scheduling Problem with Time Window Constraints[END_REF], i.e., with θ r ≥ 0, ∀r ∈ Ω, is called Master Problem (MP), which is an instrument for evaluating the feasible route generated at each iteration. The methodology of column generation approach can be described as follows.

Let Ω 1 k ⊂ Ω k , k ∈ K, and Ω 1 = k∈K Ω 1 k . We consider the restriction of the Master Problem, denoted MP(Ω 1):

                 max k∈K r∈Ω 1 k f (r).θr s.t. k∈K r∈Ω 1 k aruθr ≤ 1, ∀u ∈ F, r∈Ω 1 k aruθr ≤ 1, ∀k ∈ K, θr ≥ 0, ∀r ∈ Ω 1 . (21)
The dual program of [START_REF] Toth | An exact algorithm for the vehicle routing problem with backhauls[END_REF], denoted by D(Ω 1), is:

           min u∈F λu + k∈K µ k s.t. u∈F aruλu + µ k ≥ f (r), ∀r ∈ Ω 1 k , k ∈ K, λu ≥ 0, ∀u ∈ F, µ k ≥ 0, ∀k ∈ K. (22
)
Now suppose that (λ, μ) = (λ1 , ..., λF , μ1 , ..., μK) is an optimal solution of the dual problem D(Ω 1). Then, we have:

u∈F aru λu + μk ≥ f (r), ∀r ∈ Ω 1 k , k ∈ K.
It is clear that if this condition holds for all r ∈ Ω k , k ∈ K, then (λ, μ) is also the optimal solution of the dual program of (MP). Otherwise, we will look for a route r ∈ Ω k \Ω 1 k , for a k ∈ K such that:

u∈F aru λu + μk < f (r). (23
)
This is called the sub-problem.

The column generation algorithm for solving the problem (20) can be described as follows:

Column generation algorithm for solving (20):

Step 1. Generate initial sets Ω 1 k for k ∈ K, Step 2. Solve the problem [START_REF] Toth | An exact algorithm for the vehicle routing problem with backhauls[END_REF] in order to obtain the optimal solution and its dual solution (λ, μ), Step 3. For each k ∈ K, find a route r ∈ Ω k \Ω 1 k satisfying the condition (23) and update Ω 1 k := Ω 1 k ∪ {r}, Step 4. Iterate step 2-3 until there is no route satisfying the condition (23),

Step 5. Solve [START_REF] Solomon | Algorithms for the Vehicle Routing and Scheduling Problem with Time Window Constraints[END_REF] with Ω := Ω 1 .

A label correcting method for solving the sub-problem

In [START_REF] Nguyen | A column generation method for solving the sensor management in an information collection process[END_REF], we have proposed an approach using CPLEX for the MILP formulation of the sub-problem in Step 3. In this section, we investigate another method for solving the sub-problem: the label correcting method. This method is based on the ideas of [START_REF] Feillet | An exact algorithm for the elementary shortest path problemwith resource constraints: application to some vehicle routing problems[END_REF] [START_REF] Feillet | An exact algorithm for the elementary shortest path problemwith resource constraints: application to some vehicle routing problems[END_REF] developped for treating the Elementary Shortest Path Problem with Resource Constraints. The principle of this method is to use the dynamic programming.

For a sensor k fixed, we consider F (k) = {F IR 1 , . . . , F IR m } the set of associated requirements. For each requirement F IR u ∈ F (k), we denote µ k (F IR u) the set of missions which can be performed by the sensor k in order to satisfy this requirement. Additionally, we denote R(k) = {R 1 , ..., R n } the set of compatible refuelling centres and E(k) the set of compatible endpoints corresponding to this sensor k. Since the position of sensor k is known, we also use the notation k to represent its position, and call V k = F (k) ∪ R(k) ∪ {k} the set of nodes. Definition 1. Each path P kv from the position of sensor k to a node v ∈ V k \{k} associates a state

H v = (T 1 v , T 2 v , X 1 v , ..., X m v , Y 1 v , ..., Y n v , Z v) and a performance f v = f (P kv).
Here, the two first parameters T 1 v , T 2 v correspond to the quantity of time and fuel resources used by the path. The parameters X 1 v , ..., X m v represent the visitation of requirement (X u v = i = 0 if the path visits the requirement F IR u by performing the mission i ∈ µ k (F IR u), 0 otherwise), and the parameters Y 1 v , ..., Y n v represent the visitation of refuelling centre (Y i v = 1 if the path visits the refuelling centre R i , 0 otherwise). The last parameter Z v shows the ability to reach an endpoint, i.e., Z v = 1, if after visiting node v, the sensor k can go to some endpoint, 0 otherwise. The couple λ v = (H v , f v) is said to be a label on the node v.

Definition 2. Let P kv and Pkv be two paths from the position of sensor k to a node v with associated labels

(H v , f v), H v = (T 1 v , T 2 v , X 1 v , ..., X m v , Y 1 v , ..., Y n v , Z v) and (Hv , fv), Hv = (T 1 v , T 2 v , X1 v , ..., Xm v , Ȳ 1 v , ..., Ȳ n v , Zv).
We say that P kv dominates Pkv if:

T i v ≤ T i v , ∀i = 1, 2, id(X i v) ≥ id(Xi v), ∀i = 1, 2, ..., m, Y i v ≤ Ȳ i v , ∀i = 1, 2, ..., n, Z v ≥ Zv , f v ≥ fv . Here, id(x) = 1, if x = 0; id(x) = 0 otherwise.
We use the following notations to describe the algorithm:

-Λv: List of labels on node v.

-Succ(v): Set of successors of node v.

-L: List of nodes waiting to be treated.

-Extend(λv, ṽ): Multi-value function that returns the labels resulting from the extension of label λv = (Hv, fv) ∈ Λv towards node ṽ (with respect to the missions at ṽ) when the extension is possible, nothing otherwise. More precisely, suppose that λv = (Hv, fv) ∈ Λv is a label on v, with Hv = (T

1 v , T 2 v , X 1 v , ..., X m v , Y 1 v , ..., Y n v , Zv
). We will distinguish two cases of ṽ as follows:

-If ṽ is a FIR, and µ k (ṽ) = {m1, ..., mj } are the set of missions corresponding, then we extend this label with respect to each mission mi, i = 1, ..., j in order to obtain the new label λṽ = (Hṽ, fṽ) as follows. + If mi is a reconnaisance mission

T 1 ṽ = T 1 v + t v,m i ,k + ∆ m i ,k if am i < T 1 v + t v,m i ,k < T 1 v + t v,m i ,k + ∆ m i ,k ≤ bm i am i + ∆ m i ,k if T 1 v + t v,m i ,k ≤ am i , (24)
+ If mi is a surveillance mission

T 1 ṽ = T 1 v + t v,m i ,k + ∆ m i ,k if T 1 v + t v,m i ,k ≤ am i , bm i ≤ T 1 v + t v,m i ,k + ∆ m i ,k , (25)
T 2 ṽ = T 2 v + c v,m i ,k if T 2 v + c v,m i ,k ≤ A k , (26)
X ṽ ṽ = mi, (27)
Zṽ = 1 if the sensor can go to an endpoint after performing the mission mi, otherwise 0, (28)

fṽ = fv + g m i ,k -ǫ1(c v,m i ,k + ǫ2d v,m i ,k).
(29) Here, A k is the capacity of sensor k. Of course, if the conditions in [START_REF] Xiong | Multi-sensor management for information fusion : issues and approaches[END_REF], or (25) or (26) are violated, there is no extension. Therefore, from a label λv, after extension procedure we get at most |µ(ṽ)| new labels on node ṽ.

-If ṽ is a refuelling centre, we extend the label λv = (Hv, fv) to obtain a new label λṽ = (Hṽ, fṽ) on ṽ by updating the following parameters:

T 1 ṽ = T 1 v + t v,ṽ,k + ∆ ṽ,k if aṽ < T 1 v + t v,ṽ,k < T 1 v + t v,ṽ,k + ∆ ṽ,k ≤ bṽ aṽ + ∆ ṽ,k if T 1 v + t v,ṽ,k ≤ aṽ, (30)
T 2 ṽ = 0 if T 2 v + c v,ṽ,k ≤ A k , (31)
Y ṽ ṽ = 1, (32)
Zṽ = 1 if the sensor can go to an endpoint after refuelling at ṽ, otherwise 0, (33) fṽ = fv -ǫ1(c v,ṽ,k + ǫ2d v,ṽ,k).

(34) If the conditions in (30) or (31) are violated, then there is no extension.

-Fv,ṽ : Set of labels extended from node v to node ṽ.

-EF F (Λ): Procedure that keeps only non-dominated labels in the list of labels Λ.

The label correcting procedure for solving the subproblem can be described as follows.

LabelCorrecting(k):

Set Λ k = (0, 0, ..., 0) and Λv = ∅ for all v ∈ V k \{k} Set L = {k} Repeat Choose v ∈ L for all ṽ ∈ Succ(v) Set Fv,ṽ = ∅ for all λv = (Hv, fv) ∈ Λv, with Hv = (T

1 v , T 2 v , X 1 v , ..., X m v , Y 1 v , ..., Y n v , Zv) if X ṽ v = 0
or Y ṽ v = 0 then Fv,ṽ := Fv,ṽ ∪ {Extend(λv, ṽ)} endif endfor Λṽ = EF F (Λṽ ∪ Fv,ṽ) if Λṽ has changed then L = L ∪ {ṽ} endif endfor Set L = L\{v} Until finding a label λv = (Hv, fv) satisfying the following condition: fv satisfies (23) and Zv = 1.

Remark 1. In practice, to prevent the explosion of number of labels, we should limit the number of labels on each node at each iteration. We denote lv the maximum labels on node v. After the step "Λṽ = EF F (Λṽ ∪Fv,ṽ)", if card(Λṽ) > lṽ then we only remain lṽ labels which have more requirements visited.

Experiments and Numerical Results

Our algorithm is written in MATLAB 2010, and is tested on a PC 64 bits Windows 7, Intel(R) Xeon (R) CPU X5690 @ 3.47 GHz 3.47 GHz, 24G of RAM. CPLEX 12.4 is used for solving the linear program [START_REF] Toth | An exact algorithm for the vehicle routing problem with backhauls[END_REF], and the problem (20) in Step 5. In order to evaluate the performance of this approach, we compare the results obtained by our approach with a purely CPLEX-based approach (applying directly to the problem (17)). In our scenarios, we assume that the sensors are starting from unique starting points, i.e. #S(k) = 1, and that the sensors are endowed with the same autonomy level A ik = A after (re-)fuelling. The costs are also identically valued by c ijk = 20. Therefore, if A = 100, then each sensor can visit less or equal to 5 states without refuelling. The priority of requirement is determined as follows: if the requirement u has the priority 1 (resp. 2), then p u = 100 (resp. p u = 1). We also define ∆ ik = 20 (minutes), t ijk = 20 (minutes) and ǫ 1 = ǫ 2 = 10 -4 .

The set of initial routes for the column generation method is generated as follows: for each requirement u ∈ F , we choose a mission i ∈ µ(u) and a compatible sensor k ∈ K that performs the maximum gain. Then, we choose an arrival point e which implies the smallest corrected cost, thus obtaining the route: "s → i → e". 1 (a)). Tables 1-3 present the parameters of missions, refuelling centres and arrival points respectively. Table 4 presents the gains of missions performed by the sensors. In this case, we have MILPs with 3250 binary variables, 465 continuous variables and 10730 constraints. The maximum number of labels l v = 100, ∀v ∈ V k , ∀k ∈ K. The computational time of label correcting algorithm for each sensor is limited to 10 seconds.

Table 5 gives the comparative results between the column generation method and CPLEX for different values of parameter A. From Table 5, we see that the column generation method produced very good solutions. The relative error of objective value between the two methods varies from 0.00% to 0.09% (0.03% in average). Moreover, the column generation method is slightly faster than the pure CPLEX approach: the average of CPU time of column generation method is 37.43 seconds while this of CPLEX is 39.74 seconds. 7 presents the gains of missions performed by the sensors. In this case, we have MILPs with 12420 binary variables, 1032 continuous variables and 44106 constraints.

Here, the sensors K 1 , K 2 are of the same type (Type 1) and located in the same position (depot), and so are the sensors K 3 , K 4 (Type 2). As is done classically, same-type sensors have been solved by only one sub-problem. The maximum number of labels l v = 200, ∀v ∈ V k , ∀k ∈ K. The computational time of label correcting algorithm for each sensor is limited to 20 seconds. Also, we use a stopping criteria (gap ≤ 1%) when implementing the purely CPLEX-based approach.

From Table 8, we see that the column generation method once again produces quite good solutions in acceptable time. The relative error of objective value between the two methods varies from 0.61% to 1.69% (1.16% in average).

Conclusion

In this paper, we have proposed a column generation approach for solving the optimal sensors management in an information collection process, where a label correcting algorithm has been developped for treating the sub-problem. The comparative results with CPLEX have demonstrated the efficiency of our proposed approach. It found a near-optimal solution within acceptable time for even large-scale problems. In the future, we plan to study some dedicated heuristics and meta-heuristics for the search of column candidate. Also, we intend to parallelize the Step 3 so as to speed up our algorithm.

Fig. 1 .

 1 Fig. 1. Plans.

4. 1

 1 The first data We have |F | = 10 requirements, |M | = 15 missions, |R| = 3 refuelling centres, |E| = 2 arrival points and |K| = 5 sensors (see Fig.

4 . 2

 42 The second data In this section, we tested the performance of our approach on a large scale scenario. We have |F | = 18 requirements, |M | = 34 missions, |R| = 3 refuelling centres, |E| = 2 arrival points and |K| = 6 sensors (see Fig. 1 (b)). The refuelling centres and arrival points are the same as in the first data set. Tables 6 presents the parameters of missions. Table

Acknowledgement

The authors would like to thank the DGA (Délégation Générale pour l'Armement) for its support to this research.