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Introduction

The oscillating operators of type ∇ • a(x/δ)∇ • , as δ → 0, (

for coercive and bounded Y -periodic matrix-valued functions a(y) in R d , which model the conduction in highly heterogeneous media, have been widely studied since the seminal work [START_REF] Bensoussan | Asymptotic analysis for periodic structures, corrected reprint of the 1978 original[END_REF] based on an asymptotic expansion of (1.1). In the end of the nineties an alternative approach was proposed in [START_REF] Conca | Homogenization of periodic structures via Bloch decomposition[END_REF] using the Bloch wave decomposition. More precisely, this method consists in considering the discrete spectrum λ m (η), φ m (η) , m ≥ 1, of the translated complex operator (see [START_REF] Conca | Bloch approximation in homogenization and applications[END_REF] for the justification)

A(η) := -(∇ + iη) • a(y) (∇ + iη) , for a given η ∈ R d .

(1.

2)

It was proved in [START_REF] Conca | Homogenization of periodic structures via Bloch decomposition[END_REF] that the first Bloch pair λ 1 (η), φ 1 (η) actually contains the essential informations on the asymptotic analysis of the operator (1.1), and are analytic with respect to the Bloch parameter η in a neighborhood of 0. Moreover, by virtue of [START_REF] Conca | Homogenization of periodic structures via Bloch decomposition[END_REF][START_REF] Conca | Bloch approximation in homogenization and applications[END_REF] it turns out that the first Bloch eigenvalue satisfies the following expansion in terms of the so-called Burnett coefficients: 4 ), (1.3) where q is the homogenized positive definite conductivity associated with the oscillating sequence a(x/δ), and D is the fourth-order dispersion tensor which has the remarkable property to be non-positive for any conductivity matrix a (see [START_REF] Conca | On Burnett coefficients in periodic media[END_REF]).

λ 1 (η) = qη • η + D(η ⊗ η) : (η ⊗ η) + o(|η|
The expansion (1.3) has been investigated more deeply in one dimension [START_REF] Conca | Optimal bounds on dispersion coefficient in one-dimensional periodi media[END_REF] and in low contrast regime [START_REF] Conca | On Burnett coefficients in periodic media in low contrast regime[END_REF]. It is then natural to study the behavior of (1.3) in high contrast regime. This is also motivated by the fact that the homogenization of operators (1.1) with high contrast coefficients may induce nonlocal effects in dimension three as shown in [START_REF] Fenchenko | Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness[END_REF][START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects[END_REF][START_REF] Camar-Eddine | Closure of the set of diffusion functionals with respect to the Mosco-convergence[END_REF][START_REF] Briane | Fibered microstructures for some nonlocal Dirichlet forms[END_REF], while the two-dimensional case of [START_REF] Briane | Nonlocal effects in two-dimensional conductivity[END_REF][START_REF] Briane | Two-dimensional div-curl results. Application to the lack of nonlocal effects in homogenization[END_REF][START_REF] Briane | Asymptotic behaviour of equicoercive diffusion energies in dimension two[END_REF] is radically different. We are interested in knowing the consequences of these effects in Bloch waves analysis.

The aim of the paper is then to study the asymptotic behavior of the first Bloch eigenvalue in the presence of high contrast conductivity coefficients. In particular we want to specify the validity of expansion (1.3) in high contrast regime. To this end we consider an εY -periodic matrix conductivity a ε which is equi-coercive but not equi-bounded with respect to ε, namely a ε L ∞ → ∞ as ε → 0. The classical picture is an εY -periodic two-phase microstructure, one of the phase has a conductivity which blows up as ε tends to 0. More precisely, we will study the limit behavior of the first Bloch eigenvalue λ ε 1 (η) associated with a ε , and its expansion

λ ε 1 (η) = q ε η • η + D ε (η ⊗ η) : (η ⊗ η) + o(|η| 4 ). (1.4) 
In Section 2, we prove that in any dimension (see Theorem 2.2), if the conductivity a ε is bounded in L 1 and the constant of the Poincaré-Wirtinger inequality weighted by a ε is an o(ε -2 ) (see [START_REF] Briane | Homogenization of non-uniformly bounded operators: critical barrier for nonlocal effects[END_REF] for an example), then the first Bloch eigenvalue λ ε 1 (η) associated with a ε converges to some limit λ * 1 (η) which satisfies

λ * 1 (η) = q * η • η, for small enough |η|, (1.5) 
where q * is the limit of the homogenized matrix q ε in (1.4). Moreover, in dimension two and under the same assumptions we show that the tensor D ε tends to 0, which thus implies that the fourth-order expansion (1.4) of λ ε 1 (η) converges to the fourth-order expansion of its limit. We can also refine the two-dimensional case by relaxing the L 1 -boundedness of a ε by the sole convergence of q ε (see Theorem 2.3).

In Section 3, we show that the previous convergences do not hold generally in dimension three when a ε is not bounded in L 1 . We give a counter-example (see Theorem 3.1) which is based on the fibers reinforced structure introduced first in [START_REF] Fenchenko | Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness[END_REF] to derive nonlocal effects in high contrast homogenization. This is the main result of the paper. We show the existence of a jump at η = 0 in the limit λ * 1 (η) of the first Bloch eigenvalue. Indeed, when the radius of the fibers has a critical size and η is not orthogonal to their direction, the first Bloch eigenvector

ψ ε 1 is shown to converge weakly in H 1 loc (R 3 ; C) to some function ψ * 1 solution of -∆ψ * 1 + γ ψ * 1 = λ * 1 (η) ψ * 1 in R 3 , (1.6) 
where

γ = lim η→0 λ * 1 (η) = λ * 1 (0) = 0. (1.7)
Therefore, contrary to the analyticity of η → λ ε 1 (η) which holds for fixed ε, the limit λ * 1 of the first Bloch eigenvalue is not even continuous at η = 0! On the other hand, the zero-order term in limit (1.6) is linked to the limit zero-order term obtained in [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects[END_REF][START_REF] Briane | Fibered microstructures for some nonlocal Dirichlet forms[END_REF] under the same regime, for the conduction equation with the conductivity a ε but with a Dirichlet boundary condition. Here, the periodicity condition satisfied by the function y → e -i η•y ψ ε 1 (y) (in connection with the translated operator (1.2)) is quite different and more delicate to handle. Using an estimate of the Poincaré-Wirtinger inequality weighted by a ε and the condition that η is not orthogonal to the direction of the fibers, we can get the limit in the Radon measures sense of the eigenvector ψ ε 1 rescaled in the fibers.

Notations

• ε denotes a small positive number such that ε -1 is an integer.

• (e 1 , . . . , e d ) denotes the canonical basis of R d .

• • denotes the canonical scalar product in R d .

• : denotes the canonical scalar product in R d×d .

• Y denotes the cube (0, 2π • For any η ∈ R d , H 1 η (Y ; C) denotes the space of the functions ψ such that

) d in R d . • H 1 ♯ (Y )
x → e -i x•η ψ(x) ∈ H 1 ♯ (Y ; C). (1.8) 
Similarly, L p η (Y ; C), for p ≥ 1, denotes the set denotes the set associated with the space L p ♯ (Y ; C), and C k η (Y ; C), for k ∈ N, the set associated with the space C k ♯ (Y ; C).

• For any open set Ω of R d , BV (Ω) denotes the space of the functions in L 2 (Ω) the gradient of which is a Radon measure on Ω.

2 The case of L 1 -bounded coefficients

Let ε > 0 be such that ε -1 is an integer. Let A ε be a Y -periodic measurable real matrix-valued function satisfying

(A ε ) T (y) = A ε (y) and α I d ≤ A ε (y) ≤ β ε I d a.e. y ∈ R d , (2.1) 
where α is a fixed positive number and β ε is a sequence in (0, ∞) which tends to ∞ as ε → 0. Let a ε be the rescaled matrix-valued function defined by

a ε (x) := A ε x ε for x ∈ R d . (2.2)
Define the effective conductivity q ε by

q ε λ := Y A ε λ + ∇X ε λ dy for λ ∈ R d , (2.3) 
where

X ε λ is the unique solution in H 1 ♯ (Y )/R of the equation div (A ε λ + A ε ∇X ε λ ) = 0 in R d . (2.4) 
For a fixed ε > 0, the constant matrix q ε is the homogenized matrix associated with the oscillating sequence A ε ( x δ ) as δ → 0, according to the classical homogenization periodic formula (see, e.g., [START_REF] Bensoussan | Asymptotic analysis for periodic structures, corrected reprint of the 1978 original[END_REF]).

Consider for η ∈ R d , the first Bloch eigenvalue λ ε 1 (η) associated with the conductivity a ε by

λ ε 1 (η) := min ˆY a ε ∇ψ • ∇ψ dx : ψ ∈ H 1 η (Y ; C) and ˆY |ψ| 2 dx = 1 . (2.5) 
A minimizer ψ ε of (2.5) solves the variational problem

ˆY a ε ∇ψ ε • ∇ψ dx = λ ε 1 (η) ˆY ψ ε ψ dx, ∀ ψ ∈ H 1 η (Y ; C), (2.6) 
with

ψ ε ∈ H 1 η (Y ; C) and ˆY |ψ ε | 2 dx = 1. (2.7)
An alternative definition for ψ ε is given by the following result:

Proposition 2.1. The variational problem (2.6) is equivalent to the equation in the distributional sense -div (a

ε ∇ψ ε ) = λ ε 1 (η) ψ ε in R d . (2.8) Proof. Let ψ ε ∈ H 1 η (Y ) be a solution of (2.6) and let ϕ be a function in C ∞ c (R d ). Writing ψ ε = e i x•η ϕ ε with ϕ ε ∈ H 1 ♯ (Y ; C), and putting the function ψ ∈ C ∞ η (Y ; C) defined by ψ(x) := k∈Z d e -i 2πk•η ϕ(x + 2πk) = e i x•η k∈Z d e -i (x+2πk)•η ϕ(x + 2πk),
as test function in (2.6), we have by the Y -periodicity of a ε (recall that ε is an integer),

ˆY a ε ∇ψ ε • ∇ψ dx = k∈Z d ˆY a ε (∇ϕ ε + i η ϕ ε ) • ∇ e i(x+2πk)•η ϕ(x + 2πk) -i η e i(x+2πk)•η ϕ(x + 2πk) dx = k∈Z d ˆ2πk+Y a ε (∇ϕ ε + i η ϕ ε ) • ∇ e i x•η ϕ -i η e i x•η ϕ dx = ˆRd a ε ∇ψ ε • ∇ϕ dx, and ˆY ψ ε ψ dx = k∈Z d ˆY ϕ ε e i(x+2πk) ϕ(x + 2πk) dx = k∈Z d ˆ2πk+Y ϕ ε e i x•η ϕ dx = ˆRd ψ ε ϕ dx.
Hence, we get that

ˆRd a ε ∇ψ ε • ∇ϕ dx = λ ε 1 (η) ˆRd ψ ε ϕ dx, for any ϕ ∈ C ∞ c (R d ),
which yields equation (2.8).

Conversely, assume that ψ ε is a solution of (2.8). Consider ψ ∈ C ∞ η (Y ; C), and for any

integer n ≥ 1, a function θ n ∈ C ∞ c (R d ) such that θ n = 1 in [-2πn, 2πn] d , θ n = 0 in R d \ [-2π(n + 1), 2π(n + 1)] d , |∇θ n | ≤ 1 in R d .
Putting ϕ := θ n ψ as test function in (2.8), we have as n → ∞ and by the Y -periodicity of a ε ∇ψ ε • ∇ψ,

1 (2n) d ˆRd a ε ∇ψ ε • ∇(θ n ψ) dx = 1 (2n) d k∈{-n,...,n-1} d ˆ2πk+Y a ε ∇ψ ε • ∇ψ dx + o n (1) = ˆY a ε ∇ψ ε • ∇ψ dx + o n (1),
and by the Y -periodicity of ψ ε ψ,

1 (2n) d ˆRd ψ ε θ n ψ dx = 1 (2n) d k∈{-n,...,n-1} d ˆ2πk+Y ψ ε ψ dx + o n (1) = ˆY ψ ε ψ dx + o n (1).
Therefore, it follows that ψ ε is solution of the variational problem (2.6).

Note that for a fixed ε > 0, the oscillating sequence a ε ( x δ ) = A ε ( x εδ ) has the same homogenized limit as A ε ( x δ ) when δ tends to 0, namely the constant matrix q ε defined by (2.3). Hence, the asymptotic expansion in η of the first Bloch eigenvalue derived in [START_REF] Conca | On Burnett coefficients in periodic media[END_REF] reads as

λ ε 1 (η) = q ε η • η + D ε (η ⊗ η) : (η ⊗ η) + O(|η| 6 ), (2.9) 
where D ε is a non-positive fourth-order tensor defined in formula (2.31) below. When a ε is not too high, we have the following asymptotic behavior for λ ε 1 (η):

Theorem 2.2. Assume that the sequence a ε of (2.2) is bounded in L 1 (Y ).

• If d = 2, then there exists a subsequence of ε, still denoted by ε, such that the sequence q ε converges to some q * in R 2×2 . Moreover, we have for any η ∈ R 2 ,

lim ε→0 λ ε 1 (η) = min ˆY q * ∇ψ • ∇ψ dx : ψ ∈ H 1 η (Y ; C) and ˆY |ψ| 2 dx = 1 , (2.10) 
and for small enough |η|,

lim ε→0 λ ε 1 (η) = q * η • η. (2.11) • If d ≥ 2, under the extra assumption that that for any λ ∈ R d , C ε λ := max ˆY (A ε λ • λ) V 2 dy : V ∈ H 1 ♯ (Y ), ˆY A ε ∇V • ∇V dy = 1 ≪ 1 ε 2 , (2.12)
and (2.10), (2.11) still hold. Moreover, if d = 2 we have

lim ε→0 D ε (η ⊗ η) : (η ⊗ η) = 0, ∀ η ∈ R d . (2.13)
Using a more sophisticated approach we can relax in dimension two the L 1 (Y )-boundedness of a ε : Theorem 2.3. Assume that d = 2 and that the sequence q ε converges to q * in R 2×2 . Then, the limits (2.10) and (2.11) still hold.

Remark 2.4. The constant C ε λ of (2.12) is the best constant of the Poincaré-Wirtinger inequality weighted by A ε . The condition ε 2 C ε λ → 0 was first used in [START_REF] Briane | Homogenization of non-uniformly bounded operators: critical barrier for nonlocal effects[END_REF] to prevent the appearance of nonlocal effects in the homogenization of the conductivity equation with a ε . Under this assumption the first Bloch eigenvalue and its second-order expansion converge as ε tends to 0 in any dimension d ≥ 2. The case d = 2 is quite particular since it is proved in [START_REF] Briane | Asymptotic behaviour of equicoercive diffusion energies in dimension two[END_REF] that nonlocal effects cannot appear. This explains a posteriori that the first Bloch eigenvalue has a good limit behavior under the L 1 (Y )-boundedness of a ε (Theorem 2.2), or the sole boundedness of q ε (Theorem 2.3). Note that the second condition is more general than the first one due to the estimate (2.14) below.

Proof of Theorem 2.2.

The case d = 2: The proof is divided in two parts. In the first part we determine the limit of the eigenvalue problem (2.6). The second part provides the limit of the minimization problem (2.5).

The matrix q ε of (2.3) is also given by the minimization problem for any λ ∈ R d :

q ε λ • λ = min Y A ε (λ + ∇V ) • (λ + ∇V ) dy : V ∈ H 1 ♯ (Y ) ≤ Y A ε λ • λ dy (2.14)
which is bounded. Therefore, up to a subsequence q ε converges to some q * in R d×d .

To obtain the limit behavior of (2.6) we need to consider the rescaled test functions w ε j , j = 1, 2, associated with the cell problem (2.4) and defined by

w ε j (x) := x j + ε X ε e j x ε for x ∈ R d . (2.15)
Since by the εY -periodicity of ∇w ε j , j = 1, 2, and by (2.14)

Y a ε ∇w ε j • ∇w ε j = q ε jj ≤ c, (2.16) 
the sequence w ε j is bounded in H 1 loc (R 2 ) and thus converges weakly to x i in H 1 loc (R 2 ). By the Corollary 2.3 of [START_REF] Briane | Asymptotic behaviour of equicoercive diffusion energies in dimension two[END_REF] (which is specific to dimension two), the sequence w ε := (w ε 1 , w ε 2 ) converges uniformly to the identity function locally in R 2 . Moreover, since ε -1 is an integer and the functions X ε e j are Y -periodic, we have for any x ∈ R 2 and k ∈ Z 2 ,

w ε j (x + 2πk) = x j + 2πk j + ε X ε e j x + 2πk ε = x j + 2πk j + ε X ε e j x ε = w ε j (x) + 2πk j ,
or equivalently,

w ε (x + 2πk) = w ε (x) + 2πk, ∀ (x, k) ∈ R 2 × Z. (2.17)
This implies that for any χ ∈ C 1 η (Y ; C), the function χ(w ε ) belongs to H 1 η (Y ; C) (see (1.8)). On the other hand, the eigenvalue λ ε 1 (η) (2.5) is bounded due to the L 1 (Y )-boundedness of a ε , and thus converges up to a subsequence to some number λ * 1 (η) ≥ 0. Hence, the sequence ψ ε is bounded in H 1 η (Y ; C), and thus converges weakly up to a subsequence to some function

ψ * in H 1 η (Y ; C).
Then, putting χ(w ε ) as test function in (2.6), using the uniform convergence of w ε and the convergence of ψ ε to ψ * , we get that

ˆY a ε ∇ψ ε • ∇w ε j ∂ j χ(w ε ) dx = ˆY a ε ∇ψ ε • ∇w ε j ∂ j χ dx + o(1) = λ * 1 (η) ˆY ψ * χ dx + o(1). (2.18)
Next, let us apply the div-curl approach of [START_REF] Briane | Nonlocal effects in two-dimensional conductivity[END_REF][START_REF] Briane | Two-dimensional div-curl results. Application to the lack of nonlocal effects in homogenization[END_REF]. To this end, since by (2.4) and (2.15) the current a ε ∇w ε j is divergence free, we may consider a stream function wε j associated with a ε ∇w ε j such that

a ε ∇w ε j = ∇ ⊥ wε j := -∂ 2 wε j ∂ 1 wε j a.e. in R 2 . (2.19)
By the Cauchy-Schwarz inequality combined with (2.16) and the L 1 (Y )-boundedness of a ε , the function wε j is bounded in BV loc (R 2 ). Moreover, due to the periodicity the sequence ∇ wε j induces no concentrated mass in the space M (R 2 ) 2 of the Radon measures on R 2 . Therefore, by the Lions concentration-compactness lemma [START_REF] Lions | The concentration compactness principle in the calculus of variations. The limit case, part 1[END_REF] wε j converges strongly in L 2 loc (R 2 ) to some function wj in BV loc (R 2 ). By the εY -periodicity of a ε ∇w ε j and the definition (2.3) of q ε , we also have in the weak- * sense of the Radon measures

a ε ∇w ε j ⇀ ∇ ⊥ wj = lim ε→0 Y
A ε e j + ∇X ε e j dy = q * e j weakly in M (R 2 ) 2 * .

(2.20)

On the other hand, integrating by parts using that a ε ∇w ε j is divergence free and ψ ε ∂ j χ is Yperiodic, then applying the strong convergence of wε j in L 2 (Y ) and (2.20), it follows that (with the summation over repeated indices)

ˆY a ε ∇w ε j • ∇ψ ε ∂ j χ dx = -ˆY a ε ∇w ε j • ∇(∂ j χ) ψ ε dx = ˆY wε j ∇ T ψ ε • ∇(∂ j χ) dx = ˆY wj ∇ T ψ * • ∇(∂ j χ) dx + o(1) = -ˆY q * e j • ∇(∂ j χ) ψ * dx + o(1) = ˆY q * ∇ψ * • ∇χ dx + o(1).
This combined with (2.18) and a density argument yields the limit variational problem

ˆY q * ∇ψ * • ∇χ dx = λ * 1 (η) ˆY ψ * χ dx, ∀ χ ∈ H 1 η (Y ; C), (2.21) 
where by Rellich's theorem and (2.7) the limit ψ * of ψ ε satisfies

ψ * ∈ H 1 η (Y ; C) and ˆY |ψ * | 2 dx = 1. (2.22)
It remains to prove that

λ * 1 (η) = min ˆY q * ∇ψ • ∇ψ dx : ψ ∈ H 1 η (Y ; C) and ˆY |ψ| 2 dx = 1 . (2.23)
To this end consider a covering of Y by n ≥ 1 two by two disjoint cubes Q n k of same size, and n smooth functions θ n k , for 1 ≤ k ≤ n, such that

θ n k ∈ C 1 0 Q n k ; [0, 1] and n k=1 θ n k -→ n→∞ 1 strongly in L 2 (Y ). (2.24) For χ ∈ C 1 η (Y ; C) with a unit L 2 (Y )-norm, consider the approximation χ ε n of χ defined by χ ε n (x) := ν ε n χ(x) + ε e i x•η n k=1 θ n k (x) X ε ξ n k x ε , where ξ n k := Q n k e -i x•η ∇χ(x) dx, (2.25)
and ν ε n > 0 is chosen in such a way that χ ε n has a unit L 2 (Y )-norm. Since ε -1 is an integer, the function χ ε n belongs to H 1 η (Y ; C) and can thus be used as a test function in problem (2.5). Then, by (2.24) we have

λ ε 1 (η) ≤ ˆY a ε ∇χ ε n • ∇χ ε n dx ≤ (ν ε n ) 2 ˆY a ε ∇χ + e i x•η n k=1 θ n k ∇X ε ξ n k x ε • ∇χ + e i x•η n k=1 θ n k ∇X ε ξ n k x ε dx + o(1) = (ν ε n ) 2 ˆY a ε R n + e i x•η n k=1 θ n k ξ n k + ∇X ε ξ n k x ε • R n + e i x•η n k=1 θ n k ξ n k + ∇X ε ξ n k x ε dx + o(1),
where

R n := ∇χ -e i x•η n k=1 θ n k ξ n k ∈ C 0 (R 2 ) 2 .
(2.26)

Passing to the limit as ε → 0 in the previous inequality, and using (2.24), the L 1 (Y )-boundedness combined with the Y -periodicity of

A ε , A ε ∇X ε λ , A ε ∇X ε λ • ∇X ε λ ,
and the convergence

a ε ξ n k + ∇X ε ξ n k x ε • ξ n k + ∇X ε ξ n k x ε = A ε ξ n k + ∇X ε ξ n k • ξ n k + ∇X ε ξ n k x ε ⇀ lim ε→0 Y A ε ξ n k + ∇X ε ξ n k • ξ n k + ∇X ε ξ n k dy = q * ξ n k • ξ n k weakly in M ( Ȳ ) * , (2.27) 
it follows that

λ * 1 (η) ≤ ˆY q * e i x•η n k=1 θ n k ξ n k • e i x•η n k=1 θ n k ξ n k + c ˆY |R n | 2 + |R n | dx.
(2.28) Therefore, since the sequence R n of (2.26) converges strongly to 0 in L 2 (Y ; C) 2 , passing to the limit as n → ∞ in (2.28) we get that for any χ ∈ C 1 η (Y ; C) with a unit L 2 (Y )-norm,

λ * 1 (η) ≤ ˆY q * ∇χ • ∇χ dx. (2.29)
Using a density argument the inequality (2.29) combined with the limit problem (2.21) implies the desired formula (2.23). Moreover, due to the uniqueness of (2.23) in term of q * the limit (2.10) holds for any η ∈ R 2 , and for the whole sequence ε such that q ε converges to q * . Finally, decomposing formula (2.23) in Fourier's series and using Parseval's identity we obtain that equality (2.11) holds for any η ∈ R 2 with small enough norm.

The case d ≥ 2 under assumption (2.12): First, note that the proof of the inequality (2.29) in the previous case actually holds for any dimension. Therefore, it is enough to obtain the limit eigenvalue problem (2.21) to conclude to the minimization formula (2.23). To this end, applying the homogenization Theorem 2.1 of [START_REF] Briane | Homogenization of non-uniformly bounded operators: critical barrier for nonlocal effects[END_REF] to the linear equation (2.8), we get the limit equation

ˆR2 q * ∇ψ * • ∇ϕ dx = λ * 1 (η) ˆR2 ψ * ϕ dx, ∀ ϕ ∈ C ∞ c (R 2 ), (2.30)
which is equivalent to (2.23) by Proposition 2.1. It thus remains to prove (2.13) when d = 2, which is also a consequence of (2.12). By [START_REF] Conca | On Burnett coefficients in periodic media[END_REF] we have

D ε (η ⊗ η) : (η ⊗ η) = - Y a ε ∇ χ ε 2,η - 1 2 (χ ε 1,η ) 2 • ∇ χ ε 2,η - 1 2 (χ ε 1,η ) 2 dx, (2.31) 
where, taking into account (2.4) and (2.15),

χ ε 1,η (x) := ε X ε η x ε = η 1 (w ε 1 -x 1 ) + η 2 (w ε 2 -x 2 ) for x ∈ R 2 , (2.32) and χ ε 2,η is the unique function in H 1 ♯ (Y ) with zero Y -average, solution of -div a ε ∇χ ε 2,η = a ε η • η -q ε η • η + a ε η • ∇χ ε 1,η + div χ ε 1,η a ε η in R d . (2.33)
Consider the partition of Y by the small cubes 2πεk + εY , for k ∈ {0, . . . , ε -1 -1} 2 , and define from χ ε j,η , j = 1, 2, the associated average function

χε j,η := k∈{0,...,ε -1 -1} 2 2πεk+εY χ ε j,η dx 1 2πεk+εY , (2.34) 
where 1 E denotes the characteristic function of the set E. Then, ε-rescaling estimate (2.12) we get that

ˆY a ε η • η χ ε j,η -χε j,η 2 dx ≤ ε 2 C ε η ˆY a ε ∇χ ε j,η • ∇χ ε j,η dx. (2.35) 
Also note that χε 1,η = 0, and since χ ε 2,η has zero Y -average, we have 

ˆY χε 2,η (x) Z x ε dx = 0, ∀ Z ∈ L 2 ♯ (Y ). ( 2 
ˆY a ε ∇χ ε 2,η • ∇χ ε 2,η dx = ˆY a ε η • η χ ε 2,η -χε 2,η dx + ˆY a ε η • ∇χ ε 1,η χ ε 2,η -χε 2,η dx -ˆY a ε η • ∇χ ε 2,η χ ε 1,η -χε 1,η dx ≤ c ε 2 C ε η ˆY a ε ∇χ ε 2,η • ∇χ ε 2,η dx 1 2 1 + ˆY a ε ∇χ ε 1,η • ∇χ ε 1,η dx 1 2 ≤ c ε 2 C ε η ˆY a ε ∇χ ε 2,η • ∇χ ε 2,η dx 1 2 
.

This together with assumption (2.12) yields

lim ε→0 ˆY a ε ∇χ ε 2,η • ∇χ ε 2,η dx = 0. (2.37)
On the other hand, by (2.32) and the Corollary 2.3 of [START_REF] Briane | Asymptotic behaviour of equicoercive diffusion energies in dimension two[END_REF] (see the previous step) the sequence χ ε 1,η converges uniformly to 0 in Y . At this level the dimension two is crucial. This combined with the Cauchy-Schwarz inequality and the L 1 (Y )-boundedness of a ε ∇χ ε j,η • ∇χ ε j,η implies that

lim ε→0 ˆY a ε ∇χ ε 1,η • ∇χ ε j,η (χ ε 1,η ) k dx = 0 for j, k ∈ {1, 2}.
(2.38) Therefore, passing to the limit in (2.31) thanks to (2.37) and (2.38) we get the desired convergence (2.13), which concludes the proof of Theorem 2.2.

To prove Theorem 2.3 we need the following result the main ingredients of which are an estimate due to Manfredi [START_REF] Manfredi | Weakly monotone functions[END_REF] and a uniform convergence result of [START_REF] Briane | Uniform convergence of sequences of solutions of twodimensional linear elliptic equations with unbounded coefficients[END_REF]: Lemma 2.5. Let Ω be a domain of R 2 , and let σ ε be a sequence of symmetric matrix-valued functions in R 2×2 such that α I 2 ≤ σ ε (x) ≤ β ε I 2 a.e. x ∈ Ω, for a constant α > 0 independent of ε and a constant β ε > α. Let f ε be a strongly convergent sequence in W -1,p (Ω) for some p > 2. Consider a bounded sequence u ε in H 1 (Ω) solution of the equation -div (σ ε ∇u ε ) = f ε in Ω. Then, up to a subsequence u ε converges uniformly in any compact set of Ω.

Proof. On the one hand, let D be a disk of Ω such that D ⊂ Ω, and let u ε D be the solution in

H 1 0 (D) of the equation -div (σ ε ∇u ε D ) = f ε in D.
Since u ε D ≡ 0 converges uniformly on ∂D and f ε converges strongly in W -1,p (Ω), by virtue of the Theorem 2.7 of [START_REF] Briane | Uniform convergence of sequences of solutions of twodimensional linear elliptic equations with unbounded coefficients[END_REF], up to a subsequence u ε D converges weakly in H 1 (D) and uniformly in D.

On the other hand, the function

v ε := u ε -u ε D is bounded in H 1 (D)
and solves the equation div (σ ε ∇v ε ) = 0 in D. By the De Giorgi-Stampacchia regularity theorem for second-order elliptic equations, v ε is Hölder continuous in D and satisfies the maximum principle in any disk of D. Hence, the function v ε is continuous and weakly monotone in D in the sense of [START_REF] Manfredi | Weakly monotone functions[END_REF]. Therefore, the estimate (2.5) of [START_REF] Manfredi | Weakly monotone functions[END_REF] implies that for any x 0 ∈ D, there exists a constant r > 0 such that

∀ x, y ∈ D(x 0 , r), v ε (x) -v ε (y) ≤ C ∇v ε L 2 (D) 2
ln (4r/|x -y|)

1 2 ≤ C ∇v ε L 2 (D) 2 (ln 2) 1 2 , (2.39)
where D(x 0 , r) is the disk centered on x 0 of radius r, and C > 0 is a constant depending only on dimension two. The sequence v ε -v ε (x 0 ) is bounded in D(x 0 , r), independently of ε by the right-hand term of (2.39). This combined with the boundedness of v ε in L 2 (D) implies that v ε is bounded uniformly in D(x 0 , r). Moreover, estimate (2.39) shows that the sequence v ε is equi-continuous in D(x 0 , r). Then, by virtue of Ascoli's theorem together with a diagonal extraction procedure, up to a subsequence v ε converges uniformly in any compact set of D. So does the sequence u ε = u ε D + v ε . Again using a diagonal procedure from a countable covering of Ω by disks D, there exists a subsequence of ε, still denoted by ε, such that u ε converges uniformly in any compact set of Ω.

Proof of Theorem 2.3. We have only to show that the limit ψ * of the eigenvector ψ ε satisfying (2.6) and (2.7) is solution of (2.21). Indeed, the proof of inequality (2.29) follows from the convergence of q ε thanks to limit (2.27). as shown in the proof of Theorem 2.2.

First of all, for χ ∈ C 1 η with a unit L 2 (Y )-norm, χ(w ε ) converges uniformly tends to χ in Y due to the uniform convergence of w ε (see the proof of Theorem 2.2 or apply Lemma 2.5). Then, using successively the minimum formula (2.5) with the test function ψ := χ(w ε ), the Cauchy-Schwarz inequality, the εY -periodicity of a ε ∇w ε j • ∇w ε j and the boundedness of q ε , we have (with the summation over repeated indices)

λ ε 1 (η) ≤ 1 χ(w ε ) 2 L 2 (Y ) ˆY a ε ∇w ε j • ∇w ε k ∂ j χ(w ε ) ∂ k χ(w ε ) dx ≤ c ˆY a ε ∇w ε j • ∇w ε j dx ≤ c tr (q ε ) ≤ c.
Hence, up to a subsequence λ ε 1 (η) converges to some λ * 1 (η) in R. This combined with (2.6) and (2.7) implies that the eigenvector ψ ε converges weakly to some ψ * in H 1 loc (R 2 ). Moreover, ℜ(ψ ε ), ℑ(ψ ε ) are solutions of equation (2.8) with respective right-hand sides

λ ε 1 (η) ℜ(ψ ε ), λ ε 1 (η) ℑ(ψ ε ) which are bounded in H 1 loc (R 2 ) thus in W -1,p loc (R 2 )
for any p > 2. Therefore, thanks to Lemma 2.5 and up to extract a new subsequence, ψ ε converges uniformly to ψ * in any compact set of R 2 .

On the other hand, for ϕ ∈ C ∞ c (R 2 ), putting ϕ(w ε ) as test function in equation (2.8), using that a ε ∇w ε j is divergence free (due to (2.4) and (2.15)), and integrating by parts, we have (with the summation over repeated indices)

ˆY a ε ∇ψ ε • ∇w ε j ∂ j ϕ(w ε ) dx = - ˆR2 a ε ∇w ε j • ∇w ε k ∂ 2 jk ϕ(w ε ) ψ ε dx = λ ε 1 (η) ˆR2 ψ ε ϕ(w ε ) dx.
(2.40) Then, passing to the limit in (2.40) using the uniform convergences of w ε , ψ ε combined with the convergences

a ε ∇w ε j • ∇w ε k ⇀ lim ε→0 Y A ε e j + ∇X ε e j • e k + ∇X ε e k = q * jk weakly in M (R 2 ) * , we get that - ˆR2 q * jk ∂ 2 jk ϕ ψ * dx = λ * 1 (η) ˆR2 ψ * ϕ dx. (2.41) 
Finally, integrating by parts the left-hand side of (2.41) we obtain the limit equation (2.30), which is equivalent to the limit eigenvalue problem (2.21) by virtue of Proposition 2.1.

3 Anomalous effect with L 1 -unbounded coefficients

In this section we assume that d = 3. Let ε > 0 be such that ε -1 is an integer. Consider the fiber reinforced structure introduced in [START_REF] Fenchenko | Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness[END_REF] and extended in several subsequent works [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects[END_REF][START_REF] Camar-Eddine | Closure of the set of diffusion functionals with respect to the Mosco-convergence[END_REF][START_REF] Briane | Homogenization of high-conductivity periodic problems. Application to a general distribution of one-directional fibers[END_REF] to derive nonlocal effects in homogenization. Here we will consider this structure with a very high isotropic conductivity a ε which is not bounded in L 1 (Y ). More precisely, let ω ε ⊂ Y be the εY -periodic lattice composed by ε -2 cylinders of axes

2πk 1 ε + πε, 2πk 2 ε + πε, 0 + R e 3 , for (k 1 , k 2 ) ∈ {0, . . . , ε -1 -1} 2 ,
of length 2π, and of radius ε r ε such that

lim ε→0 1 2π ε 2 | ln r ε | = γ ∈ (0, ∞). (3.1)
The conductivity a ε is defined by

a ε (x) := β ε if x ∈ ω ε 1 if x ∈ Y \ ω ε with lim ε→0 β ε r 2 ε = ∞, (3.2) 
so that a ε is not bounded in L 1 (Y ). Then, we have the following result:

Theorem 3.1. Assume that condition (3.1) holds. Then, the first Bloch eigenvalue λ ε 1 (η) defined by (2.5) with the conductivity a ε of (3.2) satisfies for any η ∈ R 3 with η 3 / ∈ Z,

lim ε→0 λ ε 1 (η) = γ + min ˆY |∇ψ| 2 dx : ψ ∈ H 1 η (Y ; C) and ˆY |ψ| 2 dx = 1 , (3.3) 
and for |η| ≤ 1 2 with η 3 = 0, lim

ε→0 λ ε 1 (η) = γ + |η| 2 . (3.4)
Remark 3.2. For a fixed ε > 0, the function η → λ ε 1 (η) is analytic in a neighborhood of 0. However, the limit λ * 1 of λ ε 1 is not even continuous at η = 0, since by (2.9) and (3.4) we have

λ * 1 (0) = 0 while lim η→0, η 3 =0 λ * 1 (η) = γ > 0.
Contrary to the case of the L 1 -bounded coefficients the L 1 (Y )-unboundedness of a ε induces a gap of the first Bloch eigenvalue. Therefore, the very high conductivity of the fiber structure deeply modifies the wave propagation in any direction η such that η 3 / ∈ Z.

Proof of Theorem 3.1. First we will determine the limit of the eigenvalue problem (2.6).

Following [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects[END_REF][START_REF] Briane | Fibered microstructures for some nonlocal Dirichlet forms[END_REF] consider the function vε related to the fibers capacity and defined by

vε (x) := V ε x ε for x ∈ R 3 , (3.5) 
where V ε is the y 3 -independent Y -periodic function defined in the cell period Y by

V ε (y) :=          0 if ∈ [0, r ε ] ln r -ln r ε ln R -ln r ε if r ∈ (r ε , R) 1 if r ≥ R
where r := (y

1 -π) 2 + (y 2 -π) 2 , (3.6) 
and R is a fixed number in (r ε , π). By a simple adaptation of the Lemma 2 of [START_REF] Briane | Fibered microstructures for some nonlocal Dirichlet forms[END_REF] combined with (3.1) the sequence vε satisfies the following properties vε = 0 in ω ε and vε ⇀ 1 weakly in H 1 (Y ),

and for any bounded sequence v ε in H 1 (Y ), with

1 ω ε |ω ε | v ε bounded in L 1 (Y ), ∇v ε • ∇v ε -γ v ε -|Y | 1 ω ε |ω ε | v ε ⇀ 0 weakly in M ( Ȳ ) * . (3.8)
The last convergence involves the potential v ε in the whole domain and the rescaled potential

1 ω ε |ω ε | v ε in the fibers set.
In [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects[END_REF][START_REF] Briane | Fibered microstructures for some nonlocal Dirichlet forms[END_REF][START_REF] Briane | Homogenization of high-conductivity periodic problems. Application to a general distribution of one-directional fibers[END_REF] it is proved that under assumption (3.1) the homogenization of the conduction problem, with a Dirichlet boundary condition on the bottom of a cylinder parallel to the fibers, yields two different limit potentials inducing:

• either a nonlocal term if a ε is bounded in L 1 ,
• or only a zero-order term if a ε is not bounded in L 1 .

Here the situation is more intricate since the Dirichlet boundary condition is replaced by condition (1.8). This needs an alternative approach to obtain the boundedness of the potential ψ ε solution of (2.6) and its rescaled version 1 ω ε |ω ε | ψ ε . On the one hand, putting e i x•η vε / e i x•η vε L 1 (Y ) which is zero in ω ε , as test function in the minimization problem (2.5) and using (3.1) we get that λ ε 1 (η) is bounded. Hence, the sequence ψ ε is bounded in H 1 η (Y ; C), and up to a subsequence converges weakly to some ψ * in H 1 η (Y ; C). On the other hand, the boundedness of

1 ω ε |ω ε | ψ ε in L 1 (Y ; C
) is more delicate to derive. To this end, we need the following Poincaré-Wirtinger inequality weighted by the conductivity A ε (y) := a ε (εy):

ˆY A ε V - Y V dy 2 dy ≤ C | ln r ε | A ε L 1 (Y ) ˆY A ε |∇V | 2 dy, ∀ V ∈ H 1 (Y ; C), (3.9) 
which is an easy extension of the Proposition 2.4 in [START_REF] Briane | Homogenization of non-uniformly bounded operators: critical barrier for nonlocal effects[END_REF] to the case where A ε is not bounded in L 1 (Y ). Rescaling (3.9) and using (3.1) combined with the boundedness of λ

ε 1 (η) we get that ˆY a ε ψ ε -ψε 2 dx ≤ c ε 2 | ln r ε | A ε L 1 (Y ) ˆY a ε |∇ψ ε | 2 dx ≤ c A ε L 1 (Y ) ˆY a ε |∇ψ ε | 2 dx ≤ c a ε L 1 (Y ) , (3.10) 
where for any χ ∈ L 2 (Y ; C), χ denotes the piecewise constant function

χ := k∈{0,...,ε -1 -1} 3 2πεk+εY χ dx 1 2πεk+εY . (3.11) 
Then, from the Jensen inequality, the estimates

β ε |ω ε | ∼ a ε L 1 (Y ) and (3.10) we deduce that ω ε ψ ε -ψε dx ≤ ω ε ψ ε -ψε 2 dx 1 2 ≤ c ˆωε a ε a ε L 1 (Y ) ψ ε -ψε 2 dx 1 2 ≤ c. (3.12) 
Moreover, since ω ε ∩ (2πεk + εY ) = ε 3 |ω ε | for any k ∈ {0, . . . , ε -1 -1} 3 , we have

ω ε ψε dx ≤ k∈{0,...,ε -1 -1} 3 1 |ω ε | ˆωε ∩(2πεk+εY ) 2πεk+εY |ψ ε | dx = k∈{0,...,ε -1 -1} 3 1 |Y | ˆ2πεk+εY |ψ ε | = Y |ψ ε | dx ≤ c. (3.13) 
Estimates (3.12) and (3.13) imply that the rescaled potential (3.16)

1 ω ε |ω ε | ψ ε is bounded in L 1 (Y ; C). Therefore,
Moreover, using successively the Cauchy-Schwarz inequality, the boundedness of λ ε 1 (η) and the estimate (3.2) satisfied by β ε , we have

ω ε ∂ 3 ψ ε χ dx ≤ ω ε |∇ψ ε | 2 dx 1 2 ω ε |χ| 2 dx 1 2 ≤ c β ε |ω ε | ω ε |χ| 2 dx 1 2
= o(1).

(3.17) Then, passing to the limit in (3.16) Consider a subsequence of ε, still denoted by ε, such that λ ε 1 (η) converges to λ * 1 (η). Then, passing to the limit in the previous equality thanks to the convergence of ψ ε to ψ * in H 1 η (Y ; C), to (3.7), and to the limit This combined with (3.23) and (2.22) yields the minimization formula (3.24), which shows the uniqueness of the limit. Therefore, limit (3.3) holds for the whole sequence ε. Finally, using the expansion in Fourier's series with |η| ≤ 1 2 , formula (3.3) reduces to (3.4). The proof of Theorem 3.1 is thus complete.

  denotes the space of the Y -periodic functions which belong to H 1 loc (R d ). Similarly, L p ♯ (Y ), for p ≥ 1, denotes the space of the Y -periodic functions which belong to L p loc (R d ), and C k ♯ (Y ), for k ∈ N, denotes the space of the C k -regular Y -periodic functions in R d .

  up to extract a new subsequence there exists a Radon measure ψ * on Ȳ such thatψε := 1 ω ε |ω ε | ψ ε ⇀ ψ * weakly in M ( Ȳ ) * ,(3.14)or equivalently,φε := e -i x•η ψε ⇀ φ * := e -i x•η ψ * weakly in M ( Ȳ ) * . (3.15)Now, we have to evaluate the Radon measure ψ * . Let χ ∈ C 1 η (Y ; C), since 1 ω ε is independent of the variable x 3 and the function ψ ε χ is Y -periodic, an integration by parts yieldsω ε ψ ε ∂ 3 χ dx =ω ε ∂ 3 ψ ε χ dx.

  thanks to (3.14) and (3.17), we get that ˆȲ ∂ 3 χ d ψ * = 0. (3.18) Writing χ = e i x•η ϕ with ϕ ∈ C 1 ♯ (Y ; C), and using (3.15), equality (3.18) reads as ˆȲ (∂ 3 ϕ -i η 3 ϕ) d φ * = 0. (3.19)From now on assume that η 3 / ∈ Z. Then, for f ∈ C 1 ♯ (Y ; C), we may define the function ϕ byϕ(x ′ , x 3 ) := e i η 3 x 3 ˆx3 0 e -i η 3 t f (x ′ , t) dt + e i η 3 x 3 e -i 2πη 3 -1 ˆ2π 0 e -i η 3 t f (x ′ , t) dt. (3.20)It is easy to check that ϕ belongs to C 1 ♯ (Y ; C) and satisfies the equation∂ 3 ϕ -i η 3 ϕ = f in R 3 . Therefore, from (3.19) we deduce that ˆȲ f d φ * = 0, ∀ f ∈ C 1 ♯ (Y ; C),(3.21)or equivalently by (3.15), ˆȲ χ d ψ * = 0, ∀ χ ∈ C 1 η (Y ; C). (3.22) We can now determine the limit of the eigenvalue problem (2.6). Let χ ∈ C 1 η (Y ; C), putting the function χ vε defined by (3.5) as test function in (2.6) we have ˆY vε ∇ψ ε • ∇χ dx + ˆY ∇v ε • ∇ψ ε χ dx = λ ε 1 (η) ˆY ψ ε χ vε dx.

1 ε 2 Y 2 L 2

 1222 (3.8) combined with equality (3.22), we obtain the limit eigenvalue problemˆY ∇ψ * • ∇χ dx + γ ˆY ψ * χ dx = λ * 1 (η) ˆY ψ * χ dx, ∀ χ ∈ H 1 η (Y ; C),(3.23)where ψ * satisfies (2.22). It remains to prove that the limit of the first Bloch eigenvalue is given byλ * 1 (η) = γ + min ˆY |∇ψ| 2 dx : ψ ∈ H 1 η (Y ; C) and ˆY |ψ| 2 dx = 1 ,(3.24)Let χ be a function in C 1 η (Y ; C) with a unit L 2 (Y )-norm. Using (2.5), (3.7) and the convergence|∇v ε | 2 ⇀ lim ε→0 |∇ V ε | 2 dy = γ weakly in M ( Ȳ )2 * , due to (3.1) and (3.6), (Y ) ˆY |∇v ε | 2 |χ| 2 dx + ˆY (v ε ) 2 |∇χ| 2 dx + 2 ˆY vε ∇v ε • ℜ (χ∇χ) dx = γ + ˆY |∇χ| 2 dx + o(1), which, by a density argument, implies that λ * 1 (η) ≤ γ + ˆY |∇ψ| 2 dx, ∀ ψ ∈ H 1 η (Y ; C) with ˆY |ψ| 2 dx = 1.
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