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INTRODUCTION

In this article we are interested in the positive bounded solutions of the nonlinear nonlocal equation (1.1) Ω K(x, y)u(y) dyk(x)u + a 0 (x)u + λa 1 (x)uβ(x)u p = 0 in Ω,

where Ω ⊂ R n is a bounded open set, K ∈ C(R n × R n ) is non negative, k(x) := Ω K(y, x) dy λ ∈ R, and a i , β are continuous functions. Our aim is to describe the properties of the positive bounded solutions of (1.2), in terms of the properties of K, a i , β and λ. That is, we look for existence criteria of positive bounded solutions of (1.1) and we describe some bifurcation diagrams i.e. depending on a i and β we analyse the properties of the curve (λ, u λ ).

The study of these kind of problems finds its justification in the ecological problematics related to the erosion of Biodiversity. In particular, some recent studies have focused on a better understanding of the impact of some agricultural practises on non targeted species [START_REF] Arpaia | Genetically modified plants and non-target organisms: analysing the functioning of the agro-ecosystem[END_REF][START_REF] Birch | Gm pest-resistant crops: Assessing environmental impacts on non-target organisms, Sustainability in Agriculture[END_REF][START_REF] Hendriksma | Effects of multiple bt proteins and gna lectin on in vitro-reared honey bee larvae[END_REF][START_REF] Perry | Estimating the effects of cry1f bt-maize pollen on nontarget lepidoptera using a mathematical model of exposure[END_REF][START_REF] Perry | A mathematical model of exposure of nontarget lepidoptera to bt-maize pollen expressing cry1ab within europe[END_REF][START_REF] Pleasants | Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population[END_REF]. Such problematic can be addressed through the analysis of the asymptotic behaviour of the positive solution of a reaction diffusion equation : ∂u(t, x) ∂t = Ω K(x, y)u(t, y) dyk(x)u(t, x) + a 0 (x)u + λa 1 (x)uβ(x)u p in R + × Ω (1.2)

u(0, x) = u 0 (x) in Ω (1.3)
where u represents a population density evolving in a partial controlled heterogeneous . Here the parameter λ is a control related to the practise and a 1 represents the region where the control is exerted.

In the literature the characterisation of the positive bounded solutions has been extensively studied for the elliptic equations E[u] + a 0 u + λa 1 (x)uβ(x)u p = 0 in Ω, (1.4) u(x) = 0, in ∂Ω. (1.5) where E[u] := a ij (x)∂ ij u + b i (x)∂ i u + c(x) is uniform elliptic [START_REF] Berestycki | Le nombre de solutions de certains problèmes semi-linéaires elliptiques[END_REF][START_REF] Berestycki | Analysis of the periodically fragmented environment model. I. Species persistence[END_REF][START_REF] Berestycki | Liouville-type results for semilinear elliptic equations in unbounded domains[END_REF][START_REF] Berestycki | On the principal eigenvalue of elliptic operators in R N and applications[END_REF][START_REF] Cantrell | Diffusive logistic equations with indefinite weights: Population models in disrupted environments ii[END_REF][START_REF] Cantrell | Diffusive logistic equations with indefinite weights: population models in disrupted environments[END_REF][START_REF] Cantrell | The effects of spatial heterogeneity in population dynamics[END_REF][START_REF] Garcia-Melian | Pointwise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs[END_REF][START_REF] Garcia-Melian | Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up[END_REF][START_REF] Ouyang | On the positive solutions of semilinear equations δu + λuhu p = 0 on the compact manifolds[END_REF]. Nowadays, the structure of the positive bounded solutions u λ to (1.4)-(1.5) is well understood. More precisely, a positive bounded solution u to (1.4)- (1.5) exists if and only if (1.6) µ 1 (E + a 0 + λa 1 , Ω) < 0 < µ 1 (E + a 0 + λa 1 , ω),

where ω denotes the refuge zone, i.e. ω := {x ∈ Ω | β(x) = 0} and µ 1 (Ω) denotes the first eigenvalue of the spectral problem E[φ] + a 0 φ + λa 1 (x)φ + µφ = 0, φ = 0 on ∂Ω. Depending on the properties of β and a 1 a description of the curves (λ, u λ ) can be found in [START_REF] Fraile | Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation[END_REF][START_REF] Garcia-Melian | Pointwise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs[END_REF][START_REF] Garcia-Melian | Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up[END_REF][START_REF] Ouyang | On the positive solutions of semilinear equations δu + λuhu p = 0 on the compact manifolds[END_REF].

For nonlocal equations such as (1.1), less is known and the analysis of the existence, uniqueness and the bifurcation diagram have been only studied in particular situations [START_REF] Bates | Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal[END_REF][START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF][START_REF] Coville | Pulsating fronts for nonlocal dispersion and kpp nonlinearity[END_REF][START_REF] Garcia-Melian | A logistic equation with refuge and nonlocal diffusion[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF][START_REF] Li | Principal eigenvalues for some nonlocal dispersal dirichlet problems with weight function and applications[END_REF][START_REF]Traveling wave solutions of spatially periodic nonlocal monostable equations[END_REF]. A large part of the literature is devoted to the existence of positive solution to (1.1) in situations where no refuge zone exists and for a fixed λ [START_REF] Bates | Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal[END_REF][START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF][START_REF] Coville | Pulsating fronts for nonlocal dispersion and kpp nonlinearity[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF][START_REF]Traveling wave solutions of spatially periodic nonlocal monostable equations[END_REF]. To our knowledge [START_REF] Garcia-Melian | A logistic equation with refuge and nonlocal diffusion[END_REF] is the first paper which considers a nonlocal logistic equation with a refuge zone and analyses the curves (λ, u λ ). More precisely, the authors investigate the existence, uniqueness of a positive bounded solution of

J ⋆ u -u + λu -β(x)u p = 0 in Ω, (1.7) u ≡ 0 in R n \ Ω, (1.8)
where J is a symmetric density of probability. They prove that a positive solution of the above problem exists if and only if

µ 1 (J ⋆ u -u, Ω) < λ < µ 1 (J ⋆ u -u, ω).
Moreover, they have showed that this solution is unique and have established the following asymptotic behaviours: lim λ→µ1(J⋆u-u,Ω) u λ (x) = 0 for all x ∈ Ω, lim λ→µ1(J⋆u-u,ω) u λ (x) = +∞ for all x ∈ Ω.

These results have been recently extended to the more general equation (1.1) with a quadratic nonlinearity (s(a(x)b(x)s)) and under some assumptions on the symmetry of the kernel K and some extra conditions on a and λ, see [START_REF] Li | Principal eigenvalues for some nonlocal dispersal dirichlet problems with weight function and applications[END_REF].

Here we address these questions of existence, uniqueness and the description of some bifurcation diagrams for a general kernel K and with no restriction on the coefficients a i , λ and β.

In what follows we will always assume that the functions a i and β satisfy:

(1.9)

     a i , β ∈ C(Ω), a 1 ≥ 0, β ≥ 0 Ω \ supp(a 1 ) is a open set of R n K ∈ C(R n × R n ), K ≥ 0
For the dispersal kernel, we will also require that K satisfies:

(1.10)

∃c 0 > 0, ǫ 0 > 0 such that inf x∈Ω inf y∈B(x,ǫ0) K(x, y) > c 0 .
A typical example of such dispersal kernel is given by

K(x, y) = J x 1 -y 1 g 1 (y)h 1 (x) ; x 2 -y 2 g 2 (y)h 2 (x) ; . . . ; x n -y n g n (y)h n (x) , with J ∈ C(R n ) continuous, J(0) > 0 and 0 < α i ≤ g i ≤ β i and 0 ≤ h i ≤ β i .
Such type of kernel have been recently introduced in [START_REF] Cortázar | A nonlocal inhomogeneous dispersal process[END_REF] to model a nonlocal heterogeneous dispersal process. To simplify the presentation of our results, we also introduce the notation L Ω [u] for the continuous linear operator

L Ω [u] := Ω K(x, y)u(y) dy -k(x)u(x).
In [START_REF] Garcia-Melian | A logistic equation with refuge and nonlocal diffusion[END_REF][START_REF] Li | Principal eigenvalues for some nonlocal dispersal dirichlet problems with weight function and applications[END_REF] the analysis essentially relies on the existence of positive eigenfunction associated with a principal eigenvalue µ 1 and a L 2 variational characterisation of µ 1 . However, such properties ( existence of a positive eigenfunction and a L 2 variational characterisation of µ 1 ) does not hold for general kernels K and a i [START_REF]Singular measure as principal eigenfunction of some nonlocal operators[END_REF] and a new approach and characterisation of the principal eigenvalue has to be developed.

In the past few years, the spectral properties of nonlocal operators such as L Ω + a have been intensively studied [START_REF] Bates | Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal[END_REF][START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF]Singular measure as principal eigenfunction of some nonlocal operators[END_REF][START_REF] Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF][START_REF] Coville | Pulsating fronts for nonlocal dispersion and kpp nonlinearity[END_REF][START_REF] García-Melián | On the principal eigenvalue of some nonlocal diffusion problems[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF][START_REF] Hutson | Spectral theory for nonlocal dispersal with periodic or almost-periodic time dependence[END_REF][START_REF] Kao | Random dispersal vs. nonlocal dispersal[END_REF]. In particular a notion of generalized principal eigenvalue µ p of a linear operator L Ω + a has been introduced in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] Coville | Pulsating fronts for nonlocal dispersion and kpp nonlinearity[END_REF] and is defined by

µ p (L Ω + a) := sup{µ ∈ R | ∃φ ∈ C( Ω), φ > 0, so that L Ω [φ] + (a + λ)φ ≤ 0}.
µ p is called a generalized principal eigenvalue because µ p is not necessarily associated with a L 1 positive eigenfunction [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF]Singular measure as principal eigenfunction of some nonlocal operators[END_REF][START_REF] Kao | Random dispersal vs. nonlocal dispersal[END_REF][START_REF] Shen | Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats[END_REF]. Such notion has been successfully used to derive an optimal criterium for the existence of a unique positive solution of (1.1) in absence of a refuge zone [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] Coville | Pulsating fronts for nonlocal dispersion and kpp nonlinearity[END_REF].

Equipped with this notion of generalised eigenvalue, we can now state our results. We first present an optimal criterium for the existence of a unique positive bounded solution to (1.1). Namely, we show Theorem 1.1. Let K, a i , β satisfy the assumptions (1.9)-(1.10) and let ω be the refuge set

ω := {x ∈ Ω|β(x) = 0}.
Then a positive continuous bounded solution u of (1.1) exists if and only if

µ p (L Ω + a 0 + λa 1 ) < 0 < µ p (L ω + a 0 + λa 1 ),
where we set µ p (L ω + a 0 + λa 1 ) =sup ω (a 0 + λa 1 ) when • ω= ∅. Moreover the solution is unique.

Next we analyse the partially controlled problem (1.1) i.e. we describe the set {λ, u λ } where u λ is a positive bounded continuous solution to (1.1). We start by describing {λ, u λ } in a case of the absence of a refuge zone. We prove the following Theorem 1.2. Assume that K, a i and β satisfy (1.9)-(1.10). Assume further that β > 0 in Ω then there exists λ * ∈ [-∞; ∞), so that for all λ > λ * there exists a unique positive continuous solution u λ to (1.1). When λ * ∈ R, there is no positive solution to (1.1) for all λ ≤ λ * . Moreover, we have the following trichotomy:

• λ * = -∞ when µ p (L Ω\Ω 1 + a 0 ) < 0, • λ * ∈ [-∞, ∞) when µ p (L Ω\Ω 1 + a 0 ) = 0. • λ * ∈ R when µ p (L Ω\Ω 1 + a 0 ) > 0.
In addition, the map λ → u λ is monotone increasing and we have

∀ x ∈ Ω lim λ→+∞ u λ (x) = +∞, ∀ x ∈ Ω lim λ→λ * ,+ u λ (x) = u ∞ (x),
where

u ∞ ≡ 0 on Ω 1 := {x ∈ Ω| a 1 (x) > 0} and u ∞ is a nonnegative solution to Ω\Ω1 K(x, y)u(y)dy -k(x)u + a 0 (x)u -βu p = 0 in Ω \ Ω 1 .
Furthermore, u ∞ is non trivial when µ p (L Ω\Ω 1 + a 0 ) < 0.

Finally, we describe the set {λ, u λ } in the situation where a refuge zone exists. We prove the following Theorem 1.3. Assume that K, a i and β satisfy (1.9)-(1.10). Assume further that ω = ∅, then there exists two quantities λ * , λ * * ∈ [-∞, +∞] so that we have the following dichotomy :

• Either λ * * ≤ λ * and there exists no positive bounded solution to (1.1).

• Or λ * < λ * * , and for all λ ∈ (λ * , λ * * ) there exists a unique positive bounded continuous solution to (1.1). When λ * , λ * * ∈ R, there is no positive bounded solution to (1.1) for all λ ≤ λ * and for all λ ≥ λ * * . Moreover, the map λ → u λ is monotone increasing and we have

(i) lim λ→λ * * ,- u λ ∞,ω = +∞, where u λ ∞,ω := sup x∈ω |u λ (x)|. (ii) If µ p (L ω + a 0 + λ * * a 1 ) is an eigenvalue in L 1 (ω) or λ * * = +∞ then ∀ x ∈ Ω, lim λ→λ * * ,-u λ (x) = +∞. (iii) For all x ∈ Ω we have lim λ→λ * ,+ u λ (x) = u ∞ (x)
, where u ∞ is a function satisfying on

Ω 1 := {x ∈ Ω| a 1 (x) > 0 u ∞ ≡ 0 and u ∞ is a nonnegative solution to Ω\Ω1 K(x, y)u(y)dy -k(x)u + a 0 (x)u -βu p = 0 in Ω \ Ω 1 .
Furthermore, u ∞ is non trivial when µ p (L Ω\Ω 1 + a 0 ) < 0.

Before going to the proofs of theses results we would like to make some additional comments. The assumption can be relaxed and we can get a full description of the curves when a 1 > 0 in Ω.

The paper is organised as follows. In a preliminary section we recall some known results on µ p and on the positive solution of a KPP equation. Then in Section 3 we prove the existence criterium of Theorem 1.1. The proof of Theorem 1.2 is done in Section 4. Finally, in Section 5 we analyse the bifurcation diagram of (1.1) in the presence of a refuge zone (Theorem 1.3).

PRELIMINARIES

In this section, we recall some results on the principal eigenvalue of a linear nonlocal operator and some known results about the KPP equation below

(2.1) L Ω [u] + f (x, u) = 0 in Ω where L Ω [u] := Ω K(x, y)u(y) dy -k(x)u(x)
and f (x, s) is satisfying

         f ∈ C(Ω × [0, ∞))
and is differentiable with respect to s

f u (•, 0) ∈ C(Ω)
f (•, 0) ≡ 0 and f (x, s)/s is decreasing with respect to s there exists M > 0 such that f (x, s) ≤ 0 for all s ≥ M and all x.

(2.2)

The simplest example of such a nonlinearity is

f (x, u) = u(a(x) -u),
where a(x) ∈ C(Ω).

It has been shown in [START_REF] Bates | Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal[END_REF][START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF] that the existence of a positive solution of (2.1) is conditioned to the sign of the principal eigenvalue µ p of the linear operator L Ω + f u (x, 0) where µ p is defined by the formula

µ p (L Ω + f u (x, 0)) := sup{µ ∈ R | ∃ φ ∈ C(Ω), φ > 0 so that L Ω [φ] + f u (x, 0)φ + µφ ≤ 0}.
That is to say Theorem 2.1 ([2, 12]). Let Ω be a bounded open set anf assume that K and f satisfy respectively (1.9)-(1.10) and (2.2). Then there exists a unique positive continuous solution to (2.1) if and only if µ p (L Ω + f u (x, 0)) < 0. Moreover, if µ p ≥ 0 then any non negative uniformly bounded solution of (2.1) is identically zero. Also noted in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF] the principal eigenvalue is not always achieved. This means that there is not always a positive continuous eigenfunction associated with µ p . However as shown in [START_REF]Singular measure as principal eigenfunction of some nonlocal operators[END_REF], we can always associate a positive measure dµ with µ p . More precisely, Theorem 2.2 ([13]). Let Ω be an open bounded set and assume that K and f u (x, 0) satisfy the assumptions (1.9) and (2.2). Then there exists a positive measure dµ ∈ M + (Ω), so that for any φ ∈ C c (Ω) we have

Ω φ(x) Ω K(x, y)dµ(y) dx + Ω φ(x)(f u (x, 0) -k(x) + µ p )dµ(x) = 0.
Moreover, there exists a positive function φ p ∈ L 1 (Ω) ∩ C(Ω \ Σ) so that inf Ω φ p > 0 and dµ(x) = φ p (x)dx + dµ s (x) where dµ s (x) is a non negative singular measure with respect to the Lebesgue measure whose support lies in the set

Σ := {y ∈ Ω|f u (y, 0) -k(y) = sup x∈Ω (f u (x, 0) -k(x))}.
As proved in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] Kao | Random dispersal vs. nonlocal dispersal[END_REF][START_REF] Shen | Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats[END_REF], when Ω is an open bounded set we can find a condition on the coefficients which guarantees that dµ s (x) ≡ 0 and the existence of a positive continuous eigenfunction. For example the existence of principal eigenfunction is guaranteed, if we assume that the function a(x) := f u (x, 0) -Ω K(y, x)dy satisfies

1 sup Ω a -a(x) ∈ L 1 (Ω ′ ) for some open bounded domain Ω ′ ⊂ Ω.
For the existence of principal eigenfunction as remark in [START_REF] Coville | Pulsating fronts for nonlocal dispersion and kpp nonlinearity[END_REF] we also have this useful criteria:

Proposition 2.3.
Let Ω be a bounded open set, then there exists a positive continuous eigenfunction associated to µ p if and only if

µ p (L Ω + a) < -sup Ω a.
Next we recall some properties of the principal eigenvalue µ p that we will constantly use along this paper: Proposition 2.4.

(i) Assume Ω 1 ⊂ Ω 2 , then for the two operators

L Ω 1 [u] + a(x)u := Ω1 K(x, y)u(y) dy -k(x)u + a(x)u L Ω 2 [u] + a(x)u := Ω2 K(x, y)u(y) dy -k(x)u + a(x)u
respectively defined on C(Ω 1 ) and C(Ω 2 ) we have

µ p (L Ω 1 + a(x)) ≥ µ p (L Ω 2 + a(x)).
(ii) Fix Ω and assume that a 1 (x) ≥ a 2 (x), then

µ p (L Ω + a 2 (x)) ≥ µ p (L Ω + a 1 (x)).
Moreover, if a 1 (x) ≥ a 2 (x) + δ for some δ > 0 then

µ p (L Ω + a 2 (x)) > µ p (L Ω + a 1 (x)). (iii) µ p (L Ω + a(x)) is Lipschitz continuous in a(x). More precisely, |µ p (L Ω + a(x)) -µ p (L Ω + b(x))| ≤ a(x) -b(x) ∞ (iv) Assume Ω 1 ⊂ Ω 2 , then for the two operators L Ω 1 [u] + a(x)u := Ω1 K(x, y)u(y) dy -k(x)u + a(x)u L Ω 2 [u] + a(x)u := Ω2 K(x, y)u(y) dy -k(x)u + a(x)u
respectively defined on C(Ω 1 ) and C(Ω 2 ). Assume that the corresponding principal eigenvalue are associated to a positive continuous principal eigenfunction. Then we have

|µ p (L Ω 1 + a(x)) -µ p (L Ω 2 + a(x))| ≤ C 0 |Ω 2 \ Ω 1 |,
where C 0 depends on K and φ 2 . (v) We always have the following estimate

-sup Ω a(x) + Ω K(x, y) dy ≤ µ p (L Ω + a) ≤ -sup Ω a.

Proof:

We refer to [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF] for the proofs of (i) -(iii) and (v), so we will be concerned only with (iv). Let us introduce the following quantity:

µ ′ p (L Ω + a) := inf{µ ∈ R | ∃ φ ∈ C( Ω), φ > 0 so that L Ω [φ] + aφ + µφ ≥ 0}. One can check that µ p (L Ω + a) = µ ′ p (L Ω + a)
. Indeed since there is a positive eigenfunction associated with

µ p (L Ω + a) one has µ ′ p (L Ω + a) ≤ µ p (L Ω + a) by definition of µ ′ p (L Ω + a)
. We obtain the equality by arguing as follows. Assume by contradiction that µ p (L Ω + a) > µ ′ p (L Ω + a). Then there exists µ so that µ ′ p (L Ω + a) < µ < µ p (L Ω + a) and from the definition of µ p and µ ′ p there exists two positive continuous functions ψ and φ so that

L Ω [φ] + a(x)φ + µφ ≥ 0, L Ω [ψ] + a(x)ψ + µψ < 0.
From the last inequalities we deduce that ψ > 0 in Ω and by setting w := φ ψ it follows that

0 ≤ L Ω [φ] + (a(x) + µ)φ = L Ω [φ] + (a(x) + φ) φ ψ ψ, ≤ L Ω [φ] - φ ψ (x)L Ω [ψ], ≤ Ω K(x, y)ψ(y)(w(y) -w(x)) dy.
Thus w cannot achieve a maximum in Ω without being constant. w being continuous in Ω, it follows that φ = cψ for some positive constant c. Thus we get the contradiction

0 ≤ L Ω [φ] + (a(x) + µ)φ = c (L Ω [ψ] + (a(x) + µ)ψ) < 0.
We are now in position to prove (iv). Let φ 2 be the eigenfunction associated toµ p (L Ω 2 + a(x))

normalized by φ 2 ∞ = 1 and let us set

C 0 := K(•,•) ∞ minΩ 2 φ2 . Now, let us show that (φ 2 , µ p (L Ω 2 +a)+C 0 |Ω 2 \Ω 1 |) is an adequate test function for µ ′ p (L Ω 1 +a)
. By a direct computation and by using the normalisation of φ 2 we have

L Ω 1 [φ 2 ] + (a + µ p (L Ω 2 + a) + C 0 |Ω 2 \ Ω 1 |))φ 2 = - Ω2\Ω1 K(x, y)φ 2 (y) dy + C 0 |Ω 2 \ Ω 1 |φ 2 , ≥ -K(•, •) ∞ |Ω 2 \ Ω 1 | + C 0 |Ω 2 \ Ω 1 |φ 2 , ≥ φ 2 min Ω2 φ 2 -1 K(•, •) ∞ |Ω 2 \ Ω 1 |. Therefore µ ′ p (L Ω 1 + a) ≤ µ p (L Ω 2 + a) + C 0 |Ω 2 \ Ω 1 |, which combined with (i) and using that µ ′ p (L Ω 1 + a) = µ p (L Ω 1 + a) leads to |µ p (L Ω 1 + a(x)) -µ p (L Ω 2 + a(x))| ≤ C 0 |Ω 2 \ Ω 1 |.

OPTIMAL EXISTENCE CRITERIUM

In this section we establish an optimal criterium for the existence of a positive continuous bounded solution to

(3.1) L Ω [u] + a(x)u -β(x)u p = 0 in Ω,
when there exists ω ⊂ Ω so that β |ω ≡ 0. Note that (3.1) is a particular case of (2.1) with f (x, s) := a(x)sβ(x)s p . However, due to the presence of refuge zone (i.e. β |ω ≡ 0) the function f (x, s) does not satisfy the assumptions (2.2) and the Theorem 2.1 does not apply. But we still have a complete characterisation of the existence of a bounded positive solution. Namely we can show the following Theorem:

Theorem 3.1. Assume that K, a and β satisfy (1.9)-(1.10). Assume further that there exists ω ⊂ Ω so that β |ω ≡ 0. Then there exists a bounded positive continuous solution to (3.1) if and only if

µ p (L ω + a) > 0 > µ p (L Ω + a),
where we set µ p (L ω + a) =sup ω a when

• ω= ∅.

Proof:

First let us assume that µ p (L ω +a) ≤ 0, we will show that there is no positive bounded solution to (3.1). Let us suppose by contradiction that there exists u, a positive bounded solution to (3.1). So in ω, u satisfies

L Ω [u] + au = 0, which implies that max ω a < 0 and u is continuous on ω. Furthermore, we have

(3.2) L ω [u] + au = - Ω\ω K(x, y)u(y) dy ≤ 0.

If

• ω= ∅ then we obtain easily a contradiction. Indeed in such case, we have µ p (L ω + a) =sup ω a which leads to the contradiction

0 < -sup ω a = µ p (L ω + a) ≤ 0.
In the other situations,

• ω = ∅ and to obtain our desired contradiction we argue as follows. Since µ p (L ω + a) ≤ 0 <max ω a, by Proposition 2.3 there exists a positive continuous eigenfunction associated with µ p (L ω +a). As a consequence there exists also a positive continuous eigenfunction associated with µ p (L * ω + a) where L * ω + a is defined by

L * ω [φ] + aφ := ω K(y, x)φ(y)dy -k(x)φ + a(x)φ.
We can easily check that By using Fubini's Theorem in the above inequality we get the contradiction

µ p (L ω + a) = µ p (L * ω + a).
0 ≤ -µ p (L * ω + a) ω φ * u ≤ -c 0 ω φ * Ω\ω K(x, y) dy < 0.
Thus in both cases, there is no bounded solution to (3.1) when µ p (L ω + a) ≤ 0.

Next we see that there is no positive bounded solution for (3.1) when µ p (L Ω + a) ≥ 0. In this situation, with some modifications we can reproduce the argumentation developed in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF] (Subsection 6.2). Let us assume that a positive solution of (3.1) exists and let us denote u this solution. We first observe that by following the argument developed in [START_REF] Bates | Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal[END_REF] we can see that u is continuous in Ω and there exists positive constants δ and c 0 so that

inf Ω u ≥ c 0 , inf x∈Ω (k(x) -a(x) + β(x)u p-1 ) ≥ δ.
From the monotone behaviour with respect to the s of the function g(x, s) := (aβ(x)s p-1 ), we deduce that a -

βu p-1 ≤ a(x) -βc p-1 0 ≤ a. Now let us denote γ(x) = a(x) -β(x)c p-1 0
. By construction, we have γ(x) ≤ a(x) and we see by (ii) of Proposition 2.4 that

µ p (L Ω + γ(x)) ≥ µ p (L Ω + a(x)) ≥ 0.
Moreover, since u is a solution of (3.1), we have

(3.3) L Ω [u] + γu ≥ L Ω [u] + au -βu p = 0,
with a strict inequality for any x ∈ Ω \ ω.

We claim that Claim -3.1. There exists δ > 0 and a positive continuous function φ so that inf Ω φ > δ and

L Ω [φ] + γφ ≤ 0.
Assume for the moment that the Claim holds true then we get our desired contradiction by arguing as follow. Since φ > δ we can define the following quantity

τ * := inf{τ > 0|u ≤ τ φ}.
Obviously, by proving that τ * = 0 we get the contradiction

c 0 ≤ u ≤ 0.
Assume by contradiction that τ * > 0 and let us denote w := τ * φu. By definition of τ * , there exists x 0 ∈ Ω such that τ * φ(x 0 ) = u(x 0 ) > 0 and from (3.3) we see that w satisfies

L Ω [w] + γw ≤ 0.
By evaluating the above expression at x 0 , since w ≥ 0 we see that

0 ≤ Ω K(x 0 , y)w(y) dy ≤ 0.
Therefore, since K satisfies (1.10) we must have w(y) = 0 for almost every y ∈ Ω. Thus, we end up with τ * φ ≡ u and we get the following contradiction

0 < L Ω [u] + γu = L Ω [τ * φ] + γτ * φ ≤ 0 on Ω \ ω. Hence τ * = 0.

Proof of the Claim:

When µ p (L Ω + γ) > 0 then by definition of the principal eigenvalue for all positive 0 < µ < µ p (L Ω + γ) there exists a positive continuous function φ such that

L Ω [φ] + γφ ≤ -µφ < 0.
Observe that φ ≥ δ for some positive δ since otherwise there exists x 0 ∈ Ω so that φ(x 0 ) = 0 and we get the contradiction 0 < L Ω [φ](x 0 ) + γ(x 0 )φ(x 0 ) ≤ 0. When µ p (L Ω + γ) = 0 we argue as follows. By construction, a ≥ γ and on Ω \ ω we have

(3.4) γ < a ≤ sup Ω a ≤ -µ p (L Ω + a) ≤ 0.
And another hand on ω since β |ω ≡ 0, we have

L Ω [u] + a(x)u = 0, which leads to sup ω a < 0. So on ω we also have

(3.5) γ ≤ sup ω a < 0.
By combining (3.4) and (3.5) it follows that supΩ γ < 0. Now, since 0 = µ p (L Ω + γ) < -supΩ γ we deduce from Proposition 2.3 that there exists a continuous positive principal eigenfunction φ associated with µ p (L Ω + γ). As above, we have inf Ω φ > δ for some positive δ.

Lastly, let us construct a positive bounded solution to (3.1) when the condition

(3.6) µ p (L ω + a) > 0 > µ p (L Ω + a) is satisfied.
The uniqueness of this solution follows form a similar argumentation as in [START_REF] Bates | Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal[END_REF][START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF], so we will omit the proof here.

From the condition 0 > µ p (L Ω + a), by reproducing the argument in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF] we can find a positive bounded subsolution φ 0 of the problem (3.1) so that κφ 0 is still a subsolution for any κ small and positive. Here the main difficulty is to find a positive supersolution ψ. Indeed, due to the existence of a refuge zone, the large positive constants are not supersolutions of (3.1). We claim Claim -3.2. When the condition (3.6) is satisfied, then there exists ψ > 0, ψ ∈ C( Ω) supersolution of (3.1) Note that by proving the claim we end the construction of the solution to (3.1). Indeed, since for κ small we have κφ ≤ ψ, by the monotone iterative scheme there exists a solution u to (3.1) so that κφ ≤ u ≤ ψ. Now, let us turn our attention to the proof of the Claim.

Proof of the Claim:

Let us first assume that

• ω = ∅. In this situation, by following the argument in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF] (Subsection 6.1) we can introduce a regularisation a ǫ ∈ C(Ω) of ak so that the following operator

L ǫ,ω [u] := ω K(x, y)u(y)dy + a ǫ (x)u
has a positive continuous principal eigenfunction. By continuity of µ p (L ǫ,ω ) with respect to a ǫ ((iii) of Proposition 2.4) we can find ǫ small so that

µ p (L ǫ,ω ) -a ǫ -a + k ∞ ≥ µ p (L ω + a) 2 .
Let ǫ be fixed and let us denote ω δ the following set

ω δ := {x ∈ Ω | d(x; ω) < δ}.
By continuity of the function sup ω δ a ǫ with respect to δ, there exists δ 0 so that for all δ ≤ δ 0 we have

| sup ω δ a ǫ -sup ω a ǫ | ≤ -µ p (L ω + a ǫ ) -sup ω a ǫ 2 .
So, by (i) of Proposition 2.4, we deduce from the above inequality that we have for all δ ≤ δ 0 ,

µ p (L ω δ + a ǫ ) ≤ µ p (L ω + a ǫ ) < -sup ω δ a ǫ .
Therefore, thanks to Proposition 2.3 for all δ ≤ δ 0 there exists a positive continuous eigenfunction associated with µ p (L ǫ,ω δ ). By continuity of µ p (L ǫ,ω δ ) with respect to the domain ((iv) of Proposition 2.4) we achieve for δ small enough, say δ ≤ δ 1 ,

(3.7) µ p (L ǫ,ω ) ≥ µ p (L ǫ,ω δ ) ≥ µ p (L ǫ,ω δ 1 ) ≥ a ǫ -a + k ∞ + µ p (L ω + a) 8 .
By construction Ω \ ω δ and ω δ 2 are two disjoints bounded closed set, so by the Urysohn Lemma there exists a nonnegative continuous function

η 1 such that 0 ≤ η 1 ≤ 1, η 1 (x) = 1 in Ω\ω δ , η 1 (x) = 0 in ω δ 2 .
Let ψ 1 , ψ 2 be the following continuous functions

ψ 1 := C 1 η 1 in Ω \ ω δ 2 0 elsewhere, ψ 2 := C 2 (1 -η 1 )Ψ δ in ω δ 0 elsewhere.
where Ψ δ denotes the positive continuous eigenfunction associated with µ p (L ǫ,ω δ ) normalized by Ψ δ ∞ = 1 and C 1 and C 2 are positive constants to be specified later on. Consider now the function ψ := sup(ψ 1 , ψ 2 ), we will prove that for well chosen C 1 and C 2 , ψ is a supersolution of (3.1).

On Ω \ ω δ

2

, a short computation shows that for C 1 large

L Ω [ψ] + aψ -βψ p ≤ C p+1 2 1 Ω K(x, y) dy + a -βC p-1 2 1 , ≤ C p+1 2 1 Ω K(x, y) dy + a -inf Ω\ω δ 2 (β)C p-1 2 

1

. we have

By construction inf

L Ω [ψ] + aψ -βψ p ≤ C 1 Ω\ω δ K(x, y) dy + C 2 ω δ \ω δ 2 K(x, y) dy + C 2   ω δ 2 K(x, y)Ψ δ (y) dy -k(x)Ψ δ + a(x)Ψ δ   .
Since Ψ δ > 0 in ω δ , we have

L Ω [ψ] + aψ -βψ p ≤ C 2 C 1 C 2 K1 + K2 |ω δ \ ω δ 2 | + C 2 ω δ K(x, y)Ψ δ (y) dy -k(x)Ψ δ + a(x))Ψ δ ,
where K1 := sup x∈Ω Ω K(x, y) dy and

K2 := K(•, •) ∞ .
Recall that Ψ δ is the eigenfunction associated with µ p (L ǫ,ω ), so it follows that

L Ω [ψ] + aψ -βψ p ≤ C 2 C 1 C 2 K1 + K2 |ω δ \ ω δ 2 | + (a -k -a ǫ -µ p (L ǫ,ω δ ))Ψ δ
which combined with (3.7) reduces to

L Ω [ψ] + aψ -βψ p ≤ C 2 C 1 C 2 K1 + K2 |ω δ \ ω δ 2 | - µ p (L ω + a) 8 Ψ δ .
By using that for all δ ∈ [0, δ 0 ], the principal eigenfunction Ψ δ associated to µ p (L ǫ,ω δ ) is positive and continuous, we can see that inf

δ∈[0,δ0] inf ω δ Ψ δ > c,
for some positive constant c. Moreover we can find δ small, say δ ≤ δ 1 so that for all δ ≤ δ 1

K2 |ω δ \ ω δ 2 | - µ p (L ω ) 8 Ψ δ ≤ - µ p (L ω + a) 16 c.
Thus for δ ≤ δ 1 , we achieve on ω δ 2

L Ω [ψ] + aψ -βψ p ≤ C 2 C 1 C 2 K1 - µ p (L ω + a) 16 c .

Now by choosing C

2 := C p+1 2 1 we have lim C1→+∞ C1 C2 = 0 since p > 1. So for C 1 large enough, say C 1 ≥ C * 1 := 32 K1 µp(L ω +a)c 2 p-1 we achieve on ω δ (3.9) L Ω [ψ] + aψ -βψ p ≤ -cC p+1 2 1 µ p (L ω + a) 32 < 0.
Hence from (3.8) and (3.9) we see that the function ψ is a positive continuous supersolution of (3.1).

Let us now assume that • ω= ∅. In this situation, we have 0 < µ p (L ω + a) =sup ω a. By continuity of a and K there exists δ small so that

sup x∈ω δ ω δ K(x, y)dy ≤ µ p (L ω + a) 2 < -sup ω δ a,
where as above ω δ := {x ∈ Ω|d(x, ω) < δ}.

From the above inequality it follows from (v) of Proposition 2.4 that 0 < µ p (L ω δ + a). Let us consider β δ := βη 1 , where η 1 is constructed above, then we have

β δ ≤ β and ω δ 2 = {x ∈ Ω|β δ (x) = 0}. By construction • ω δ 2 = ∅ and 0 < µ p (L ω δ + a) ≤ µ p (L ω δ 2
+ a), therefore by using the above arguments there exists a positive continuous supersolution ψ to

L Ω [u] + a(x)u -β δ u p = 0 in Ω.
Thanks to β δ ≤ β, we have

L Ω [ψ] + a(x)ψ -βψ p ≤ L Ω [ψ] + a(x)ψ -β δ ψ p ≤ 0 in Ω
and ψ is our desired supersolution.

THE PARTIALLY CONTROLLED PROBLEM: THE KPP CASE

In this section we analyse the dependence in λ of the positive continuous solutions to (1.1) in absence of a refuge zone and we prove the Theorem 1.2 that we recall below. More precisely, we look for positive continuous solution of the partially controlled problem:

(4.1) Ω K(x, y)u(y) dy -k(x)u(x) + a 0 (x)u + λa 1 (x)u -βu p = 0 when β > 0 and λ ∈ R.
In absence of a refuge zone, we can show that there exists a critical value λ * characterising completely the existence/non existence of a positive stationary solution. More precisely we have, Theorem 4.1. Assume that K, a i and β satisfy (1.9)-(1.10). Assume further that β > 0 in Ω then there exists λ * ∈ [-∞; ∞), so that for all λ > λ * there exists a unique positive continuous solution u λ to (4.1). When λ * ∈ R, there is no positive solution to (1.1) for all λ ≤ λ * . Moreover, we have the following trichotomy:

• λ * = -∞ when µ p (L Ω\Ω 1 + a 0 ) < 0, • λ * ∈ [-∞, ∞) when µ p (L Ω\Ω 1 + a 0 ) = 0. • λ * ∈ R when µ p (L Ω\Ω 1 + a 0 ) > 0.
In addition, the map λ → u λ is monotone increasing and we have

∀ x ∈ Ω lim λ→+∞ u λ (x) = +∞, ∀ x ∈ Ω lim λ→λ * ,+ u λ (x) = u ∞ (x),
where u ∞ ≡ 0 on

Ω 1 := {x ∈ Ω| a 1 (x) > 0} and u ∞ is a nonnegative solution to Ω\Ω1 K(x, y)u(y)dy -k(x)u + a 0 (x)u -βu p = 0 in Ω \ Ω 1 .
Furthermore, u ∞ is non trivial when µ p (L Ω\Ω 1 + a 0 ) < 0.

Proof:

In absence of a refuge zone, we observe that the problem (4.1) is a particular case of the KPP equation (2.1) where the nonlinearity f is given by f (x, s) := a 0 s + λa 1 sβs p . Therefore by the Theorem 2.1, for each λ ∈ R the existence of a positive solution to (4.1) is conditioned by the sign of µ p (L Ω + a 0 + λa 1 ).

First let us observe that for

λ > k ∞ -a0 ∞ a1 ∞
we have sup x∈Ω (a 0 (x) + λa 1 (x)k(x)) > 0 and by (v) of Proposition 2.4 we have µ p (L Ω + a 0 + λa 1 ) ≤ -sup Ω (a 0 (x) + λa 1 (x)k(x)) < 0. Therefore by Theorem 2.1, there exists a positive solution to (4.1) for all λ > k ∞ -a0 ∞ a1 ∞

. Let us consider the following set {λ | µ p (L Ω + a 0 + λa 1 ) = 0}. When {λ | µ p (L Ω + a 0 + λa 1 ) = 0} = ∅, by monotonicity of µ p with respect to λ ((ii) of Proposition 2.4 ), we can see that {λ | µ p (L Ω + a 0 + λa 1 ) = 0} is bounded from above. Therefore we can define λ * ∈ [-∞, +∞) by the following formula

λ * := sup{λ | µ p (L Ω + a 0 + λa 1 ) = 0},
where we set λ * = -∞ when {λ | µ p (L Ω + a 0 + λa 1 ) = 0} = ∅.

By construction, thanks to Theorem 2.1 for all λ > λ * there exists a unique positive continuous solution to (4.1) and when λ * ∈ R, there is no positive solution to (1.1) for all λ ≤ λ * .

Before proving the trichotomy, let us look at the asymptotic behaviours with respect to λ of the unique solution u λ . First let us observe that the map λ → u λ is monotone non decreasing. Indeed, thanks to the nonnegativity of a 1 , for any λ ≥ λ ′ , the continuous bounded function u λ ′ is a subsolution of the problem (4.2)

Ω K(x, y)u(y) dy -k(x)u(x) + a 0 (x)u + λa 1 (x)u -βu p = 0.
Observe that any large constant M is a super-solution of (4.2). Therefore by taking M large enough we have u λ ′ ≤ M and by the monotone iteration scheme we can construct a positive bounded solution of (4.2) which satisfies u λ ′ ≤ u ≤ M . We conclude by using the uniqueness of the solution of problem (4.2). Hence, u λ ′ ≤ u λ ≡ u.

The asymptotic behaviour of u λ when λ → +∞ is obtained by establishing a bound from below for the solution u λ when λ → +∞. More precisely we show that for all x ∈ Ω 1 we have for λ large enough

(4.3) u λ (x) ≥ λa 1 + a 0 -k(x) sup Ω β 1 p-1 .
Indeed from (4.1) using that u λ is non negative we have

β(x)u p λ (x) ≥ [k(x) + a 0 (x) + λa 1 (x)]u λ . Thus for x ∈ Ω 1 (4.
3) holds for λ large enough. From (4.3) we get trivially that for all x ∈ Ω 1

lim λ→+∞ u λ (x) ≥ lim λ→+∞ λa 1 + a 0 -k(x) sup Ω β 1 p-1 = +∞. So for x ∈ Ω \ Ω 1 so that |B ǫ0 (x) ∩ Ω 1 | > 0
where ǫ 0 is given by (1.10) we conclude that lim λ→+∞ Bǫ 0 (x)∩Ω1 u λ (y) dy = +∞.

Therefore from (1.10), (4.1) and u λ ≥ 0 we deduce that

β(x)u p-1 λ + k(x) u λ (x) ≥ Ω K(x, y)u λ (y) dy ≥ c 0 Bǫ 0 (x)∩Ω1 u λ (y) dy which leads to lim λ→+∞ u λ β(x)u p-1 λ + k(x) ≥ lim λ→+∞ c 0 Bǫ 0 (x)∩Ω1 u λ (y) dy = +∞ for all x ∈ z∈Ω1 B ǫ0 (z).
The later implies that

lim λ→+∞ u λ (x) = +∞ for all x ∈ z∈Ω1 B ǫ0 (z).
By repeating the above argument with z∈Ω1 B ǫ0 (z) instead Ω 1 , we show that

lim λ→+∞ u λ (x) = +∞ for all x ∈ z∈Ω1 B 2ǫ0 (z).
By a finite iteration of the above argumentation, we get lim λ→+∞ u λ (x) = +∞ for all x ∈ Ω.

Let us now deal with the limit of u λ when λ → λ * ,+ . First let us assume that λ * ,+ ∈ R. In this situation by using the positivity of u λ and the monotonicity of u λ with respect to λ, we deduce that u λ converges pointwise to u λ * ,+ when λ → λ * ,+ . Moreover thanks to the Lebesgue dominated convergence Theorem by passing to the limit in (4.1), we see that u λ * ,+ is a non negative solution of (4.1) with λ = λ * ,+ . Therefore by Theorem 2.1 we deduce that u λ * ,+ ≡ 0 since µ p (L Ω + a 0 + λa 1 ) = 0. Thus in this case lim λ→λ * ,+ u λ (x) = 0 for all x ∈ Ω.

Lastly assume that λ * ,+ = -∞. Again by using the positivity of u λ and the monotonicity of u λ with respect to λ, we deduce that u λ converges pointwise to u ∞ when λ → -∞. Now observe that by the monotonicity of u λ , we have for all λ ≤ 0, u λ ≤ M 0 := u 0 ∞ and a 1 (x)|λ|u λ ≤ C 0 , where

C 0 := M 0 Ω K(•, y)dy + k + a 0 ∞ + β ∞ M p 0 . Therefore for x ∈ Ω 1 , we deduce that 0 ≤ u ∞ (x) = lim λ→-∞ u λ (x) ≤ lim λ→-∞ C 0 a 1 (x)|λ| = 0.
By passing to the limit in the equation (4.1), thanks to the Lebesgue dominated convergence Theorem we see that u ∞ satisfies the equation below

(4.4) L Ω\Ω 1 [u] + a 0 (x)u + λa 1 (x)u -βu p = 0.
By Theorem 2.1, the existence of a positive solution to the above equation is governed by the sign of µ p (L Ω\Ω 1 + a 0 ). Therefore when µ p (L Ω\Ω 1 + a 0 ) < 0 there is a unique positive solution whereas for µ p (L Ω\Ω 1 + a 0 ) ≥ 0 there is none. In the later case, we deduce that lim λ→-∞ u λ (x) = 0 for all x ∈ Ω. Now let us look more closely at the properties of λ * and prove the trichotomy (1)

λ * = -∞ when µ p (L Ω\Ω 1 + a 0 ) < 0, (2) λ * ∈ [-∞, ∞) when µ p (L Ω\Ω 1 + a 0 ) = 0, (3) λ 
* ∈ R when µ p (L Ω\Ω 1 + a 0 ) > 0.
Case 1: µ p (L Ω\Ω 1 + a 0 ) < 0. In this situation, observe that by (i) of Proposition 2.4, we have for all λ 0 > µ p (L Ω\Ω 1 + a 0 ) = µ p (L Ω\Ω 1 + a 0 + λa 1 ) ≥ µ p (L Ω + a 0 + λa 1 ). Therefore, thanks to Theorem 2.1 there exists a positive non trivial solution to (4.1) for all λ ∈ R . Thus λ * = -∞.

Case 2:µ p (L Ω\Ω 1 + a 0 ) = 0. In this situation, by monotonicity of µ p with respect to λ ((ii) of Proposition 2.4 ) and (i) of Proposition 2.4 either µ p (L Ω + a 0 + λa 1 ) < 0 for all λ ≤ 0 or there exists λ 0 ≤ 0 so that µ p (L Ω + a 0 + λ 0 a 1 ) = 0. In the first situation, as above there exists a positive solution to (4.1) for any λ and λ * = -∞. In the other case, λ * ≥ λ 0 and λ * ∈ R.

Case 3:µ p (L Ω\Ω 1 + a 0 ) > 0. In this last situation, we claim that

Claim -4.1. lim inf λ→-∞ µ p (L Ω + a 0 + λa 1 ) > 0.
Assume the claim holds true then this implies that {λ | µ p (L Ω + a 0 + λa 1 ) = 0} is non empty and therefore λ * ∈ R. Indeed, since µ p (L Ω + a 0 + λa 1 ) < 0 for any λ > k ∞ -a0 ∞ a1 ∞ and by the claim there exists λ so that µ p (L Ω + a 0 + λa 1 ) > 0, by continuity of µ p with respect to λ there exists a λ < λ 0 < k ∞ -a0 ∞ a1 ∞ so that µ p (L Ω + a 0 + λ 0 a 1 ) = 0.

Proof of the Claim:

The proof of this claim relies on the construction of an adequate test function. By arguing as in the proof of Claim 3.2 we can introduce a regularisation a ǫ of a 0k so that the following operator L ǫ,Ω\Ω 1 [u] := Ω\Ω1 K(x, y)u(y)dy + a ǫ (x)u has a positive continuous principal eigenfunction. By continuity of µ p (L ǫ,Ω\Ω 1 ) with respect to a ǫ ((iii) of Proposition 2.4) we can find ǫ small so that

µ p (L ǫ,Ω\Ω 1 ) -a ǫ -a 0 + k ∞ ≥ µ p (L Ω\Ω 1 + a)
2 .

Let ǫ be fixed and let Ω δ be the set

Ω δ := {x ∈ Ω 1 | d(x; ∂Ω 1 ) > δ}.
As in the proof of the Claim 3.2, by continuity of sup Ω\Ω δ and µ p (L ǫ,Ω\Ω δ ) with respect to the domain we achieve for δ small enough, say δ ≤ δ 0 ,

(4.5) µ p (L ǫ,Ω\Ω 1 ) ≥ µ p (L ǫ,Ω\Ω δ ) ≥ µ p (L ǫ,Ω\Ω δ 0 ) ≥ a ǫ -a 0 + k ∞ + µ p (L Ω\Ω 1 + a 0 ) 8 . By construction Ω \ Ω δ 2
and Ωδ are two disjoints bounded closed set, so by the Urysohn Lemma there exists a nonnegative continuous function

η 1 such that 0 ≤ η 1 ≤ 1, η 1 (x) = 1 in Ω \ Ω δ 2 , η 1 (x) = 0 in Ωδ .
Let ψ 1 , ψ 2 be the following continuous functions

ψ 1 := Ψ δ η 1 in Ω \ Ω δ 0 elsewhere, ψ 2 := c 0 η 2 in Ω 1 0 elsewhere.
where Ψ δ is the positive continuous eigenfunction associated with µ p (L ǫ,Ω\Ω δ ) normalized by Ψ δ ∞ = 1 and c 0 is positive constant to be specified later on. Consider now the function ψ := sup(ψ 1 , ψ 2 ) and let γ be a positive constant to be fixed later on. We will prove that for γ, δ, λ and c 0 well chosen the function ψ is an adequate test function for L Ω + a 0 + λa 1 + γ. So let us compute L Ω [ψ] + aψ + λa 1 ψ + γψ.

On Ω \ Ω δ

2

, by construction we have

L Ω [ψ] + a 0 ψ + λa 1 ψ + γψ ≤ Ω\Ω δ 2 K(x, y)Ψ δ (y) dy + K(•, •) ∞ |Ω δ 2 \ Ω δ | + c 0 |Ω δ | + a ǫ Ψ δ + a ǫ + k -a 0 ∞ Ψ δ + λa 1 Ψ δ + γΨ δ .
Therefore by (4.5) we see that

(4.6) L Ω [ψ] + a 0 ψ + λa 1 ψ + γψ ≤ - µ p (L Ω\Ω 1 + a 0 ) 8 + γ Ψ δ + K(•, •) ∞ |Ω δ 2 \ Ω δ | + c 0 |Ω δ | .
Let m 0 be the constant

m 0 := inf δ∈[0,δ0] inf x∈Ω\Ω δ Ψ δ (x) .
We have m 0 > 0 since for all δ ∈ [0, δ 0 ] Ψ δ is positive and continuous in Ω \ Ω δ .

Now let us fix

γ := µp(L Ω\Ω 1 +a0) 16
and choose δ and c 0 such that

|Ω δ 2 \ Ω δ | ≤ m 0 µ p (L Ω\Ω 1 + a 0 ) 64 K(•, •) ∞ , (4.7) c 0 ≤ m 0 µ p (L Ω\Ω 1 + a 0 ) 64 K(•, •) ∞ |Ω 1 | . (4.8)
By combining (4.6), (4.7) and (4.8) we see that

- µ p (L Ω\Ω 1 + a 0 ) 8 + γ Ψ δ + K(•, •) ∞ |Ω δ 2 \ Ω δ | + c 0 |Ω δ | ≤ 0.
Therefore on Ω \ Ω δ

2

, we achieve for all λ ≤ 0 (4.9)

L Ω [ψ] + (a 0 + λa 1 + γ)ψ ≤ 0. Now on Ω δ 2
we have by construction

L Ω [ψ] + (a 0 + λa 1 + γ)ψ ≤ K(•, •) ∞ |Ω| + a 0 ∞ + γ + λc 0 inf Ω δ 2 a 1 .
Since

a 1 > 0 in Ω δ 2 , by choosing λ ≤ -K(•,•) ∞|Ω|+ a0 ∞+γ c0 infΩ δ 2 a1
we get (4.10)

L Ω [ψ] + (a 0 + λa 1 + γ)ψ ≤ 0 in Ω δ 2 .
Hence from (4.9) and (4.10) we see that for λ negative enough, the function (ψ, γ) is an adequate test function for the operator L Ω + a 0 + λa 1 . That is: ψ is a positive continuous function on Ω which satisfies

L Ω [ψ] + (a 0 + λa 1 + γ)ψ ≤ 0.
So by definition of µ p (L Ω + a 0 + λa 1 ) we deduce that for λ negative enough we have µ p (L Ω + a 0 + λa 1 ) ≥ γ > 0.

THE PARTIALLY CONTROLLED PROBLEM: THE REFUGE CASE

In this Section, we analyse (1.1) in the presence of a refuge zone, i.e. when there exists ω ⊂ Ω so that β |ω ≡ 0. In a presence of a refuge zone, the analysis of (1.1) is more involved and the characterisation of the existence/non-existence of a positive solution of (1.1) cannot always be summarised to a single critical value λ * . In this situation, we prove the Theorem 1.3 that we recall below: Theorem 5.1. Assume that K, a i and β satisfy (1.9)-(1.10). Assume further that ω = ∅, then there exists two quantities λ * , λ * * ∈ [-∞, +∞] so that we have the following dichotomy :

• Either λ * * ≤ λ * and there exists no positive bounded solution to (1.1).

• Or λ * < λ * * , and for all λ ∈ (λ * , λ * * ) there exists a unique positive bounded continuous solution to (1.1). When λ * , λ * * ∈ R, there is no positive bounded solution to (1.1) for all λ ≤ λ * and for all λ ≥ λ * * . Moreover, the map λ → u λ is monotone increasing and we have (i)

lim λ→λ * * ,-u λ ∞,ω = +∞, where u λ ∞,ω := sup x∈ω |u λ (x)|. (ii) If µ p (L ω + a 0 + λ * * a 1 ) is an eigenvalue in L 1 (ω) or λ * * = +∞ then ∀ x ∈ Ω, lim λ→λ * * ,- u λ (x) = +∞. (iii) For all x ∈ Ω we have lim λ→λ * ,+ u λ (x) = u ∞ (x), where u ∞ is a function satisfying on Ω 1 := {x ∈ Ω| a 1 (x) > 0 u ∞ ≡ 0 and u ∞ is a nonnegative solution to Ω\Ω1 K(x, y)u(y)dy -k(x)u + a 0 (x)u -βu p = 0 in Ω \ Ω 1 .
Furthermore, u ∞ is non trivial when µ p (L Ω\Ω 1 + a 0 ) < 0.

Let us now look at the asymptotic behaviour of u λ with respect to λ. The monotone behaviour of u λ and its limit as λ → λ * (i.e (iii)) can be obtained by following the arguments in Section 4, so we drop the proof here and prove only (i) and (ii) i.e. we analyse the limits of u λ as λ → λ * * .

When λ * * = +∞, the behaviour of u λ can be obtained by reproducing the arguments of Section 4 and we get for all x ∈ Ω lim λ→+∞ u λ (x) = +∞.

Now, let us assume that λ * * ∈ R. By definition of λ * * , we must have

µ p (L ω + a 0 + λ * * a 1 ) = 0.
As a consequence we also have µ p (L * ω + a 0 + λ * * a 1 ) = 0 where L * ω + a 0 + λ * * a 1 is defined by

L * ω [φ] + a 0 φ + λ * * a 1 φ := ω K(y, x)φ(y)dy -k(x)φ + a 0 φ + λ * * a 1 φ.
Let us start with the proof of (i). First assume that 

K(x, y)u λ (y) dy dµ * = (λ * * -λ) ω a 1 u λ dµ * .
Therefore, by using the monotonicity of the map u λ we have for λ

0 < λ < λ * * 1 λ * * -λ ω Ω\ω K(x, y)u λ0 (y) dy dµ * ≤ a 1 ∞ u λ ∞,ω ω dµ * , which enforces lim λ→λ * * u λ ∞,ω = +∞.

Assume now that

• ω= ∅. In this situation, we have µ p (L ω + a 0 + λ * * a 1 ) =sup ω (-k + a 0 + λ * * a 1 ). Since ω is a compact set there exists x 0 ∈ ω so that -k(x 0 )+a 0 (x 0 )+λ * * a 1 (x 0 ) = 0. We can check that x 0 ∈ Ω 1 , otherwise we have sup ω∩(Ω\Ω1) (-k + a 0 ) = sup ω∩(Ω\Ω1) (-k + a 0 + λ * * a 1 ) = 0 and µ p (L ω∩(Ω\Ω 1 ) + a 0 ) = 0. The latter equality leads to the contradiction -∞ < λ * * = -∞, since for all λ we have µ p (L ω + a 0 + λa 1 ) ≤ µ p (L ω∩(Ω\Ω 1 ) + a 0 ) = 0. Now at x 0 , we have Ω K(x 0 , y)u λ (y) dy = (λ * *λ)a 1 (x 0 )u λ (x 0 ). By using that u λ is monotone with respect to λ we get for all λ 0 ≤ λ < λ * * 1 (λ * *λ)a 1 (x 0 ) Ω K(x 0 , y)u λ0 (y) dy = u λ (x 0 ), which implies lim λ→λ * * u λ (x 0 ) = +∞. Let us now prove (ii). When µ p (L ω + a 0 + λ * * a 1 ) is associated with a positive L 1 (ω) eigenfunction we claim that Claim -5.1. lim λ→λ * * Ω u λ (x) dx = +∞.

Assume for the moment that the claim holds then we get (ii) by arguing as follows. Since Ω is compact, in view of the claim there exists x ∈ Ω so that lim λ→λ * * B(x, Therefore for all x ∈ B(x, ǫ0

2 ), we have B(x, ǫ0 4 ) ⊂ B(x, ǫ 0 ) which combined with the above inequalities implies that Since Ω is compact we achieve lim λ→λ * * u λ (x) = +∞ for all x ∈ Ω after a finite iteration of this argument.

Proof of the Claim

Assume by contradiction that sup λ Ω u λ (x) dx < +∞. Since u λ is monotone, by Lebesgue monotone convergence Theorem we have u λ → ū in L 1 (Ω) when λ → λ * * and ū > u λ0 > 0 satisfies the equation L Ω [ū](x) + (a 0 + λ * * a 1 )ū(x)β(x)ū p (x) = 0 for almost every x in Ω. Therefore we have (5.2)

L Ω [ū](x) + (a 0 + λ * * a 1 )ū(x) = 0 for almost every x in ω.

By assumption there exists a positive L 1 eigenfunction φ p associated with µ p (L ω + a 0 + λ * * a 1 ). Moreover the positive function . is well defined. By construction, we can check that µ p (K) = -1. Indeed, let v p := (k(x)a 0 (x)λ * * a 1 (x))φ p then we can see that v p is positive and continuous, since by assumption we have

L ω [φ p ] -v p = 0.
Moreover, v p satisfies K[v p ] = v p . Thus by the Krein-Rutman theory, we have µ p (K) = -1 and ψ 1 := v p where ψ 1 is the principal positive continuous eigenfunction associated with µ p (K).

Let us now consider K * the following compact operator 

L 1 (ω) → L 1 (ω) v → K * [v] :=

  Let us denote by φ * the positive continuous principal eigenfunction associated with µ p (L * ω + a). Now by multiplying (3.2) by φ * and then integrating over ω, it follows ω φ * (x)L ω [u](x)dx + auφ * (x)dx ≤ -c 0 ω φ * Ω\ω K(x, y) dy .

  u λ (x) dx = +∞.From the equation (1.1) and by the assumption (1.10) we always havec 0 B(x,ǫ0)∩Ω u λ (x) dx ≤ (k(x)a 0 (x)λa 1 (x))u λ (x) + β(x)u p λ (x).

2 )

 2 lim λ→λ * * (k(x)a 0 (x)λa 1 (x))u λ (x) + β(x)u p λ (x) = +∞. Thus lim λ→λ * * u λ (x) = +∞ for all x ∈ B(x, ǫ 0 ∩ Ω.In the above arguments by replacing x by any x ∈ B(x, ǫ0 4 ) ∩ Ω, we achievelim λ→λ * * u λ (x) = +∞ for all x ∈ x∈B(x,

1 k

 1 (x)-a0(x)-λ * * a1(x) ∈ L 1 (ω) and the compact operator K:C(ω) → C(ω) v → K[v] := ω K(x, y)v(y)dy k(y)-a0(y)-λ * * a1(y)

1 k 1 o

 11 (x)-a0(x)-λ * * a1(x) ω K(y, x)v(y)dy. By the Krein-Rutman Theory there exists an eigenvalue ν 1 associated with a positive L 1 (ω) function φ * . Furthermore we can check that ν 1 = -1. Indeed, since φ * is associated with ν 1 we haveK * [φ * p ] = -ν 1 φ * p .By multiplying the above equation by v p and then integrating over ω it follows thatν v p (x)φ * (x)dx =ω v p (x) k(x)a 0 (x)λ * * a 1 (x) ω K(y, x)φ * (y)dy dx =ω v p (y)φ * (y)dy, which implies that ν 1 = -1.Let v be the L 1 (ω) function v := (k(x)a 0 (x)λ * * )ū then we get by (5.2)(5.3) K[v]v = -Ω\ω K(x, y)ū(y) dy for almost every x in ω.Since K[v] is continuous, we deduce from (5.3) that v is continuous in ω. So by multiplying (5.2) by φ * and then integrating over ω we getω φ * 1 (x) Ω\ω K(x, y)ū(y) dy dx = ω φ * 1 (x)[K[v]v]dxSince ν 1 = -1 and ū > 0 we end up with the contradiction0 < c 0 ≤ ω φ * 1 (x)Ω\ω K(x, y)ū(y) dydx =

  ∅, then by Theorem 2.2 there exists a positive measure dµ * associated with µ p (L * ω + a 0 + λ * * a 1 ). Moreover, φ * p (x)dx the regular part of dµ * satisfies inf ω φ * p > 0. By integrating the equation (1.1) over ω with respect to the measure dµ * , we get for any λ * < λ < λ * *

		K(x, y)u
	ω	Ω

• ω = λ (y) dy dµ * + ω (-k(x) + a 0 + λa 1 )u λ dµ * = 0.

By definition of µ p (L *

ω + a 0 + λ * * ), it follows from the above equality ω Ω\ω

Proof:

Thanks to Theorem 3.1 the existence of a positive unique bounded solution to (1.1) in presence of a refuge zone is conditioned by the following inequality (5.1) µ p (L ω + a 0 + λa 1 ) > 0 > µ p (L Ω + a 0 + λa 1 ).

Let us introduce the following quantities:

We can see that the description of the set of positive bounded solutions of (1.1) is then equivalent to show whether or not we have λ * < λ * * . To answer this question, we analyse separately the three different situations :

Let us start with the analysis the first situation.

Case 1: ω ⊂ Ω\Ω 1 . In this situation, since ω ⊂ Ω\Ω 1 , we have µ p (L ω +a 0 +λa 1 ) = µ p (L ω +a 0 ). So from (5.1) we see that for all λ there is no bounded solution to (4.1) when µ p (L ω +a 0 ) ≤ 0 whereas the existence of a bounded solution will be conditioned only by the sign of µ p (L Ω + a 0 + λa 1 ) when µ p (L ω + a 0 ) > 0. In the later case, the analysis of the Section 4 can be reproduced, so we get

Therefore, we see that λ * * ∈ R and by definition of λ * * and (i) of Proposition 2.4 we have µ p (L Ω + a 0 + λ * * a 1 ) ≤ µ p (L ω + a 0 + λ * * a 1 ) = 0.

From the above inequality, we get the following dichotomy:

• Either µ p (L Ω + a 0 + λ * * a 1 ) < 0 and by (ii) of Proposition 2.4, we deduce that λ * < λ * * . • Or µ p (L Ω + a 0 + λ * * a 1 ) = 0 and by definition of λ * we have λ * ≥ λ * * and for all λ there is no positive bounded solution to (1.1).

Case 3: ω ⊂ Ω \ Ω 1 and ω ⊂ Ω 1 . In this situation, since ω ∩ Ω 1 = ∅, by (v) of Proposition 2.4 we can see that for some positive constant C

Therefore λ * * ∈ [-∞, +∞). Now let us observe that in this situation we also have for all λ µ p (L ω + a 0 + λa 1 ) ≤ µ p (L ω∩(Ω\Ω 1 ) + a 0 + λa 1 ) = µ p (L ω∩(Ω\Ω 1 ) + a 0 ).

We then have two case to analyse:

(i) µ p (L ω∩(Ω\Ω 1 ) + a 0 ) ≤ 0 :

In this situation, from the above inequality, we can already conclude that λ * * = -∞.

Hence in this situation, for all λ there is no positive bounded solution of (1.1). (ii) µ p (L ω∩(Ω\Ω 1 ) + a 0 ) > 0 :

In this situation, by working as in Section 4 we see that there exists λ << -1 so that µ p (L ω + a 0 + λa 1 ) > 0. Therefore, µ * * ∈ R and we can argue as in the Case 2.