N

N

Computations by fly-automata beyond monadic
second-order logic

Bruno Courcelle, Irene Durand

» To cite this version:

Bruno Courcelle, Iréene Durand. Computations by fly-automata beyond monadic second-order logic.
Theoretical Computer Science, 2016, 619, pp.32-67. hal-00828211v2

HAL Id: hal-00828211
https://hal.science/hal-00828211v2
Submitted on 8 Dec 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00828211v2
https://hal.archives-ouvertes.fr

Computations by fly-automata beyond monadic
second-order logic

Bruno Courcelle and Irene Durand
LaBRI; CNRS and Bordeaux University
351 Cours de la Libération, 33405 Talence, France
courcell@labri.fr ; idurand@labri.fr

December 8, 2015

Abstract

The validity of a monadic-second order (MS) expressible property can
be checked in linear time on graphs of bounded tree-width or clique-width
given with appropriate decompositions. This result is proved by con-
structing from the MS sentence expressing the property and an integer
that bounds the tree-width or clique-width of the input graph, a finite
automaton intended to run bottom-up on the algebraic term representing
a decomposition of the input graph. As we cannot construct practically
the transition tables of these automata because they are huge, we use fly-
automata whose states and transitions are computed ”"on the fly”, only
when needed for a particular input. Furthermore, we allow infinite sets of
states and we equip automata with output functions. Thus, they can check
properties that are not MS expressible and compute values, for an exam-
ple, the number of p-colorings of a graph. We obtain XP and FPT graph
algorithms, parameterized by tree-width or clique-width. We show how
to construct easily such algorithms by combining predefined automata for
basic functions and properties. These combinations reflect the structure
of the MS formula that specifies the property to check or the function to
compute.

Keywords : monadic second-order logic, graph algorithms, infinite
automata, parameterized algorithms, tree-width, clique-width, dynamic
programming, model-checking, data complexity, algorithmic meta-theorems.

Introduction

Fixed-parameter tractable (FPT) algorithms can be built by many techniques.
In their recent book [20], Downey and Fellows distinguish ”elementary tech-
niques” (bounded search trees, kernelization, color coding, iterative compression

*This work has been supported by the French National Research Agency (ANR) in the
IdEx Bordeaux program ”Investments for the future”, CPU, ANR-10-IDEX-03-02.

etc.) and techniques based on well quasi-orders from those ”"based on graph
structure”. The notion of graph structure includes the graph decompositions
from which tree-width, path-width, local tree-width, clique-width etc. are de-
fined. A central result is the following algorithmic meta-theorem [16, 19, 20, 26]:

The wvalidity of a monadic-second order (MS) expressible property
can be checked in linear time on graphs of bounded tree-width and
on graphs of bounded clique-width given with appropriate decompo-
sitions.

As in [31, 34], we call it a meta-theorem because it applies in a uniform way
to all graph properties expressed by MS sentences. An easy proof of this result
consists in defining by an algorithm a finite automaton intended to run bottom-
up on the labelled tree or the algebraic term that represents the structure of the
input graph ([16], Chapter 6). This automaton is built from the MS sentence
expressing the property and an integer, say k, that bounds the tree-width or
clique-width of the input graph. The number of states is a tower of exponen-
tials of height essentially equal to the number of quantifier alternations of the
considered sentence, with the bound k at the top. In most cases we cannot con-
struct practically the sets of states and the transition tables of these automata.
This obstacle is intrinsic [28], it is not due to the choice of finite automata to
implement the meta-theorem.

However, we can remedy this problem in many significant cases by using
fly-automata (introduced in [12]). They are automata whose states and transi-
tions are computed “on the fly”, only when needed for a particular input!'. A
deterministic fly-automaton A having 21990 states only computes 100 states on
a tree or term of size 100. Actually, the evaluation algorithm determines the
smallest subautomaton A | ¢t of A able to process the given term t.

In this article we develop a theory of fly-automata and extend the notion
introduced in [12]. In particular, we allow infinite sets of states (e.g., a state may
contain counters recording the unbounded numbers of occurrences of particular
symbols) and we equip automata with output functions that map the accepting
states to some effective domain D (e.g., the set of integers, or of pairs of inte-
gers, or the set of words over a fixed alphabet). Thus, fly-automata can check
properties that are not monadic second-order expressible, for example that a
graph is regular (has all its vertices of same degree) and compute values, for
example, the number of p-colorings. We will construct fly-automata that yield
FPT and XP algorithms (definitions are reviewed in Section 1.5) for tree-width
or clique-width as parameter. We will combine basic fly-automata by means of
products, direct and inverse images in a way that reflects the structure of the
defining formula. For example, product of automata implements conjunction

1Fly-automata are useful when the number of states is large compared to the number of
function symbols and the size of input terms. Symbolic automata [41] are defined for the case
when the number of states is manageable but the set of function symbols is very large, and
possibly infinite. In these automata, states are listed but function symbols and transitions are
described by logical formulas. Fly-automata also admit infinite sets of function symbols.

and taking a direct image implements existential quantification. We have im-
plemented these constructions in the system AUTOGRAPH? and tested them
successfully on coloring and connectedness problems.

Our model-checking algorithms are intended for fized graph properties and we
are interested in analyzing their data complexity formulated in the framework
of fized-parameter tractability. However, these algorithms are constructed in
uniform ways from logical expressions that cover a large variety of problems. The
constructions are easily extendable to labelled graphs and relational structures.

Our computation model.

We now motivate our choices. Fly-automata have several advantages: they
overcome in many significant cases the "size problem” met with usual finite
automata, they are not restricted to fixed bounds on clique-width, they allow
to check some properties that are not MS expressible and to compute values
attached to graphs and, last but not least, they offer a flexible framework: a
slight change in the formula that specifies the problem is quickly reflected in the
construction of a new automaton, performed by the system AUTOGRAPH.

We study fly-automata over the signature of graph operations from which
clique-width is defined. We have chosen to deal with these operations rather than
those for tree-width because the automata are much simpler [9]. This choice
also yields a gain in generality because the clique-width of a simple graph G
is bounded in terms of its tree-width but not vice-versa. All our FPT and XP
algorithms parameterized by clique-width are also FPT and XP respectively for
tree-width. Furthermore, replacing a graph G by its incidence graph allows to
handle in our setting edge quantifications, see the conclusion and [10, 11].

At the end of this introduction, we review methods for implementing the
verification of MS properties on graphs of bounded tree-width that are not
based on automata.

Overview of the main definitions.

An automaton takes as input a term ¢ € T'(F') over a signature F, i.e., a set
of operations, each given with a fixed arity. The graphs of clique-width at most
k are those defined by a term over a finite signature Fj, and F, is the union
of the signatures Fj. We will construct fly-automata over the infinite signature
Fo, with which all finite graphs can be defined.

We will construct fly-automata for basic properties and functions, for exam-
ple the regularity of a graph or the degree of a vertex, and we will also use the
automata constructed in [12] for some basic MS properties. We will combine
these automata in order to define more complex properties and functions, for
example the possibility of partitioning the vertex set of a graph into two sets
inducing regular subgraphs.

Here are some typical examples of decision problems and functions that we
can handle in this way:

2See http://dept-info.labri.u-bordeaux.fr/~idurand /autograph

(1) Is it possible to cover the edges of a graph with those of s cliques?

(2) Does there exist an equitable s-coloring? FEquitable means that the sizes
of any two color classes differ by at most 1 [25]. We can express this property
by 3Xi,...,Xs.(Partition(X1,..., Xs) A St[X1] A . A SEX] AV X] = ... =

| Xi—1| = | Xi] = ... = |Xs] = |X1]| — 1 for some ") where St[X] means that
the induced subgraph G[X] of the considered graph G is stable, i.e., has no
edge.

(3) Assuming the graph s-colorable, what is the minimum size of the first
color class of an s-coloring?

(4) What is the minimum number of edges between X and Y for a partition
(X,Y) of the vertex set such that G[X] and G[Y] are connected?

More generally, let P(X1,..., X;s) be a property of sets of vertices X7, ..., X
or of positions of a term; we will use X to denote (Xi,...,X,) and t | P(X)
to mean that X satisfies P in the term ¢ or in the graph G(t) defined by ¢; this
writing does not assume that P is written in any particular logical language.
We are interested, not only to check the validity of 3X.P(X) in t or in G(t) for
some given term ¢, but also to compute (among others) the following objects
associated with ¢:

#X.P(X), defined as the number of assignments X such that ¢ =

P(X),

SpX.P(X), the spectrum of P(X), defined as the set of tuples (| X1],...,|Xs|)
such that t = P(X),

MSpX.P(X), the multispectrum of P(X), defined as the multiset
of tuples (| X1],...,|Xs|) such that ¢ = P(X),

MinCard X;.P(X) defined as min{|X;| | ¢ |= 31X, ..., X,.P(X)},

SatX.P(X), defined as the set of tuples X such that ¢t = P(X).

We will say that the functions #X.P(X), SpX.P(X), MSpX.P(X), MinCardX;.P(X)
and SatX.P(X) taking terms as arguments are MS expressible if P(X) is an
MS expressible property. Their values are numbers or sets of tuples of numbers
in the first four cases and our automata will give XP or FPT algorithms. Com-
puting SatX.P(X)(t) is more difficult because the result may be of exponential
size in the size of ¢.

Our main results

Here are the four main ideas and achievements. First, we recall that the
state of a deterministic bottom-up automaton collects, at each position u of an
input term, some information about the subterm issued from u. This information
should be of size as small as possible so that the computation of a run be efficient.
An appealing situation is when the set of states is finite, but finiteness alone
does not guarantee efficient algorithms. This is well-known for MS definable
sets of terms over a finite signature: the number of states of an automaton that

implements an MS formula has a number of states that cannot be bounded
by an elementary function (an iterated exponentiation of bounded height) in
the size of the formula, see [28, 38]. The notion of fly-automaton permits to
construct usable algorithms based on finite automata whose transitions cannot
be compiled in manageable tables.

Second, as we do not insist on compiling transitions in tables, we have no
reason to insist on finiteness of the set of states. So we use fly-automata whose
states are integers, or pairs of integers or any information representable by
a finite word over a fixed finite alphabet. These automata yield polynomial-
time dynamic programing algorithms if the computation of each transition takes
polynomial time in the size of the input term.

Third, fly-automata can run on terms over countably infinite signatures,
encoded in effective ways. In particular, we will define automata that run on
terms describing input graphs. These terms yield upper-bounds to the clique-
width of these graphs. As no finite set of such operations can generate all graphs,
the use of an infinite signature is necessary®. By analyzing how these automata
are constructed from logical descriptions, we can understand (in part) why some
algorithms constructed from automata are FPT whereas others are only XP.

Fourth, we go beyond MS logic in two ways. We adapt the classical con-
struction of finite automata from formulas exposed in Chapter 6 of [16] and in
[12] to properties of terms and graphs that are not MS expressible (for example
the regularity of a graph) and we build automata that compute functions (for
example, the largest size of an induced subgraph that is regular). Such prop-
erties and functions are defined by formulas using new atomic formulas, such
as Reg[X] expressing that the induced subgraph G[X] of the considered graph
G is regular, and new constructions, such as #X.P(X) or SpX.P(X), that can
be seen as generalized quantifications, as they bind the variables of X while
delivering more information than 3X.P(X). From the usual case of MS logic,
we keep the inductive construction of an automaton based on the structure of
the defining formula.

We generalize results from [2, 17, 18] that build algorithms for properties of
terms or of graphs of bounded tree-width or clique-width that are of the form

3Xq, . X (X1, o, Xs) AR(IX, -+, | X)) where (X1, ..., X;) is an MS
formula and R is an s-ary arithmetic relation that can be checked in polynomial
time. However, we cannot allow such atomic formulas R(| X1/, ...,|Xs|) to occur

everywhere in formulas. We discuss this issue in Section 4.6.

Our automata that compute functions generalize the automata with cost
functions of [40] and the weighted automata of [21], Chap. 9. However, these
automata do not allow infinite signatures that we use for handling graphs, and
the results they prove for finite automata are not related with our constructions.

We do not investigate here the parsing problem: graphs are given by terms
over the signature of graph operations Fy, from which clique-with is defined.

To summarize, we provide logic based methods for constructing FPT and XP

3The corresponding constructed algorithms that are FPT (or XP) for clique-width are
immediately FPT (or XP) for tree-width.

dynamic programming graph algorithms by means of fly-automata on terms. The
system AUTOGRAPH, currently under development, implements the presented
constructions.

Alternative tools.

There are other methods intended to overcome the ”size problem” that is
unavoidable with finite automata [28, 38]. Kneis et al. [33, 36] use games in the
following way. From a graph G given with a tree-decomposition 7" and an MS
sentence ¢ to check, they build a model-checking game G(T,) that is actually
a tree. An alternating automaton running on this tree can decide if the graph G
satisfies . The game G(T, ¢) is of bounded size because equivalent subgames
are merged by taking into account the fact that MS formulas of bounded quan-
tifier height have a limited power of distinguishing structures. It depends on
G, and not only on ¢ and on a bound on its tree-width. This is similar to our
use of fly-automata where a subautomaton A | t of a "huge” automaton A is
computed for the input term ¢. (A precise comparison of the states of A | ¢
and these games would be interesting but is beyond the scope of the present
article.) This game approach extends to optimization problems such as comput-
ing MinCardX;.P(X) or more generally, those considered in [18]. It has been
implemented and works for several problems on graphs with about 200 vertices.
However, the correctness proof of the method and the programming task are by
far much more complex than those for our fly-automata.

Another proposal consists in using Datalog [27, 30]. However, it seems to be
nothing but a translation of automata on terms into monadic Datalog programs
together with some manual optimization. It is unclear whether and how the
”size problem” is avoided. This approach is discussed in detail in [36].

Summary of article: Section 1 reviews notation and definitions relative to
terms, graphs and computability notions. Section 2 reviews the definitions con-
cerning fly-automata. Section 3 gives the main algorithms to build fly-automata
by transforming or combining previously constructed automata. Section 4 de-
tails some applications to graphs. It gives also some direct constructions of
automata smaller than those obtained by the general construction based on
logic. Section 5 gives an overview of the software AUTOGRAPH and reports
some experiments. Section 6 is a conclusion. An appendix recalls definitions
concerning MS logic and establishes a technical lemma about terms that define
graphs.

Fly-automata and AUTOGRAPH have been presented in conferences; see
[13, 14, 15].

1 Definitions

We review all necessary definitions, mostly from [12], and we give some new
ones. Monadic second-order logic on graphs is reviewed in the appendix.

1.1 General notation

We denote by N the set of natural numbers, by N the set of positive ones,
by [n,m] the interval {i | n < 4 < m} and by [n] the interval [1,n]. We
denote by w[i] the i-th element of a sequence or the i-th letter of a word w. As
usual, logarithms are in base 2 and log(z) stands for max{1,log,(x)}. Countable
means countably infinite.

The cardinality of a set A is denoted by |A|. An encoding of a finite set
is larger than its cardinality. For example, a set of m integers in [n] can be
encoded in size O(m.log(n) + 1) by a word over a fixed finite alphabet. We
denote by || A the size of such an encoding.

We denote by A — B the difference of two sets A, B and by B¢ (the com-
plement of B in A) if B € A and A is clear from the context. We denote by
[A — B] the set of mappings (i.e., of total functions): A — B. Iff C € A
and f € [A — B], we denote by f | C the restriction of f to C and we will
consider that [C' — C] is a subset of [A — A] by identifying h : C' — C with
its extension h’ to A such that h'(a) := a if a € A — C. However, no such
identification is needed if we represent h by the set of pairs (a, h(a)) such that
a € C and h(a) # a, because in this case the set of pairs corresponding to k' is
exactly the same. This observation yields a way to implement h if C' is finite
and A is infinite.

If Ais any set P(A), Pr(A), Pn(A), P<n(A) denote respectively its set of
subsets, of finite subsets, of subsets of cardinality n and of subsets of cardinality
at most n, and w denotes the union of disjoint sets (B w C' is undefined if B
and C are not disjoint).

A multiset over a finite or countable set A is a mapping oz A — N u {w}
where a(a) is the number of occurrences of a € A in the multiset o. We denote
by & the empty multiset («(a) = 0 for all a) and by L the union of two multisets
(we have (o u f8)(a) = a(a) + B(a)). The cardinality of « is |a| := Bseaa(a)
and this gives a notion of finite multiset. If furthermore A is a commutative
monoid with an addition + and a zero 0, we define « as finite if ¥oc 4 _oyc(a) is
finite. Then we define Ya := ¥, 4_foya(a).a. We have £ = 0 and X(au) =
Ya + X3. Furthermore, Ya = 0 if « consists of countably many occurrences of
0. We denote respectively by M(A) and M f(A) the sets of multisets and of
finite multisets over A.

Let f € [A - B] and X € A where A is finite or countable. We denote by
[f(z) | # € X] the multiset 8 over B such that B(b) := |f~'(b) n X| and by
{f(z) | x € X}, or f(X) as usual, the corresponding set. Let for an example
A = {a,b,c,d}, B := {1,2,3}, f(a) := f(b) := f(¢) := 1, f(d) := 2 and
X := {a,b,d}. Then {f(x) | x € X} = {1,2},[f(z) | x € X] is the multiset
{1,1,2} and X[f(z) | z € X] = 4.

The set of finite words over an alphabet Z is denoted by Z* and the empty
word is €.

Terms and their syntactic trees

A signature F is a finite or countable set of function symbols, each being given
with a natural number called its arity: p(f) denotes the arity of the symbol f
and p(F') the maximal arity of a symbol of F, provided its symbols have bounded
arity. We denote by T'(F') the set of finite terms over F' and by Pos(t) the set
of positions of a term t. Each position is an occurrence of some symbol and
Pos¢(t) is the set of occurrences of f € F. Positions are defined as Dewey
words. For example, the positions of the term f(g(a,b), g(b,c)) are denoted
by the Dewey words ¢,1,11,12,2,21,22. For a term t = h(t1,t2,t3), we have
Pos(t) = {e} Uu1.Pos(t1) u2.Pos(t2) U 3.Pos(ts) where . denotes concatenation.
(If function symbols have arity at most 9, we can omit the concatenation marks,
as in the above example). We denote by Sig(t) the finite subsignature of F'
consisting of the symbols that have occurrences in t.

The syntactic tree of a term t is a rooted, labelled and ordered tree with set
of nodes in bijection with Pos(t); each node u is labelled by a symbol f and
has a sequence of p(f) sons; its root denoted by root; corresponds to the first
position relative to the linear writing of ¢, and the leaves to the occurrences of
the nullary symbols.

We denote by t/u the subterm of t issued from position u and by Pos(t)/u
the set of positions of ¢ below u or equal to it. In terms of Dewey words,
we have Pos(t)/u = u.Pos(t/u). Note that Pos(t)/u # Pos(t/u) unless u = &
corresponding to the root. If X is a set of positions of ¢, then X /u denotes
X n (Pos(t)/u), hence is the set of elements of X below or equal to u. The
height ht(t) of a term ¢ is 1 if ¢ is a nullary symbol and 1+max{ht(t1), ..., ht(t,)}
it = fty,....t).

Let H be a signature and h : H — F' be an arity preserving mapping, i.e., a
mapping such that p(h(f)) = p(f) for every f € H. For every t € T(H), we let
h(t) € T(F) be the term obtained from ¢ by replacing f by h(f) at each of its
occurrences. Such a mapping is called a relabelling.

We denote by |t| the number of positions of a term ¢t. In order to discuss
algorithms taking terms as input, we must define the size of ¢t. If F' is finite, we
can take |t| as its size. If F' is infinite, its symbols must be encoded by words of
variable length. We define the size [t| of ¢ as the sum of lengths of the words
that encode its symbols*. In both cases, we denote the size of ¢ by |[t|. We
have |Sig(t)] < |t| < [t]. We say that an algorithm takes time poly(|t||) if its
computation time is bounded by p(||¢|) for some polynomial p that we do not
specify.

A language is either a set of words or a set of terms.

F-algebras
Let F be a signature and D = (D, (fp)er) be an F-algebra. The set D is
its domain. We denote by valp the mapping: T(F) — D that yields the value

4If w, # € encodes a symbol z, then | f(g(a, b), g(b, ¢))|| = |w|+2.|wg|+|wa|+2.|wp| +|wel-
The length of a LISP list implementing a term ¢ is between |¢| and 3.[¢|. (We use LISP to
implement fly-automata, see Section 5.)

of a term. We let then Fl, be the signature F' w {w,0} such that w is binary
and O is nullary.

A distributive F-algebra is an F-algebra & = (E, wge, 0g, (fe) ser) such that
He is associative and commutative with neutral element Og, and the functions
fe satisfy the following distributivity properties:

fg(..., d He d/,) = fg(..., d,) He fg(..., d/,),
fe(..,0g,...) = Og.

We extend wi¢ to finite subsets of F by:

we(Aw B) = (mgA) we (wgB) and
we = Og,

and similarly for finite multisets. If A is infinite and g : A — F is a mapping
such that g(a) # Og for finitely many a € A, then wg[g(a) | a € X and
g(a) # 0g] is well-defined and will be denoted more shortly by we[g(a) | a € X].
The powerset algebra (of finite subsets) of an F-algebra D is®:

Ps(D) := (Ps(D), v, D, (fp,p)) fer)
fPf('D)(Al, ---aAr) = {fp(al, ...,aT) | aj € Al, ey Ay € AT}

We define also its multiset algebra (of finite multisets):

My (D) = <./\/lf(D), u, g, (fo(D))f€F> where

fmy (@, ..., o) is the multiset 3 such that 5(b) (the number of
occurrences in 8 of b € D) is the sum over all r-tuples (ay, ..., a,)
such that a1 € ay,...,a, € a, and b = fp(ay,...,a,) of the numbers
ai(ar) X ... x ap(a).

It is easy to check that P;(D) and M (D) are distributive F-algebras. If
t € T(F'), then its values in Py (D) and in M (D) are {valp(t)}.

1.2 Graphs and clique-width

Notation and definitions are as in [12, 16]. Some technical points are developped
in the appendix.

Graphs

All graphs are finite, loop-free and simple (without parallel edges). A graph
G is identified with the relational structure (Viz, edge) where edgg is a binary
relation representing the directed or undirected adjacency. If X < Vg, we
denote by G[X] the induced subgraph of G with vertex set X, i.e., G[X] :=
(X,edge n (X x X)). If E C edgg, then G[E] :={(Vg, E).

5Powerset algebras are called powerset magmas in [7].

If P is a property of graphs and X € Vi, then P[X] expresses that G[X]
satisfies P. A graph is stable if it has no edge and we denote this property, called
stability, by St. Hence, St[X] used in the introduction says that G[X] has no
edge.

In order to build graphs by means of graph operations, we use labels attached
to vertices. We let L be a fixed countable set of port labels. A p-graph (or graph
with ports) is a triple G = (Vz, edgq, m¢y where mg is a mapping: Vg — L.
So, mg(z) is the label of = and, if 7g(z) = a, we say that z is an a-port.
If X is a set of vertices, then mg(X) is the set of its port labels. The set
7(G) := (Vi) is the type of G. A p-graph G is identified with the relational
structure (Vi edge, (laba ¢)acr,y where lab, is a unary relation and lab, g is
the set of a-ports of G. Since we only consider simple graphs, two graphs or
p-graphs G and H are isomorphic if and only if the corresponding relational
structures are isomorphic. In this article, we will take port labels in L := N

We denote by G ~ G’ the fact that two p-graphs G' and G’ are isomorphic
and by G ~ G’ that they are isomorphic up to port labels.

Operations on p-graphs

We let F} consist of the following function symbols; they define operations
on the p-graphs of type included in the set of port labels C' := [k] that we also
define:

- the binary symbol @ denotes the union of two disjoint p-graphs
(ie., G® H := (Vg u Vi, edgs v edgn, (labsc U laby g)aec) with
Va n'Vy = &),

- the unary symbol relaby, denotes the relabelling that replaces in the
argument p-graph every port label a by h(a), where h is a mapping
from C to C defined as a subset® of C' x C, as explained in Section
1.1;

- the unary symbol m%b, for a # b, denotes the edge-addition that
adds an edge from every a-port = to every b-port y, unless there is
already an edge © — y because graphs are simple; this operation is
idempotent,

- the nullary symbol a, for a € C, denotes an isolated a-port, and
the nullary symbol @ denotes the empty graph.

We denote {a | a € C} by C. For constructing undirected graphs, we use
the operation add,, where a < b (the set C' is linearly ordered as it is of the
form [k]) as an abbreviation of (Eiayb o Wibya. For constructing undirected
graphs, we will use the signature F}' defined as Fj, where the operations mmb
are replaced by add, . Every operation of Fy, (resp. F}') is an operation of Fj
(resp. F}J3) if k < k' by our convention on mappings h in relab,. We let Fi,

SFor example, if k = 3, then relaby(1,2),(3,1); = relabp, where h(1) := 2,h(2) := 2 and
h(3) := 1. We denote also relab(4,p)y by relabs—.p. Each operation relabp can be expressed
as a composition of operations relab,_,;,. See Proposition 2.118 of [16] for details.

10

(resp. F) be the union of the signatures Fy (resp. F}'). Hence, Fy (resp. F}')
is the restriction of F, (resp. F%) to the operations and constants involving
labels in [k].

Let t € T(Fy). We say that a port label a occurs in t if either a, ma,b,
cmb@ or relaby, such that h(a) # a or h(b) = a # b has an occurrence in t. We
denote by p(t) the set of port labels that occur in ¢ and by max pu(t) its maximal
element. We also denote by 7 (t) the set of port labels 7(G(t)) and by max 7 (t)
its maximal element. Clearly, 7(t) € p(t).

Clique-width

Every term ¢ in T'(F}) u T(F}') denotes a p-graph G(t) that we now define
formally. We let Posg(t) be the set of occurrences in ¢ of the symbols from C.
For each u € Pos(t), we define a p-graph G(t)/u, whose vertex set is Pos(t)/u,
the set of leaves of ¢ below u that are not occurrences of @. The definition of
G(t)/u is by bottom-up induction on wu.

If w is an occurrence of &, then G(t)/u is the empty graph,

if u is an occurrence of a , then G(t)/u has the unique vertex u that
is an a-port,

if w is an occurrence of @ with sons u; and wg, then G(t)/u :=
G(t)/u1 @ G(t)/uz; note that G(t)/ur and G(t)/us are disjoint,

if u is an occurrence of relaby, with son uy, then G(t)/u := relaby(G(t)/u1),

if u is an occurrence of Wiaﬁb with son up, then G(t)/u := wavb(G t)/u1
adda,b)

)
t /ul)

if wis an occurrence of add, , with son uq, then G(t)/u :

Finally, G(t) := G(t)/root;. Its vertex set is thus Pos(t). Note the following
facts:

(1) up to port labels, G(t)/u is a subgraph of G(¢): a port label of
a vertex of G(t)/u can be modified by a relabelling occurring on the
path in ¢ from u to its root;

(2) if w and w are incomparable positions under the ancestor rela-
tion, then the graphs G(t)/u and G(t)/w are disjoint.

IfteT(Fy)u T(FY), X € Posy(t) and #' is the term obtained by replacing,
for each u € X, the symbol occurring there by @, then G(¢') is the induced
subgraph G(t)[Poso(t) — X] of G(¢).

The clique-width of a graph G, denoted by cwd(G), is the least integer k such
that G ~ G(t) for some term ¢ in T'(Fy) (in T(F}}) if G is undirected). A term ¢
in T(Fy) v T(F}) is optimal if k = cwd(G). Every graph G has clique-width at
most |Vg|. Two terms ¢ and ¢ are equivalent, denoted by t ~ t/, if G(t) ~ G(¢').

All definitions and results stated below for Fj, and F, apply to F}' and
FY. Let t € T(F}y). Each of its symbols can be encoded by a word of length

11

O(log(k)) for a and aﬁddayb and O(k.log(k)) for relaby,. Hence, its size [t|| is
O(k.log(k).|t]). Clearly, [V | < [t| < [t but [|#] is not bounded by a function
of |Vg(t)| because a graph can be denoted by arbitrary large terms, in particular
because Wiaﬁb is idempotent. To avoid this, we define a term t € T'(Fy,) as good
if, for some k, we have t € T(F), k < |V and [t] < (k+1)% Vg |+ 1. We
denote by Tgood(Fio) the set of good terms. In Proposition 35 of the appendix,
we give an algorithm that transforms a term ¢ € T'(F}) into an equivalent good
term in T'(Fy/) for some k' < k. Its proof constructs a kind of normal form that
justifies the bound (k + 1)%.|[Vg| + 1 in the definition. For example the term
relabs_1(add; 9(addy s(1®5@8))) is not good and can be replaced by the good
term relaba—1(addy 3(1 ® 2@ 3)). This preprocessing takes time poly(||¢]).

If ¢ is good, we have [t| = O(k.log(k).|t]) = O(k3.log(k).[Vi(|) where
k = max u(t). A computation time is this case bounded by a polynomial in ||t
if and only if it is by a polynomial in [Vi;(| + max pu(t).

A term t is irredundant if, for each of its subterms of the form a_dc)la,b(t’) (or
addg p(t')), there is in G(t') no edge from an a-port to a b-port (or between an a-
port and a b-port). This means that none of its operations mmb tries to add an
edge, say from x to y, when there exists already one. The construction of several
automata in Section 4 will be based on the assumption that the input terms are
irredundant. The corresponding preprocessing is considered in Proposition 35.

We do not investigate the parsing problem, that consists, for fixed k, in
finding a term in T'(F}) that denotes a given graph. See however Section 1.5.

1.3 Sets of positions of terms and sets of vertices

Let E be aset, X € F and u € E. Then [u € X] denotes the Boolean value 1
(i.e., True) if u € X and 0 otherwise. An s-tuple X = (X1, ..., X,) of subsets of
E can be described by the function X : E — {0,1}* such that, for v € E, X (u)
is the word [u € X1]...[u € X,]. If X is a partition of E (a typical case is when
it represents a vertex coloring with s colors of a graph G and E = Vi), then X
can be replaced by X : E — [s] such that)A((u) = ¢ if and only if ue X;. We
now consider in more detail the two cases where F is the set of positions of a
term and the set of vertices of a graph defined by a term.

Sets of positions of terms.

Let F be a signature and s be a positive integer. Our objective is to encode
a pair (t, X) such that t € T(F) and X € P(Pos(t))® by a term t *+ X € T(F®)
where F(*) is the new signature F' x {0, 1}* with arity mapping p((f, w)) := p(f).
We let pry : F(®) — F be the relabelling that deletes the second component of
a symbol (f,w). We denote it by pr if s need not be specified.

If t e T(F) and X € P(Pos(t))*, then the term ¢ * X € T(F()) is obtained
from ¢ by replacing, at each position u of ¢, the symbol f occurring there by
(f, X(u)) € F®). Tt is clear that t * X € T(F®)) and pry(t * X) = t; we define
v(t+X):=X. Every term in T(F()) is of the form ¢ * X and encodes a term ¢

)

in T'(F) and the s-tuple v(t * X) € P(Pos(t))*.

12

A property” P(X1,..., X,) of sets of positions of terms over a signature F
is thus characterized by the language Tp) := {t * X |tk P(X)} € T(F®).
It can also be considered as the property P of the terms in T'(F(*)) such that
t+ X = P if and only if ¢ = P(X). Conversely, every subset of T(F()) is
Tp(x) for some property P(X). A key fact about the relabelling pry is that
THY.P(Y) = Prs(TP(Y))-

More generally (because every property is a Boolean-valued function) a func-
tion a whose arguments are t € T'(F) and s-tuples X of positions of ¢, and whose
values are in a set D, corresponds to the function @ : T(F(*)) — D such that
alt*X):=alt,X).

In a situation where the tuples X are partitions of Pos(t), we can use X
instead of X, and the signature F x [s] denoted by F. (s) (because of the appli-

col

cations to coloring problems) instead of F(*) = F x {0, 1}°.

Sets of vertices.

A similar technique applies to sets of vertices of graphs defined by terms
in T(F,,). We first recall that the vertices are the occurrences of the nullary
symbols a. We define FO(OS) from F, by replacing each symbol a by the nullary
symbols® (a,w) for all w € {0,1}*. We define pr : F) - F. as the mapping
that deletes the sequences w from nullary symbols. It extends into a relabelling
pr: T(FD(OS)) — T(Fy). Atermt' in T(FD(OS)) defines the graph G(pr(t')) and the
s-tuple X € P(Vg(pr(r)))® such that X (u) = w if and only if u is an occurrence of
(a, w) for some a. The nullary symbol (a,w) defines an isolated a-port together
with the information about the components of X to which it belongs, hence
it does not define an (a,w)-port. The edge additions and relabellings do not
depend on the components w. They act in a term ¢ € T(FD(OS)) exactly as in the
term pr(t) € T(Fy).

As for sets of positions in terms, we use the notation ¢+ X (where t = pr(t')).
Hence, a property P(Xj,..., Xs) of sets of vertices of G(t) is characterized by

.....

considered as the property P of terms in T(FD(Oé)) such that ¢+ X = P if and
only if G(t) = P(X).

As for terms, this definition extends to functions on graphs taking sets of
vertices as auxiliary arguments. For example, let e(X7, X2) be the number of
undirected edges between sets X; and X if these sets are disjoint and 1, a
special symbol that means "undefined”, if X; and X5 are not disjoint. It can be
handled as a mapping @ : T(Fa®) = {1} UN, cf. Section 4.2.2.

For handling coloring problems, hence, partitions of vertex sets, we can also
use X instead of X, as for positions of terms (cf. [12], Section 7.3.3). Hence,

"X abbreviates (X1, ..., Xs) and P(X) stands for P(X1,..., Xs).
8We need not modify the operations cmayb and relaby, because they do not create vertices.

Hence, the notation FO(OS) is not an instance of the notation F(*) of the previous case where
F is an arbitrary signature and we want to encode sets of positions of terms in T'(F'). We do
not set a specific notation, the context will make things clear.

13

(s)
we can use F_ |,

for all i € [s].

where each unary symbol a is replaced by the symbols (a,)

Set terms and substitutions of variables.

We consider set variables X, ..., X denoting subsets of FE, the set of po-
sitions of a term t € T(F'). A set term over Xi,..., X, is a term S written
with them, the constant symbol @ for denoting the empty set and the opera-
tions M, U and ¢ (for complementation). Hence, @ denotes E. An example is
S()= (Xlqu)m(Xgqu,)C. N

To each set term S over X7, ..., X corresponds a mapping S : {0,1}* — {0, 1}
such that, for each u € E, [u e S(X)] = S(X (u)) where X = (X1, ..., X,). For
So as above, g&(wl...wg,) = (w1 v —~ws3) A —(wz v ws). The general definition is
clear from this example.

If now Y = (Y1, ..., Y,,) is defined from X = (Xi, ..., X;) by Y; := S;(X) for
set terms S, ..., Sy, over Xq, ..., Xs. Let X € P(Pos(t))*. Thent+Y = h(t+X)
where h is the relabelling h:F(*) — F(™) that replaces, in each symbol (f,w),
the word w € {0,1}® by the word Swl(w)gjn(w) e {0,1}™.

Let now a(Y1,...,Y,,) be a function on terms in T(F) with set arguments
Y1,...,Y,, and values in a set D. Let Si,..., S, be set terms over X, ..., X,
and B(X) := a(S1(X), ..., Sy (X)). Hence @ maps T'(F(™) into D and 5 maps
T(F®)into D. We have 3 = @oh where h:T(F(*)) — T(F(™)) is the relabelling
that encodes the tuple (Si,...,Sy,). For an example, we take s := 4, m :=
3, Sl = X1 \ Xg, SQ = @, Sg = @°. Then ﬂ(Xl,XQ,Xg,X4) defined as
(X1 U X§,2,2°) satisfies the equality 8 = @o h with h defined by:

h((f, z1x22324)) := (f, (21 v —x3)01), that is, for all z,y € {0,1}
and feF:

h((f,120y)) := h((f, 1z1ly)) := h((f,020y)) := (f,101) and
h((f,0xly)) := (f,001).

This shows that from an automaton that computes @, we get by composition
with the relabelling & an automaton having the same states that computes 3
(cf. Definition 4(5) in Section 2.1 below). This technique can also be used if
the terms S, ..., Sy, are just variables, say X, ..., X;, , hence for handling a
substitution of variables. We have stated these facts for an arbitrary signature
F. They hold with obvious adaptations for the signature Fi,. In this case, t €
T(Fy), E = Posy(t) = Va-

Induced subgraphs and relativization

Let a(Xy,- -+, Xs_1) be a function with (vertex) set arguments in graphs G
to be defined by terms. We define 5(X1, -+, Xs) as a(X1n Xg, -+, Xo1 n Xy)
computed in the induced subgraph G[X,]. We define h as the relabelling:
FO(OS) — FO(Osfl) such that, for every a € C and w € {0,1}*~!, we have h((a, w0)) :=
@, h((a,wl)) := (a,w) and h(f) := f for all other operations of F,. With these
hypotheses and notation, we have § = @oh and a corresponding transformation

14

of automata as in the case of set terms. This fact motivates the introduction of
the nullary symbol @ to denote the empty graph.

If « is a property P and s = 1, we obtain a property denoted by P[X]
called the relativization of P to Xj.

First-order variables

If P(X,Y,Z) is a property of subsets of a set F, we denote by P(X,y, Z)
the property P(X,{y}, Z) where y € E. Accordingly, 3y.P(X,y, Z) abbreviates
W.(P(X,Y,Z) A Sgl(Y)) where Sgl(Y) means that Y is singleton. If o is a
ternary function on P(FE), we let similarly a(X,y, Z) abbreviate a(X, {y}, Z).

1.4 Effectively given sets

A set D is effectively given if it is a decidable subset of Z* for some finite
alphabet Z and, furthermore, the list of its elements is computable if it is finite.
More precisely, such a set can be specified either by a list of words (if not too
long) or by a triple (Z, M, k) such that M is an algorithm that decides the
membership in D of a word in Z*, k = w if D is infinite and k € N, k > |w|
for every w in D if it is finite. From M and k, one can compute D whenever it
is finite”. Examples of effectively given sets are B := {False, True}, N¥, Pos(t)
(for a term t, it is a set of Dewey sequences, cf. Section 1.2). The set of finite
graphs up to isomorphism is effectively given (the proof is left to the reader).

We get immediately the notion of a computable mapping from an effectively
given set to another one. If D is effectively given, then so are D°, Py(D) and
M (D).

In many cases, an effectively given set D has a special element that we call a
zero, denoted by zerop. It can be a special symbol | standing for an undefined
value, it can be 0 if D = N, the empty set if D = P;(E) or the neutral element
Op if D is a distributive algebra. A mapping f : D' — D is finite if the set of
elements d of D’ such that f(d) # zerop is finite. Then, f can be identified with
the finite set {(d, f(d)) | f(d) # zerop}. If D' is also effectively given, the set
[D' — D]y of finite mappings: D' — D is effectively given.

We will consider terms over finite or countable signatures F' that satisfy the
following conditions:

(a) the set F is effectively given,

(b) the arity of a symbol can be computed in constant time,

(c) its symbols have bounded arity and p(F') denotes the maximal arity.

We will simply say that F' is an effectively given signature. To insure (b),
we can begin the word that encodes a symbol by its arity. It follows that
one can check in linear time whether a labelled tree is actually the syntactic
tree of a "well-formed” term in T'(F'). We will only use relabellings: F — F’

91n [16], Definition 2.8, we take for k the cardinality of D. This gives an equivalent notion
but in our applications, it is easier to bound the length of a word in D than to determine its
exact cardinality.

15

that are computable in linear time. Their extensions: T'(F) — T(F”') are also
computable in linear time by our definition of the size of a term (cf. Section
1.1).

An F-algebra D is effectively given if its signature and its domain are ef-
fectively given and its operations are computable. The mapping wvalp is then
computable.

1.5 Parameterization

We give definitions relative to parameterized complexity [19, 20, 26].

Let F be a signature, for which the notion of size of a term is fixed. A
function h : T(F) — N is P-bounded if there exists a constant a such that
h(t) < |t|* for every term ¢ in T'(F'). It is FPT-bounded if h(t) < f(Sig(t)).|¢]*
and XP-bounded if h(t) < f(Sig(t)).|t]|?¢59®) for some fixed functions f and
g and constant a. Since [t] < [t < [t] .£(Sig(t)) for some function ¢, [t]| can be
replaced by [t| in the last two cases.

A function « : T(F) — D is P-computable (resp. FPT-computable, XP-
computable) if it has an algorithm whose computation time is P-bounded (resp.
FPT-bounded, XP-bounded). We use Sig(t) as a parameter in the sense of
parameterized complexity. If F' is finite, these three notions are equivalent. If
« is a property, we say that it is, respectively, P-, FPT- or XP-decidable.

We will consider graph algorithms whose inputs are given by terms t over
Fy,. By constructing automata, we will obtain algorithms that are polynomial-
time, FPT or XP for Sig(t) as parameter. The size of the input is [¢||. If the
graph is given without any defining term ¢, we must construct such a term and
we get algorithms with same parameterized time complexity for the following
reasons.

First we observe that every graph with n vertices is defined by a good term
in T(F,,) where each vertex has a distinct label and no relabelling is made.
Such a term has size O(n?.log(n)) (cf. Section 1.2) and can be constructed in
polynomial time in n. Hence, if a function a on graphs whose input is a term
in T'(Fy) is P-computable, then it is also P-computable if the graph of interest
is given without any defining term.

The situation is more complicated for FPT- and XP-computability. The
parsing problem, i.e., the problem of deciding if a graph has clique-width at
most k is NP-complete where k part of the input [24]. However, finding an
optimal term is not necessary. There is an algorithm that computes, for every
directed or undirected graph G, a good term in T'(Fj,(cwd(c))) that defines this
graph without being necessarily optimal ([16], Proposition 6.8). This algorithm
takes time g(cwd(Q)).|Vg|® where g and h are fixed functions. It follows that an
FPT or XP graph algorithm taking as input a term in T'(F,) yields an equivalent
FPT or XP graph algorithm for clique-width as parameter that takes a graph
as input.

16

2 Fly-automata

2.1 Fly-automata: definitions

We review definitions from [12] and we extend them by equipping automata
with output functions.

Definitions 1: Fly-automata that recognize languages.

(a) Let F be an effectively given signature. A fly-automaton over F (in
short, an FA over F) is a 4-tuple A = (F,Q4,04, Acca) such that Q4 is
an effectively given set called the set of states, Acc is a decidable subset of
Q4 called the set of accepting states, (equivalently, Accqa = a~'(True) for
some computable mapping « : Q4 — {True, False}), and 6 4 is a computable
function such that, for each tuple (f,qi,...,qm) such that ¢i,...,¢m € Qu4,
feF and p(f) = m, 4(f,q1,...,qm) is a finite (enumerated) set of states.
The transitions are f[qi,...,qm] —.a ¢ if and only if ¢ € S4(f,q1,-..,qm). We
say that f[q1,...,qm] —. ¢ is a transition that yields gq.

Each state is a word over a finite alphabet Z hence has a size defined as the
length of that word. Each set d4(f,q1,...,qm) is ordered by some linear order
on Z*. We say that A is finite if I' and @ 4 are finite. If furthermore, Q 4, Accy
and its transitions are listed in tables, we call A a table-automaton.

Remark: An infinite FA A is specified by a finite tuple A of programs, or in
an abstract setting, of Turing machines, that decide membership in F',) 4 and
Acc 4 and compute § 4 and the arity function of F'. But since one cannot decide
if the function defined by a program or a Turing machine is total on its domain,
the set of such tuples A is not recursive. We could strengthen the definition
(and make it heavier) by requiring that each program of A is accompanied
with a proof that it is terminating. This requirement will hold for the FA we
will construct because their ”termination properties” will be straightforward to
prove. Furthermore, all transformations and combinations of fly-automata will
preserve these termination properties.

(b) A run of an FA A on a term ¢ € T(F') is a mapping r : Pos(t) — Qa
such that:

if u is an occurrence of a function symbol f € F and uy,...,u,)
is the sequence of its sons, then f[r(u1),...,7(uy(s))] —a r(u); if
p(f) =0, the condition reads f — 4 7(u).

Automata are bottom-up without e-transition. For state g, L(A4, q) is the set
of terms ¢ in T'(F') on which there is a run r of A such that r(root;) = ¢. Arunr

on t is accepting if r(root;) is accepting. The language recognized (or accepted
by A) is L(A) := |J{L(A,q) | ¢ € Acca} < T(F). A state ¢ is accessible if

17

L(A,q) # . We denote by Q4 | t the set of states that occur in the runs
on t and on its subterms, and by Q4 | L the union of the sets Q4 [t for ¢ in
LcT(F).

A sink is a state s such that, for every transition f[q1,...,q,5)] —u ¢, we
have ¢ = s if ¢; = s for some 4. If F' has at least one symbol of arity at least
2, an automaton has at most one sink. A state named Success (resp. Error)
will always be an accepting (resp. a nonaccepting) sink, but accepting (resp.
nonaccepting) states may be different from Success (resp. from Error).

Unless A is finite, we cannot decide if a state is accessible, hence we cannot
perform on FA the classical trimming operation that removes the inaccessible
states. This fact raises no problem as we will see next.

(c) Deterministic automata. An FA A is deterministic if all sets d4(f, q1,. ..,
4,(s)) have cardinality 1, hence, ”deterministic” means deterministic and com-
plete. A deterministic FA A has, on each term ¢, a unique run denoted by run 4
and g4 (t) := run 4 (root;). The mapping g4 is computable and the membership
in L(A) of a term ¢ is decidable.

Every FA A over F can be determinized as follows. For every term ¢t €
T(F), we denote by run¥ , the mapping: Pos(t) — Py(Qa) that associates
with every position u the finite set of states of the form r(root,,) for some
run 7 on the subterm t/u of t. If A is finite, then run¥ , = runp; where B
is its classical determinized automaton, denoted by det(A), with set of states
included in Pr(Q4). If A is infinite, we have the same equality where B is a
deterministic FA with set of states P¢(Q4) that we denote also by det(.A) (cf.
[12], Proposition 45(2)). In both cases, the run of det(.A) on a term is called the
determinized run of A on this term. The mapping run’ , is computable and
the membership in L(A) of a term in T'(F) is decidable because ¢t € L(.A) if and
only if the set run’ ,(root;) contains an accepting state. We define ndeg.a(t),
the nondeterminism degree of A on t, as the maximal cardinality of runit(u)
for w in Pos(t). We have ndega(t) < |Qa ! t|.

If A is deterministic, then det(A) is not identical to A because its accessible
states are singletons {¢} such that ¢ € Q 4. However, the determinized run of A
is isomorphic to the run det(.A) and the two automata recognize the same lan-
guages. It is not decidable whether an FA A given by a tuple A is deterministic.
However, when we construct an FA, we know whether it is deterministic.

Whether all states of an FA are accessible or not, does not affect the mem-
bership algorithm: the inaccessible states never appear in any run. There is no
need to remove them as for table-automata, in order to get small transition
tables. The emptiness of L(A) is semi-decidable (one can enumerate all terms
and, for each of them, check its membership in L(A)) but undecidable ([16];
Proposition 3.95).

Definition 2: Fly-automata that compute functions.

An FA with output is a 4-tuple A = (F,Q.,0.4, Out_4) as in Definition 1
except that the set Accy is replaced by a computable output function Out 4:

18

Q4 — D where D is effectively given. If A is deterministic, the function com-
puted by A is Comp(A) : T(F) — D such that Comp(A)(t) := Out a(qa(t)).
In the general case, the computed function is Comppnq(A) : T(F) — Ps(D)
such that Comppna(A)(t) = {Outa(q) | g € run’y ,(root;)}. The latter set is
equal to Comp(B)(t) where B is det(A) equipped with the output function
Outg : Py(Qa) — Py¢(D) such that Outp(a) := {Outa(q) | ¢ € a}. If Ais
deterministic, then Compyq(A)(t) := {Compa(t)}.

Examples 3: (a) The height ht(t) of a term ¢ is computable by a determin-
istic FA. More generally, if M is an effectively given F-algebra, then valaq is
computable by a deterministic FA over F' with set of states M, the identity as
output function and transitions f[my,...,m,p)] = fa(ma, ...,myep).

(b) Let F be an effectively given signature, r := p(F) and f € F. If t e T(F),
Posy(t) is the set of occurrences of f in t. The function Posy is computed by
the following deterministic FA Ay: its states are the finite sets of words over
[r] (denoting positions of terms in T(F)). The transitions are as follows, for

qi,--, qr € Pr([r]*) -

flai, - qs] = {e} v l.gp U ... U s.¢s,
a1, nas] > lqru...us'.qe if f/# f.

At each position u of t, runa, +(u) = Poss(t/u), hence Comp(Ay) = Posy
if we take the identity as output function.

Definitions 4: Subautomata; products and other transformations of au-
tomata .

(1) Subautomata. We say that a signature H is a subsignature of F', written
H < F, if every operation of H is an operation of F' with same arity. We say
that an FA B over H is a subautomaton of an FA A over F, which we denote
by B € A, if:

HcF,Qp < Qa,
5B(faqla"'7qp(f)) :6A(faqla"'7qp(f))gQB iffeHand

qis -5 dp(f) eQBa
and Accg = Accqg N Qp or Outg = Out4 | Qp .

If A is deterministic then B is so. If A recognizes a language, then L(B) =
L(A) nT(H). If it computes a function and is deterministic, then Comp(B) =
Comp(A) | T(H); in the general case, Compnq(B) = Comppq(A) | T(H). If
Ais an FA over F and H € F, then A | H := (H,Q,041m, Out 4) where
darm is the restriction of 04 to the tuples (f,q1,...,q,(s)) such that f e H, is a
subautomaton of A. Its set of states is Q4 (some states may not be accessible).

The Weak Recognizability Theorem ([16], Chapters 5 and 6 and [15]) states
that, for each MS sentence ¢ expressing a graph property and each integer k,
one can construct a deterministic finite automaton A, i over Fj, that recognizes

19

the set of terms t € T'(F})) such that G(t) = . In [12], Section 7.3.1 we prove
more: we construct a deterministic FA A, o, on F, that recognizes the terms
t € T(F) such that G(t) |= ¢. The automata A, j, are subautomata of A, .

(2) Products of fly-automata. Let Aj, ..., Ax be FA over a signature F, and g
be a computable mapping from @ 4, x ... x @ 4, to some effectively given domain
D. We define A := A; x4... x4 Ai, as the FA with set of states Qa, X ... x Q 4,,
transitions defined by:

SAf, @, To(p)) =
{(Pla s app(f)) | pi € 6./41(.]8’%[@]’ ceey qp(f)[i]) for each Z}
where g[] is the i-th component of a p(f)-tuple of states g,

and output function defined by:

Out 4((p1,---,px)) = g1, .-, Pk)-

Depending on g, A recognizes a language or defines a function.

(3) Output composition. Let A be an FA with output mapping: Q4 — D
and g be computable: D — D’. We let g o A be the automaton obtained from
A by replacing Out 4 by g o Out4. If A is deterministic, then Comp(g o A) =
g o Comp(A). In the general case, Compnq(g o A) = G o Comp,a(A) where

g(a) :={g(d) [d e a}.

(4) Image. Let h : T(H) — T(F) be a relabelling having a computable
inverse h~! such that h=!(f) is finite for each f € F. If L < T(H), then
h(L) := {h(t) | t € L}. If Ais an FA over H, we let h(A) be the automaton
over F' obtained from A by replacing each transition f[q1,---,q,s)] =4 ¢ by
h(f)la1, -, qp5)] — g It is an FA by Proposition 45 of [12]. We say that
h(A) is the image of A under h. It is not deterministic in general, even if A is.
We have h(L(A,q)) = L(h(A), q) for every state ¢ and, if A defines a language,
then h(L(A)) = L(h(A)) because h(.A) has the same accepting states as A. If A
computes a function, then Compyq(h(A))(t)= U{Compna(A)(t') | t' € A1 (t)}.

(5) Inverse image. Let h : T(H) — T(F) be a computable relabelling. If
K € T(F), then h"'(K) := {t e T(H) | h(t) € K}. If A is an FA over F, we
define h ™' (A) as the FA over H with transitions of the form f[q1, -+, qy5)] —
q such that A(f)[q1. -, qps)] =4 ¢ We call h='(A) the inverse image of
A under h ([12], Definition 17(h)); it is deterministic if A is so. We have
L(h71(A),q) = h™1(L(A,q)) for every state q. If A defines a language, then
L(h=Y(A)) = h=1(L(A)). If A computes a function a: T(F) — D, then h1(A)
defines o h : T(H) — D. In Section 1.3 we have noted that if «(Y1,...,Yy)
is a function on terms in T'(F'), Si,...,Sm are set terms over Xi,..., X and
B(X) := a(S1(X), ..., Sm(X)) (with X = (Xi,..., X)) then 3 = @o h where
h:T(F®) — T(F(™)) is the relabelling that encodes the tuple (S, ..., S,,). If
@ is computed by an FA A, then 3 is computed by h~1(A).

20

Example 5: The number of runs of a nondeterministic FA.

Let A be a nondeterministic FA over F' without output. For each ¢ € T'(F),
we define # Accrun(t) as the number of accepting runs of A on t. We will
construct a deterministic FA B that computes # 4ccrun. We define it from det(A)
in such a way that, for each term ¢, if qaee(a)(t) = {q1,...,qp}, then gs(t) =
{(g1,m1), ..., (gp, mp)} where m; is the number of runs of A that yield ¢; at
the root of t. It is convenient to consider such a state as the finite mapping
w:Qa — N such that u(g;) = m; and p(q) = 0 if ¢ ¢ {q1,...,¢p}. As output
function, we take Outp(p) := X[u(q) | ¢ € Acca]. Some typical transitions are
as follows, with states handled as finite mappings:

a — psuch that p(q) := if a — 4 gthen 1else 0, foreachqe Q 4,

flu1, p2] — posuch that p(q) := X[ui(q)-p2(g2) | flg1, 2] —a 4],
for each g € Q 4.

The summations are over multisets and do not give the infinite value w. If
A has nondeterminism degree d on a term ¢, then it has at most [t|¢ runs on
this term; the size of a state of B is thus O(d?.log(|t|)) where numbers of runs
are written in binary.

In this example, we can consider that a state ¢ of A at a position u is
enriched with an attribute that records information about all the runs of A
on the subterm issued from u that reach state ¢ at u. This information is the
number of such runs. We get a nondeterministic FA A’ whose states are pairs
(g,m) in Q4 x Ny. The FA B is then obtained from det(.A’). This observation
will be developped and formalized in Section 3.2.

2.2 Polynomial-time fly-automata

We now classify fly-automata according to their computation times.

Definitions 6: Polynomial-time fly-automata and related notions

A deterministic FA over a signature F', possibly with output, is a polynomial-
time FA (a P-FA) if its computation time on any term ¢t € T'(F) is P-bounded
(cf. Section 1.5). It is an FPT-FA or an XP-FA if its computation time is, respec-
tively, FPT-bounded or XP-bounded. It is a linear FPT-FA if the computation
time is bounded by f(Sig(t)).||t] (equivalently by f’'(Sig(t)).|t|) for some fixed
function f (or f’). The first three notions coincide if F' is finite. A determin-
istic FA' A over F is an XP-FA if and only if A | F’ is a P-FA for each finite
subsignature F’ of F.

Lemma 7: Let A be an FA over a signature F.

(1) If A is deterministic, it is a P-FA, an FPT-FA or an XP-FA if and only
if there are functions p, pa, p3 such that, in the run of A on any term ¢ € T'(F):

21

p1([t]) bounds the time for computing a transition,
p2(||t]]) bounds the size of a state,

p3([t]) bounds the time for checking if a state is accepting or for
computing the output'®,

and these functions are respectively polynomials, FPT-bounded or XP-bound-
ed.

(2) In the general case, det(A) is a P-FA, an FPT-FA or an XP-FA if and
only if there are functions pq, ..., p4 such that, in the determinized run of A on
any term t € T(F):

p1(/t]) bounds the time for computing the next transition!!,

p2([[t]) and ps([t]) are as in (1),

pa([t]) bounds the nondeterminism degree of A on ¢,

and these functions are respectively polynomials, FPT-bounded or XP-bound-
ed.

Proof: We prove (2) that yields (1).

”Only if”. If det(A) is a P-FA with bounding polynomial p (i.e., the com-
putation time is bounded by p(||¢])), then, one can take p; = p for i = 1,...,4.

”If”. Let us conversely assume that A has bounding polynomials p1, ..., ps.
Let t be a term of size |¢| = n. The states of det(A) on ¢ are sets of at most
pa(n) words of length at most pa(n), that we organize as trees with at most
pa(n) branches. Firing a transition of det(A) at an occurrence u in ¢ of a
binary symbol f with sons u; and usy uses the following operations:

for all states q; at u; and ¢2 at us, we compute in time bounded
by pa(n)?.p1(n) the states of §4(f,q1,q2) and we insert them in the
already constructed tree intended to encode the state of det(A) at
u. In this way we eliminate duplicates. Each insertion takes time
at most pa(n), hence the total time is bounded by p4(n)3.(p1(n)+

p2(n)).

In time bounded by p3(n).ps(n) we can check if the state at the root is
accepting, and in this case, we can compute the output. The case of symbols
of different arities is similar. As |t| < n, we can take the polynomial p(n) :=
n.(p1(n) + pa(n)).pa(n)?F)+1 4 pa(n).ps(n) to bound the global computation
time.

The proof yields the result for the two other types of bound. o

10By using Out 4; it bounds also the size of the output.
1I'We recall from Definition 1 that the sets 64(f,q1,- .., dp(y)) are linearly ordered; firing
the next transition includes recognizing that there is no next transition.

22

Remarks and examples 8: (1) For finding if a deterministic FA is a
P-FA, an FPT-FA or an XP-FA, the main value to examine is the maximal
size of a state, to be bounded by po, because in most cases, computing the
output or the state yielded by a transition is doable in polynomial time (with
a small constant exponent) in the size of the considered states. For an FA that
is not deterministic, we must also examine the degree of nondeterminism to be
bounded by py4.

(2) For every MS formula ¢(X) with X = (X1, ..., X) that expresses a graph
property, we can construct a linear FPT-FA A, over FY) that recognizes the
set of terms ¢ * X such that G(t) = ¢(X). The functions pi, p2, p3 of Lemma
7(1) depend only on the minimum k such that ¢ € T(F,ES)). The recognition
time is thus f(k).|t| and even f'(k).|Vg | if ¢ is a good term (cf. the end of
Section 1.2). The function f(k) may be a polynomial or a hyper-exponential
function. (Concrete cases are shown in Table 20 of [12].) For each k, A, has
a finite subautomaton Ay over F,ES) that recognizes the set {t* X € T(Flis)) |
G(t) = p(X)}. We have Aj, € Ay if k < k' ([12], Section 7.3.1).

(3) In our applications to graphs, p(F) = 2. Furthermore, the only non-
deterministic transitions are those from the nullary symbols. It follows that
the bound p4(n)3.(p1(n)+ p2(n)) in the proof of Lemma 7 can be replaced by
pa(n)?.(p1(n)+ p2(n)). As global time complexity, we get n.(p1(n)+pa(n)).ps(n)?
+p3(n).pa(n) and, in most cases, O(n.p1(n).pa(n)?).

(4) If t € T(Fy), its height, the number of vertices of G(t) (it is the number
of occurrences of the nullary symbols in C) and the finite sets of port labels 7 ()
and p(t) (cf. Section 1.2) can be computed by P-FA. The set of good terms is
thus P-FA recognizable.

The states of the P-FA Aj;; that computes the height are positive integers
and its transitions are such that ¢4,,(t) = ht(t). A term ¢ is uniform if and only
if any two leaves of its syntactic tree are at the same distance to the root. This
property is not MS expressible. It is equivalent to the condition that, for every
position u with sons v’ and v”, the subterms ¢/u’ and t/u” have same height. The
automaton Ap; can thus be modified into a P-FA Ay, that decides uniformity.
Its set of states is Ny u {Error} and its transitions are such that q4,,,(t) is
ht(t) if t is uniform and Error otherwise.

(5) The mapping SatX.P(X) that associates with a term t the set of sets
X < Pos(t) that satisfy P(X) is not P-FA computable, and even not XP-FA
computable in general for the obvious reason that its output is not always of
polynomial size (take P(X) always true)'?.

Proposition 9: Let F' be a signature. Every P-computable (resp. FPT-
computable or XP-computable) function o on T'(F) is computable by a P-FA
(resp. by an FPT-FA or an XP-FA).

Proof: Consider the deterministic FA A over F' with set of states T'(F)

12Unless SatX.P(X) is encoded in a particular compact way; here we take it as a straight
list of sets.

23

that associates with each position u of the input term ¢ the state ¢/u, i.e., the
subterm of t issued from u. The state at the root is ¢ itself, and is obtained in
linear time. We take « as output function. Then A is a P-FA (resp. an FPT-FA
or an XP-FA). o

Hence, our three notions of FA may look uninteresting. Actually, we will be
interested by giving effective constructions of P-FA, FPT-FA and XP-FA from
logical expressions of functions and properties (possibly not MS expressible)
that are computable or decidable in polynomial time on graphs of bounded
tree-width or clique-width. Our motivation is to obtain uniform, flexible and
implementable constructions.

All our existence proofs are effective. When we say that a function is P-FA
computable, we mean that it is computable by a P-FA that we have constructed
or that we know how to construct by an algorithm, and for which the polynomial
bound on the computation time can be proved. The same remark applies to
FPT-FA and XP-FA computability.

2.3 Transformations and compositions of automata

In view of building algorithms by combining previously constructed automata,
we define and analyze several operations on automata.

Proposition 10: Let Ay, ..., A, be P-FA that compute functions aq, ..., o :
T(F) — D. There exists a P-FA A that computes the function « : T(F) — D"
such that a(t) := (a1(t), ..., ar(t)). If Ay, ..., A, are FPT-FA or XP-FA, then A
is of same type.

Proof: The product automaton A = Ay x, ... x4 A, where g(q1,...,¢) 1=
(Outa,(q1),...,Out 4, (qr)) is a deterministic FA (cf. Definition 4(2)) that com-
putes a. The computation time of A on a term is the sum of the computation
times of Aj, ..., A, on this term. The claimed results follow.o

Next we consider operations defined in Definition 4 that transform single
automata.

Proposition 11: Let A be a P-FA that computes « : T (F) — D.

(1) If g is a P-computable function D — D', then, there is a P-FA over F'
that computes g o a.

(2) Let h : F' — F be a relabelling. There exists a P-FA over F’ that
computes the mapping ao h : T(F') — D.

The same implications hold for FPT-FA and XP-FA.

Proof: (1) The deterministic FA go.A defined from A (output composition)

by replacing Out4 by g o Out4 computes g o a. The size of an output is
polynomially bounded, hence, we get a P-FA.

24

(2) Immediate by the inverse image construction. Recall that h is com-
putable in linear time (cf. Section 1.4).
Each class P-FA, FPT-FA and XP-FA is preserved in both cases. o

Proposition 12: Let h : FF — F’ be a relabelling with a computable
inverse. Let A be a P-FA (resp. an FPT-FA or an XP-FA) that computes
a: T(F) — D. The fly-automaton det(h(A)) over F’ is a P-FA (resp. an FPT-
FA or an XP-FA) if and only if the nondeterminism degree of h(A) is P-bounded
(resp. FPT-bounded or XP-bounded) in the size of terms over F.

Proof: Immediate consequence of the definitions and Lemma 7. o

In the sufficient conditions, the bounds on ndegp(4)(t) can be replaced by
bounds on ‘QA i hil(t)‘, the number of states of A used on input terms ¢’ such
that h(t') = t, that are frequently easier to evaluate.

The following counter-example shows that unless P=NP, there is no alter-
native image construction that preserves the polynomial-time property.

Counter-example 13: There exist a finite signature F' and a P-FA de-
cidable property P(X) of terms in T'(F(M)) such that 3X.P(X) is not P-FA
decidable unless P=NP.

We give a sketch of proof that uses a reduction from SAT, the satisfiability
problem for propositional formulas. There exists a finite signature F' and a P-
decidable property P(X) of terms in T(F(1) such that each instance of SAT is
encoded by a term ¢t € T(F()) and each solution of this problem corresponds to
a set X of positions of ¢ that satisfies P(X). Hence P(X) is P-FA decidable by
Proposition 9. Since 3X.P(X) is not P-decidable unless P=NP, it is not P-FA
decidable, again by Proposition 9. o

Examples 14: P-FA for cardinality and identity.

(a) We consider the function Card that associates with a set X of positions
of a term ¢ € T(F) its cardinality |X|. Hence, the corresponding mapping
: T(F(l)) — N is computed by a P-FA Ag,q(x) whose states are the natural
numbers. The computation time is O(n.log(n)). It is O(n) if we admit that the
addition of two numbers can be done in constant time.

From Acqra(x) We can construct, for each integer p, a P-FA Acqrq(x)<p t0
check that X has at most p elements. However, the automata Acqrq(x)<p can
be handled as instanciations of a unique P-FA that takes as input a term ¢, a
set of positions X of this term and an integer p as auxiliary input.

(b) We consider the function Id that associates with a set X of positions
of a term this set itself. The construction of a FA denoted by Aqx) for the
function Id is straightforward (cf. Example 3(b)). Its states are sets of positions
of the input term, hence have size O(||t|?) (cf. Section 1.1). The automaton
Ara(x) is a P-FA. It may look trivial, but it will be useful for Corollary 18 or
when combined with others, by means of Proposition 15 (see Section 4.1.1 for
an example).

25

3 Fly-automata for logically defined properties
and functions

We now examine if and when the transformations of automata representing cer-
tain logical constructions preserve the classes P-FA, FPT-FA and XP-FA. From
Counter-example 13, we know that this is not the case for existential set quan-
tifications. We also examine in the same perspective the logic based functions
defined in the Introduction. We consider automata on general effectively given
signatures, that check properties or compute functions on terms. Applications
to graphs will be considered in Section 4.

Two functions (or properties) « and 3 are of same type if they have the same
number of set arguments.

Proposition 15: (1) If aq,...,a, are P-FA computable functions of same
type and g is a P-computable function (or relation) of appropriate type, the
function (or the property) g o (aq, ..., a,) is P-FA computable (or P-FA decid-
able).

(2) If aq, @z and P are P-FA computable functions of same type and P is
Boolean-valued, then the function if P then a; else as is P-FA computable.

(3) If P and @ are P-FA decidable properties of same type, then, so are —P,
Pv@Qand PAQ.

(4) The same three properties hold with FPT-FA and XP-FA.

Proof: Straightforward consequences of Propositions 10 and 11(1). o

We denote by a | P A ... A @ the function if P A ... A Q then a else L|:
it is the restriction of « to its arguments that satisfy P A ... A Q and could be
written (...(a | P) | ...) | @. (The symbol L stands for an undefined value).
We now consider substitutions of set terms and variables (cf. Section 1.3).

Proposition 16: Let a(Y7, ..., Y,) denote a P-FA function on terms in T'(F)
with set arguments Y7, ...,Y,,. Let S1,...,.5, be set terms over X, ..., Xs. The
function 8(Xy,...,Xs) := «(S1,...,Sm) is P-FA computable. The same holds
with FPT-FA and XP-FA.

Proof: We recall from Section 1.3 that 3 = @o h where h is a relabelling:
T(F®)) — T(F) that modifies only the Boolean part of each symbol. If A
is a P-FA that computes @, then B := h™1(A) is a P-FA by Proposition 11(2)
that computes 3. The same proof works for FPT-FA and XP-FA. o

In Proposition 15, we combine functions and properties of same type. With
the previous proposition, we can extend it to properties and functions that
are not of same type. For example if we need P(X1, X3) A Q(X1, X2, X3), we
redefine P(X1, Xs) into P'(X1, X2, X3) that is true if and only if P(X7, X5)
is, independently of X3. Proposition 16 shows how to transform an automaton
for P(Xl, XQ) into one for P/(Xl, XQ,Xg). Then P(Xl, XQ) AN Q(Xl, XQ,Xg) is
equivalent to P'(X1, X2, X3) A Q(X1, X2, X3) and we can apply Proposition 15.

26

3.1 First-order constructions

Let P be a property of terms ¢ taking also as argument an s-tuple of sets of
positions X = (X1, ..., X;). We recall that 3z, ..., 75.P(21, ..., z5) (also written
37.P(%)) abbreviates 3X.(P(X) A Sgl(X1) A ... A Sgl(X5)).

We define Satz.P(T)(t) as {(u1,...,us) € (Pos(t))® | P({u1},..., {us}) holds
in term ¢}. This set is in bijection with SatX.(P(X) A Sgl(X1) A...ASgl(X,))(t).
(The function SatX.(.) is defined in the introduction).

If a(X) is a function, we define SetValX.a(X)(t) as the set of values a(X)
different from | and SetValz.a(T)(t) as SetValX.(a(X) | Sgl(X1)A...ASgl(Xs))(t).

Theorem 17: (1) If P(X) is a P-FA decidable property, then the properties
3z.P(%) and VZ.P(T) are P-FA decidable.

(2) If a(X) is a P-FA computable function, then the function SetValZ.a(ZT)
is P-FA computable.

(3) The same implications hold for the classes FPT-FA and XP-FA.

Proof: (1) and (3). We let A be a deterministic FA over F() that decides
P(X). We let B; be the deterministic FA over F(*) for Sgl(X;) with states 0,1
and Errorg, such that:

TunBi,t*Y(u) =0if Xl/u =,
TunBi,t*Y(u) =1if |X1/U| =1 and

rung () = Errorg, if | X;/u| > 2.

There is, by Proposition 15, a deterministic FA that decides property P (X7,
ey Xs) ASGUX L) A oo A Sgl(Xs). Tts set of states is Q4 X @, X ... x @p, and its
set of accepting states is Accy x {1} x ... x {1}. We build a smaller deterministic
FA C with set of states {Errorc} u (Qa — {Errora}) x {0,1}°) and same set
of accepting states by merging into a unique error state Errorc all tuples of
QA x Qp, X ...x Qp,, one component of which is an error state.

The nondeterministic automaton pry(C) decides the property 3z.P(T). Its
states at a position w in a term ¢t € T(F) are Errorc or the tuples of the
form (runy ;5 (w), [X1/ul, ..., | Xs/ul) such that [Xi/uf,...,[Xs/ul < 1. Since
A is deterministic, there are at most 1 + (|¢| + 1)® different such states and
the nondeterminism degree of prs(C) is bounded by the polynomial p(n) =
1+ (n + 1)® that does not depend on Sig(t). Hence det(prs(C)) is a P-FA, an
FPT-FA or an XP-FA by Lemma 7 if A is so.

Property YZ.P(T) can be written —3Z.—P(Z). The results follow since, by
by Proposition 15(3,4) the classes of P-FA, FPT-FA and XP-FA that check
properties are closed under the transformation implementing negation.

(2) and (3). We apply the same construction to an FA A over F(®) that

computes «(X). As output function for C, we take:

OUtC((qv 1., 1)) = OUt.A(q)v for g € Q4,
Outc(p) := L, for all other states p of C.

27

By the definitions, Comp(det(prs(C))) is equal to SetValZ.a(T) hence, is P-
FA, or FPT-FA or XP-FA computable by Lemma 7, depending on A4 as above.

]

The construction of this proof is generic in that it applies to any deter-
ministic FA A over F(*), even that is not of type XP. The hypotheses on the
type, P, FPT or XP of A are only used to determine the type of the resulting
automaton.

Corollary 18: If P(X) is a P-FA decidable property, then the functions
Satz.P(Z) and #z.P(ZT) are P-FA computable. The same implication holds
with FPT-FA and XP-FA.

Proof: We observe that SatZ.P(T) = SetValZ.a(T) where (%) := if P(T)
then T else L. The result follows then from Propositions 15(2), Theorem 17
and a variant of Argx) of Example 14(b). However, we can give a direct

construction that modifies the one of the proof of Theorem 17. We replace each
B; by B; such that:

TunB;,t*g(u) =@ if X;/u=,
rung ,.xw) = {w} if X;/u = {u.w} (positions are Dewey words)
and

rung () = Errorg if | Xi/ul > 2.

Then, we make the product A x B} x ... x B into a deterministic automaton
C' with set of states {Errorc:} U ((Qa — {Errora}) x P<i([p(F)]*)?) similarly
as in the proof of Theorem 17. The deterministic automaton C”, defined as
det(pr(C’)) equipped with the output function such that for Z € Q¢ = Qpr(cry:

Outen(Z) := {(x1, ..., xs) | (¢, {x1}, ..., {xs}) € Z, Acca(q) = True}, (1)

defines SatZ.P(Z). The states of pr(C’) at a position u of ¢t are Errore: and
tuples (Tun g ¢s(x,,...,x,) (W), X1, ..., X;) such that [Xi[,...,[Xs[<1 and X; U ...
UX, € [r]*. Since A is deterministic, there are at most 1 + (|t| + 1)* different
such states at each position u. The nondeterminism degree of det(pr(C’)) is
bounded as in the proof of Theorem 17. The conclusions follow from Lemma 7.

Since the value #Z.P(T) on a term ¢ is computable in linear time from that
of SatT.P(T), we get the corresponding assertions (by using Proposition 11(1)).
However there is a more direct construction that does not use Satz.P(T) as an
intermediate step (see below (3.2,2.4)). Tt is related to (but does not coincide
with) counting the number of accepting runs of pr(C’), which we did in Example
5. o

Remarks 19: (1) From SetValZ.a(T), we can obtain in polynomial time
the maximum or the minimum value of a({z1},...,{zs}) if the range of a is

28

linearly ordered and two values can be compared in polynomial time. The
corresponding functions are thus P-FA (or FPT-FA, or XP-FA) computable.
Alternative constructions will be given below.

(2) The results of Theorem 17 and Corollary 18 remain valid if each condition
Sgl(X;) is replaced by Card(X;) = ¢; or Card(X;) < ¢; for fixed integers ¢;. In
particular, we can compute:

#X.(P(X) A Card(X1) < c1 A ... A Card(Xs) < cs).

The exponents in the bounding polynomial become larger, but they still
depend only on the numbers ci, ..., ¢s. (The polynomial p(n) =1+ (n+ 1)° in
the proof of Theorem 17(1) is replaced by 1 + (n + 1)¢**%¢). By Counter-
example 20 below, this fact does not hold with Card(X;) = ¢;: just take ¢; = 0.

]

In Theorem 17, we only handle first-order quantifications. Counter-example
13 has shown that we cannot replace them by arbitrary set quantifications. We
now give a counter-example that does not use any complexity hypothesis.

Counter-example 20: We sketch a proof that the image construction for
FA that corresponds to an existential set quantification does not preserve the
polynomial-time property.

We consider terms over F' = {f, g,a} where f is binary, g is unary and a is
nullary. For every position u of t € T(F'), we let s(u) := |Pos(t)/u|. For a set X
of positions of ¢, we define m(X) as the multiset of numbers [s(u) | v € X]. We
let P(X) mean the following:

(i) X # 7, its elements are first sons of occurrences of f and

(ii) the multiset m(X) contains exactly two occurrences of each of
its elements.

There is a P-FA A over F(!) that decides P(X). The state run 4 sx (u) is
Error if X/u contains a position different from wu that is not the first son of
an occurrence of f or if m(X/u) contains at least three occurrences of some
integer. Otherwise, runa tx (u) = (o, m(X/u)) with « := if v € X then 1
else 0. The accepting states are (0,m) where m is not empty and contains
exactly two occurrences of each of its elements.

The nondeterministic FA pri(A) decides 3X.P(X). The second components
of any state belonging to run;’)‘T(A),t(u) are the multisets m (X /u) that do not
contain three occurrences of a same integer and are associated with a set X of
positions containing only first sons of occurrences of f. The maximum cardi-
nality of the set runy) ,(u) is the nondeterminism degree of pr(.A) on t. It is
not polynomially bounded in || hence pr(.A) is not a P-FA.

For a comparison with Counter-example 13, note that we can easily build a
P-FA that decides 3X.P(X) without using pr(.A) as an intermediate step. o

29

3.2 Monadic Second-order constructions

Although Theorem 17 does not extend to arbitrary existential set quantifica-
tions, we can get some results for them and more generally, for the computa-
tion of multispectra and the derived functions such as #X.P(X), SpX.P(X),
MinCardX.P(X) defined in the introduction and some others. In particular, we
will consider SatX.P(X)(t) (the set of tuples X that satisfy P in ¢). This func-
tion generalizes SatZ.P(T)(t) considered in Section 3.1. We first present some
general constructions relative to FA. To simplify notation, we write definitions,
conditions and transitions of automata for operation symbols of arity 0 or 2.
The generalization to other arities is immediate.

3.2.1 Attributed automata

Let H be an effectively given signature and A be a deterministic FA over H
without output. Let D be an effectively given H-algebra. The mapping valp |
L(A) (a partial function: T(H) — D) is computed by the deterministic FA
A x D with set of states Q4 x D and output function g (cf. Definition 4(2) and
Example 3(a)) such that g(g,d) := if ¢ € Acc4 then d else | (with L ¢ D,
standing for ”undefined”).

We will denote this FA by A x D and call it an attributed fly-automaton. We
consider d in a state (g,d) as an attribute of ¢ (cf. Example 5). We will give a
slightly more general notion of attributed FA at the end of this section.

Assume that we also have a signature F' and a computable relabelling h :
H — F (cf. Definition 4(4); in particular h=1(f) is finite for each f) extended
into h : T(H) — T(F). We want to compute, for every term ¢t € T(F), the
following objects:

(a) y(t) := {wvalp(t') | t' € L(A)
(b) () := valp(t') | ¢ € L(A)

multiset over D).

nh7H(t)} € Pr(D),
N h7Ht)] € Mg(D) (£(t) is a finite

In the next case, D is a distributive H-algebra and we want to compute:

where w is applied to finite multisets over D, that is a commutative monoid
with neutral element 0p. We recall from Section 1.1 that a multiset over D
is finite if the total number of occurrences of its elements different from Op is
finite. Then, wa is well-defined if « is finite. We have wa := w3 where [is
obtained from « by removing all occurrences of Op and we evaluate w3 with
the rules wi(B8; u B2) = (wf) w (wf) and wF := Op.

We will prove that SpX.P(X) and SatX.P(X) are instances of Case (a),
MSpX.P(X) of Case (b) and #X.P(X) of Case (c) with A = Apx), H = F()
and h = pr: F®®) — F. Case (c) will also be useful for computing optimizing
functions (see Section (3.2.3)).

30

Proposition 21: Let F, H, h, A and D be as above. The functions v, £ and
0 are computable by deterministic FA’s.

Proof: In all cases we will use B := h(Ax D), the image of the deterministic
FA A x D under h, that is not deterministic in general. Cases (a) and (b) are
particular instances of Case (c), but we think useful to present Case (a) first.

Case (a) The function computed by det(B) is -y, up to the value L that is
not in D. More precisely v(t) = Compnq(B)(t) — {L}.

To prove this claim, we consider an element of v(¢) of the form wvalp(t')
for t' € L(A) n h=1(t). We have gaxp(t') = (g,valp(t')) for some g in Acca.
Then B has a run on ¢ = h(t') that yields state (g, valp(t’)) at the root. Since
valp(t') # L, we have valp(t') = g((¢q, valp(t'))) € Compnqa(B)(t)—{L}. For the
other direction, let d € Compyq(B)(t)—{L}. Then (g, d) € runj ,(root;) for some
accepting state q. There is t' € L(A,q) such that h(t') = t and d = valp(t').
Hence, d € v(t) and we have the claimed equality.

The set v(t) can thus be computed by running B deterministically (i.e., by
running det(B), cf. Section 2.1) or by using an enumeration algorithm that
outputs one by one its elements [22].

Remarks: (1) When defining det(B) or running B deterministically, we can
eliminate the pairs (Error,d) as the values d arising from the corresponding
runs will not contribute to () (but they can occur in alternative accepting
runs).

(2) The states of det(B) are finite subsets of Q4 x D (or rather (Qa —
{Error}) x D). It is convenient to identify such a set « with the mapping
@: Qua — Ps(D) such that @(q) := {d € D | (¢,d) € a}. This mapping is finite
in the sense of Section (1.4) if the empty set is the "zero element” of P;(D).
That is, @' (Py(D) — {}) is finite. It can also be identified with the finite set
of pairs (g, @(q)) such that a(q) # . In further constructions, the sets @(q) will
be aggregated into combinations of values by the associative and commutative
operation w of a distributive algebra with domain of D.

(3) For clarity, we spell out the transitions of det(B) by using the latter
presentation of its states. For a nullary symbol a € F, we have a —qe(5) B
where 3 is the set of pairs (¢, {bp | b€ h™*(a) n d;'(¢)}) such that h=1(a) N
61" (g) # &. For a binary symbol f € F, we have f[ay,as] = det(B) B where 3 is
the set of pairs of the form (g, {gp(@1(q1),a2(q2)) | g € h™'(f), 9la1, @2] =
q}) such that the second component of this pair is not empty. This formulation
shows that 8 can be computed with the following operations on P¢(D): set
union and the extensions to sets of the operations gp. o

Case (c) Here D =(D, ,0,(gp)gen) is a distributive H-algebra, and we
want to compute:

0(t) == wvalp(t') | ' € L(A) n h=1(#)].

First we extend the mapping valp to finite sets of terms T' < T(H) by:

31

valp(T) := wlvalp(t) | t € T].

Note that [valp(t) | t € T] is a finite multiset. The associativity and com-
mutativity of w and the distributivity of gp over w yield:

valp(T v T") = valp(T) w valp(T”) and (2)
valp(g(T,T")) = gp(valp(T),valp(T")). (3)

Recall that we only write such equalities for binary symbols g because their
extensions to other positive arities are obvious.

For g € Q 4, we define 6(t,q) := valp(L(A,q) n h™1(t)) and we get 0(t) =
w[0(t,q) | g € Acca]. The righthand side of this equality is well-defined because
(t,q) # 0 for finitely many states g, since h=1(t) is finite. The sets L(A,q) n
h=1(t) for q € Q 4 are pairwise disjoint because A is deterministic, which ensures
the equality.

We define as follows a deterministic FA C over F":

its states are functions o : Q4 — D such that o=1(D — {0}) is finite
(they can be seen as finite subsets of Q4 x (D — {0}));

its transitions are defined in such a way that g¢(t), the state reached
by C at the root of any term t € T'(F'), is the mapping

Ag € Q4.0(t,q) (that can be seen as the finite set of pairs
(¢,0(t,q)) € Qa x D such that 0(t,q) # 0);
its output function is Outc (o) := wfo(q) | ¢ € Acca].

We now define the transitions. For a nullary symbol a € F', we define:

a —¢ Mg € Qa.valp(h™t(a) n o' (q)).

It is well-defined because h~(a) n 6" (¢) is finite. For a binary symbol
f € F, we define:

{4[)0170’2] —c Aq. w [gp(01(q1),02(q2)) | h(g) = [, 9lar,q2] —a 4]

The operation w is applied to a finite multiset (having finitely many elements
different from 0) because h~1(f) is finite, 1(q1) # O for finitely many states
q1, similarly for o2(g2) and ¢gp(0,d) = gp(d,0) = 0.

Before proving the validity of this construction, we compare C with det(B).
The state qqet()(t) is a finite subset, say a, of Q4 x D (we use the same notation
as in the remark after Case (a)). The state g¢(t) can be seen as the finite subset
of @4 x D obtained by replacing the pairs (¢,d) of « having the same first
component ¢ by the single pair (¢, w13(q)) where 3(q) is a finite multiset whose
underlying set is @(g). The multiplicity of an element d of B(q) counts the
number of ways it can be produced with state g.

32

Claim: For every t € T(F'), we have qc(t) = A\g € Q 4.9(¢,q).

Proof: By induction on the structure of ¢.

If t = a € F, the equality follows from the definitions.

Let t = f(t1,t2) and g € Q4. By definition, we have 0(t, q) = valp(L(A, q) n
h=1(t)). For each term t' in L(A, ¢)nh~(t), there is a unique 5-tuple (g, t}, th, q1,
@2) such that ¢ = g(t},t}) and:

h(g) = f, ty € L(A,q1) n h=1(t1),
th € L(A,q2) n b (t2) and glg1, g2] =4 g- (5)

The existence and unicity of (g,t,t,) follows from the equality h(t') = t.
The pair (q1,¢2) such that ¢} € L(A,q1), th € L(A, ¢2) is unique because A is
deterministic. Then we have g[q1,¢2] —.4 ¢ because t € L(A, q).

Conversely, every such 5-tuple satisfying (5) yields a term t' = g(t},t,) €
L(A,q) nh=1(t). Tt follows that L(A, q) nh~1(t) is the disjoint union of the sets
9(T1(q1), T2(gz2)) for all triples (g, q1,2) such that h(g) = f and glq1,¢2] —a g

where, for every state p € Q 4, T1(p) := L(A,p)nh~1(t1) and Ta(p) := L(A,p)n
h=1(ts). For each such triple:

valp(9(T1(q1), Ta(g2))) = 9o (valp(Ti(qr)), valp(T2(g2))) (6)

by (3). Hence, by (2) and the definitions:

0(t,q) = wlgp(valp(Ti(q1)),valp(T2(q2))) | h(g) = f
and g[q1, 2] =4 4]
= wlgp(0(t1,q1),0(t2,q2)) | h(g) = f and g[q1,q2] —=aq]. (7)

This equality is true for all states ¢ € @ 4. By induction, we have 6(t1,p) =
ge(t1)(p) and 6(ta,p) = qc(t2)(p) for all p e Q4. Hence,

0(t,q) = wlgp(ge(ti)(q1), ge(t2)(q2)) | R(g) = f, gla1,q2] —.a q] (8)

and Aq € Q 4.9(t,q) = qc(t) by the definition of C, which completes the proof
of the claim.o

Hence, the deterministic FA C computes 6, as desired.
As noted above in Case (a), we can delete the Error state of A and define

C so that ge(t) = A\g € (Qa — {Error}).0(t, q).

Case (b) is a special case of (c¢): we replace the effectively given H-algebra
D by the distributive H-algebra £ := M (D) (cf. Section 2.1). For t' € T(H),
valg (') = {valp(t')}, as observed in Section 2.1. It follows that

£(t) := [valp(t') | t' € L(A) ~ h='(8)] = vale(L(A) A h=1(t)).

33

The states of C are finite mappings ¢ : Q4 — M (D) such that we have
qc(t) = A\g € Qa.[valp(t') | t' € L(A,q) n h7L(1)].

Case (a) is the instance of Case (c) where we take similarly £ := Py (D). o

Remark 22: More general attributed automata.

Let A be a deterministic FA over a signature H. We define H * Q4 as the
signature of p(f)-ary symbols (f, q1, ..., qy(s)) forall f € H and g1, ..., g,(5) € Q-
Let D be an effectively given H =@ 4-algebra. Extending the notation of Section
1.1, we define valp : T(H) — D by using the run of A on the considered term:

valp(f(t1, - tor)) = (F,q1, - Qpp))D(d1s ons dipp))
where ¢; = qa(t;) and d; = valp(t;) for i = 1,..., p(f).

Hence valp(t) is computed by a deterministic FA with set of states Q4 x D.
We denote this FA by A x D and call it also an attributed fly-automaton. (As
we do not exclude to extend in future articles the notion of an attributed FA,
we leave ”open” the definition).

As in Proposition 21, we let h be a computable relabelling: T(H) — T(F)
and we are interested in computing the functions v, £ and 6 defined as above
in terms of valp, now based on the H = Q 4-algebra D. For 0, we also assume
that D is distributive. The construction for Case (c) (that yields the two other
cases) works with the following adaptations: Equality (3) is replaced by:

valp(g(T,T")) =
(g, q1,92)p(Walp(TNL(A, q1)),valp(T'NnL(A, q2))) | ¢1,62 € Q4]

and, in Equalities (4),(6), (7) and (8), gp is replaced by (g,¢1,¢2)p.0

3.2.2 Sets of satisfying tuples and counting functions.

We now compute the functions SatX.P(X), #X.P(X), SpX.P(X), MSpX.P(X),
MinCardX;.P(X) and a few others by FA derived in uniform ways from a de-
terministic FA A that recognizes the language Tp) representing P. (This
language is defined Section 1.3).

As before, F is an effectively given signature, X = (X1, ..., X;) and P(X) is a
property of terms in T'(F') with s set arguments. We will use Proposition 21 with
H:=F® and h = pr : F®®) — F. We first consider the computation of the
function SatX.P(X). All other functions (they are called aggregate functions
in the context of databases [1]) can be computed from it, but we will give
direct constructions yielding XP algorithms whereas SatX.P(X) is not XP-
computable in general.

(3.2.2.1) Computation of SatX.P(X).

In order to apply Case (a) of Proposition 21, we define an F(*)-algebra D
such that:

34

valp(t+ X) = X for all t + X € T(F®). (9)

Each tuple X is an s-tuple of finite sets positions of ¢ (they are Dewey words).
We let r := p(F) and we take D := P¢([r]*)*. If X € D and i € [r], we define
i.X by replacing in X each word u € [r]* by i.u.

If (a,w) is a nullary symbol in F®), (a € F and w € {0,1}*) we define:

(a,w)p :=w where w:= {(X1,...,Xs)} such that:
X, :=if w[i] =1 then {¢} else .

If (f,w) is binary, and with w as above, we define:
(f,w)p(X,)Y)=wulXu2Y

where the union of sets is extended to tuples by: X UY := (X;UY, ..., XU
Y;). The validity of (9) is easy to check. We will denote by .45 the deterministic
FA det(B) obtained by Proposition 21 to compute (t) := {X | t* X € L(A)} =
SatX.P(X)(t).

For later use of D, we will denote it by Dp ;.

Remarks: (1) The definitions are similar if X is a partition of Pos(t) encoded
by a finite subset X of [r]* x [s] (cf. Section 1.3).

(2) To make things (hopefully) clear we work out the construction of 452t
Our description is based on the construction of Proposition 21 and the remark
about Case (a). Each state of det(B) is handled as a finite function o: Q4 —
P;(D) = Pr(Ps([r]*)®). We fix t € T'(F). For each state ¢ of A, we define o(q)
as the finite set of s-tuples X € P(Pos(t))® such that qa(t * X) = q. Since
A is deterministic, o(q) no(¢') = & if ¢ # ¢ and clearly, SatX.P(X)(t) =
Ugeace, @(q)- The transitions of det(B) are thus, for a nullary symbol a in F:

a— A€ Qu{wW| (a,w) =4 q}.

For definining in a compact way the transitions on binary symbols, we define
for disjoint sets E and E’, Z < P(E)*® and Z’' < P(E')*:

Z@Z ={(X,uV,....X,uY,) | XeZYeZ)}

This operation is nothing but the extension to sets of the union of tuples of
sets. Then, for a binary symbol f:

(f, w)[0’1,0'2] —)\q (S Q_A. U(fyw)[quqz]ﬁAqm(@ 1.0‘1((]1) @2.0‘2(q2),
Out g5t (0) 1= Uyence, 7(0)- o

(3.2.2.2) Computation of SpX.P(X).
We use again Case (a) of Proposition 21 with D such that:

35

valp(t + X) = (|X1|,...,|Xs|) for all t + X e T(F®)). (10)
We take D := N° and we define (with + denoting the addition of vectors):

(a,w)p = (w[1], ..., w[s]),
(f,w)p(Mm,p) :== (w[l],...,w[s]) + M+ D.

The verification that (10) is true is straightforward. We will denote by ASP
the deterministic FA det(B) obtained in this way to compute

(t) == {(|X1], - | Xs]) | t * X € L(A)} = SpX.P(X)(t).

(3.2.2.3) Computation of MSpX.P(X).

We use Case (b) of Proposition 21 with the same F()-algebra D as in the
previous case. We will denote by AMSP the obtained deterministic FA that
computes &(t) := [(| X1, ..., | Xs|) | t #* X € L(A)] = MSpX.P(X)(t).

We now detail the transitions of AMSP. A finite multiset over N* is a function
m : N® — N such that m~*(N;) is finite. We have the following transitions:

a—> A EQaNTeNif T€{0,1}° A (a,T) >4 ¢ then 1 else 0)
and

flor,02] = Ag € Qa.(AT € N°.E[o1(q1)(Y).02(q2)(Z) | w € {0, 1},
(fyw)[g1,92] >4 ¢ and T=w+7+Z]).

In the second transition, the multiset is indexed by the 5-tuples (w, g1, ¢2, 7, Z)
that satisty T=w+ 7 +Z A (f,w)[q1,92] =4 ¢.

Hence, g usp(t) is a finite mapping, say o, from Q4 to M ;(N®) such that,
for every state g of A, o(q) is the finite multiset of tuples (| X1],...,|Xs|) such
that g4(t * X) = q. Here, o(q) is a particular aggregation of the values in (q)
relative to the FA 452t

(3.2.2.4) Computation of #X.P(X).

We want to compute #X.P(X)(t) = 6(t) defined as the cardinality of the
set {X | t+X e L(A)}. As the multiset [X | ¢t *+ X € L(A)] has only one
occurrence of each element, 6(t) is its cardinality. In order to apply Case (c¢) of
Proposition 21, we define a distributive F(*)-algebra D := (N, +,0, (9p) e)
with (a,w)p := 1 and (f,w)p(m,p) := m.p. Clearly, valp(t * X) = 1 for all
t+ X € T(F®)). We will denote by A# the deterministic FA C obtained in this
way by Case (c¢) of Proposition 21.

_Theorem 23: Let A be a deterministic FA over F () that decides a property
P(X). The functions SatX.P(X), MSpX.P(X), SpX.P(X) and #X.P(X) are
computable by deterministic FA’s constructed from the tuple A that defines A.

Complexity issues will be discussed in Section (3.2.4).

36

3.2.3 Optimizing functions

We now consider how to compute certain values defined by optimizing functions
that minimize or maximize values defined from the set SatX.P(X)(t) without
using it as intermediate value for efficiency purposes. We will only discuss
minimizations because maximizations are fully similar.

(3.2.3.1) Minimizing cardinalities or other values.
In order to compute:

MinCardX;.P(X)(¢) :=
if t | 3X.P(X) then min{|X;| |t = 3Xs, ..., X,.P(X)} else m,
we use Case (c) of Proposition 21. We take D := (Nu{oo}, min, o0, (9p) jep))

with (a,w)p = w[1] and (f,w)p(m,p) i= w[l] + m + p. Clearly, min & — co.
We will denote by AMnCard the obtained deterministic FA.

More generally, in order to compute:

Min_aX.P(X)(t) :=
if t F 3X.P(X) then min{a(X) |t | P(X)} else w

where a(X) := ¢1.|X1| + ... + ¢5.|X;| for fixed integers ¢y, ...,cs in Z, we
take D := (Zu{oo}, min, 0, (¢p) je peor) With:
(a,w)p = cr.w[1] + ... + cs.w[s],
(fyw)p(m,p) == crw[l] + ... + cs.w[s] + m + p.

This construction works because (X1 w Y, ..., Xs wY;) = a(X) +a(Y). We
will denote by AM"-® the obtained deterministic FA.

(3.2.3.2) Minimal satisfying sets.

We describe, in a uniform way, several FA that extract particular ”minimal”
sets from SatX.P(X)(t). (The extension to SatX.P(X)(t) is easy.)

Let < be a partial order on Py([r]*). For each Z < P¢([r]*), we define
Min(Z) as the subset of Z cousisting of its minimal elements with respect to
<. We want to compute, for each term ¢ € T(F), the set Ming X.P(X)(t) :=
Min(SatX.P(X)(t)). Some interesting orders X <Y on Py([r]*) are:

(i) Xcv,

(if) X < Pref(Y), (Pref(Y) is the set of prefixes of the words in Y),
(iif) |X] < [Y],

(iv) | X| < Y| or, | X|= Y] and X <jer Y,
(V) X <iex Y,

where <, is a lexicographic order on Ps([r]*) defined below.

37

In the last two cases, < is a linear order so that Min(Z) is empty or singleton.
Our method is also applicable to the quasi-order min{|u| | v € X} < min{|u| |
u € Y}, but we will not discuss this extension.

The following notion will be useful in several cases.

Definition 24: Minimizing algebras.

Let D be an effectively given H-algebra whose domain D has a decidable
partial order < and whose functions gp are increasing, ie., ¢p(...,d,...) <
gp(....,d',...) if d < d'. For Z € Ps(D), the subset Min(Z) of Z consists of its
minimal elements with respect to <. Hence it is empty if and only if Z is empty;
it is computable if Z is finite.

We let Min(D) < P;(D) be the set of finite subsets Z of D such that
Min(Z) = Z. Tt is effectively given as the property Min(Z) = Z is decidable.
We define a distributive H-algebra:

Mln(D) = <M’L7’L(D), H, @’ (gD)geH> such that:
ZwZ :=Min(Z v Z'),
apmin(p) := {ap} if a is nullary,

gMzn(D)(Za Z/) = Min(gD(Zv Z/)) (: Mln({gD(da d/) | de Zv d e
Z'}) if g is binary.

It is clear that w is associative and commutative with neutral element .
We need only verify the distributivity property of gp over wi. We check that,
for Z,Z', Z" in Min(D):

Imin(o)(Z & Z', Z") = gptin(p)(Z, Z") & gain(p) (2", Z2"),

i.e., by the definitions:

Min(gp(Min(ZuZ2'), Z")) = Min(Min(gp(Z, Z"))uMin(gp(Z', Z"))).

The righthand side is Min(gp(Z, Z") v gp(Z’, Z")). Clearly:

gpMin(Z v Z2"),Z") € gp(Z,Z") v gp(Z',Z"),

but, since gp is increasing, for every d € gp(Z,Z") u gp(Z', Z"), there is
d' € gp(Min(Z u Z'), Z") such that d’ < d. It follows that:

Min(gp(Min(Z v Z2'), Z")) = Min(9p(Z, Z") v gp(Z', Z")).

Hence, Min(D) is a distributive H-algebra. We call it a minimizing H-
algebra.

In order to compute minimizing functions by FA, we will use the F(1)-
algebra D = Dpy := (Ps([r]*), (9D) gere) defined for computing SatX.P(X)
(cf. Section 3.2.2.1). For each partial order < on Py([r]*) such that the func-
tions (f,w)p with f of positive arity and w € {0, 1} are increasing, we make D
into a minimizing F(V-algebra. We recall the definition of (f,w)p for a binary
function f(X, X’) where X, X’ are finite subsets of [r]*):

38

(fiw)p(X, X :=wulXuvu2X/, (11)

where W := if w =1 then {¢} else .

Proposition 25: Let F' be an effectively given signature and P(X) be a
property of terms over it defined by a deterministic FA A over F(Y). Let < be
partial order making D ; into a minimizing algebra. The function Ming X.P(X)
is computable by a deterministic FA constructed from A (defined by a tuple of
programs A) and the algorithm that decides <.

Proof: We apply Case (c) of Proposition 21 to the distributive and mini-
mizing F'M-algebra Min(D) defined from <. o

We now examine the first four partial orders on Py([r]*) defined above. In
each case we use Equality (11) to verify that (f,w)p is increasing,.

(i) Case of <.

Each function (f,w)p is increasing, hence, we can compute for t € T'(F') the
set Minc X.P(X)(t) := Min(SatX.P(X)(¢)) of inclusion minimal sets X such
that ¢t = P(X).

(ii) Case of X <ane Y 1= X < Pref(Y).

Each function (f,w)p is increasing, in particular because X <up. ¥ =
i.X <gne ©.Y. Hence, Min(SatX.P(X)(t)) is the set of minimal sets X such
that ¢ = P(X) where minimality means that one cannot reduce a satisfying set
by removing a node u or replacing it by one of its ancestors in Pref ({u}). We
denote by Ming,.X.P(X) the corresponding function.

(iii) Case of X <cara Y = | X|<|Y]:

Equality (7) shows that |(f,w)p (X, X’)| = w+|X |+ |X'|. Hence, | X| < |Y]
implies |(f,w)p(X,X")| < |[(f,w)p(Y,X’)|. We can thus compute the set
Min(SatX.P(X)(t)) of sets X of minimal cardinality such that ¢t = P(X).
Their common cardinality is MinCardX.P(X)(t) that we already know how
to compute. We denote by Minq-¢X.P(X) the corresponding function.

(iv) Case of X <clex Y i | X| < |Y|or, | X| = Y] and X <je, Y-

We denote by <., the lexicographic order on [r]*. Hence, every finite subset
X of [r]* can be written in a unique way as a sequence of words Seq(X) :=
(w1, ...,wp) such that X = {wi,..,wp} and w1 <z ... <iex Wp; we have
Seq() = () not to be confused with (¢). The set Pr([r]*) can thus be ordered
lexicographically ; we denote this order by <., . Its least element is the empty
set. If X = {1,2,11,¢,222} and Y = {1,2,¢,111} then Seq(X) = (e, 1,11, 2,222)
and Seq(Y) = (e,1,111,2) so that X <je, Y. The order <., is lexicographic
with priority on cardinality. We will denote the corresponding function by
Mine, X.P(X). To verify that the functions (f,w)p are increasing for <z,
we have by (11):

39

Seq((f,w)p(X,Y)) = Seq(w)ol.Seq(X)o2.5eq(Y), (12)

where o denotes the concatenation of sequences and i.(w1, ..., wp) 1= (i.wy, ...,
t.wp). We have Seq(W) := if w = 0 then () else (¢). It is then clear that
X <ciex Y and X' <gjep Y imply (f, w)p (X, X') <clex (f,w)p(Y,Y7).

This technique does not apply to <., because the functions (f, w)p are not
increasing.

Ezample: Let F = {f,g,a,b,c} with a,b, ¢ nullary, g unary and f binary.
We let P(X) mean that, either each occurrence of a and no occurrence of b
or ¢ is below a position in X or, that each occurrence of b and no occurrence
of a or ¢ is below a position in X. One can construct terms showing that the
five minimization functions based on property P(X) and the orders (i)-(v) are
pairwise different.o

The constructions of this section establish the following theorem, where F
is an effectively given signature and X is an s-tuple of set variables.

Theorem 26: Let A be a deterministic FA over F(*) that decides a prop-
erty P(X) and o(X) be a linear function of the cardinalities of the sets forming
its argument. The functions MinCard X;.P(X), Min_aX.P(X), Minc X.P(X),
Ming,.X.P(X), Mineq-qX.P(X) and Ming., X.P(X) are computable by deter-

ministic FA constructed from « and the tuple A that defines A.

Proof: The corresponding constructions are done in Section (3.2.3.1) and
Proposition 25. o

This theorem does not exhaust the possibilities of building FA by general
methods, see Section 4.2.1.

3.2.4 Parameterized complexity

We now consider conditions ensuring that the automata constructed by Theo-
rems 23 and 26 are P-FA, FPT-FA or XP-FA. We recall that if the signature F'
is finite, the notions of P-FA, FPT-FA and XP-FA coincide. Lemma 7 shows the
importance of the nondeterminism degree for analyzing the computation time
of determinized automata.

Theorem 27: Let F,s, A, P(X) and « be as in Theorems 23 and 26.

(1) If A is a P-FA such that the mapping ndeg,,(4) is P-bounded, then,
the properties 3X.P(X) and VX.P(X) are P-FA decidable and the functions
MSpX.P(X), SpX.P(X), #X.P(X), MinCardX;.P(X), Min.aX.P(X) and
Minje, X.P(X) are P-FA computable.

(2) If 3: T(F®) — D is computed by a P-FA A such that ndegyr(4) is
P-bounded, then the function SetValX.3(X) is P-FA computable.

40

(3) These implications hold if we replace P- by FPT- or XP-.

Since we have ndeg,,(a)(t) < |Qa I pr'(t)| (cf. Proposition 12), we can
replace in these statements, the P-, FPT- or XP-boundings of ndeg,,.) by the
corresponding ones for the mapping t —— |Q.4 | pr—1(t)].

Proof: We use Lemma 7 for all proofs.

(1) As A is a P-FA, p1,po,ps are polynomials. Then, pr(A) satisfies the
hypotheses of Lemma 7(2). Hence, 3X.P(X) and YX.P(X) are checked by
det(pr(A)) that is a P-FA.

Next we consider the deterministic FA AMSP that computes MSpX.P(X)
(Section 3.2.2.3). At position u in a term t, the state of AMSP is the set {(q,m) |
m # J} where m is a multiset of s-tuples of integers that are cardinalities
of subsets of Pos(t). The cardinality of this set is bounded by ndeg,,(4)(t).
Each multiset m is a function: N*— N that maps [0,n]° to [0,2°"] where
n := |Pos(t)]. It is finite and can be encoded by a word of length at most
(n + 1)%.10g(2%™) = O(n**1). (The numbers m(Z) for 7 € [0,n]* are written in
binary). Hence the size of a state is O(ndeg,,(a)(t).[t]|**1).

We must also bound the time for computing the transitions and the output.

The time for computing a transition of A is bounded by p; (|¢]). Computing
the transition of AMSP at a nullary symbol of ¢ takes time at most 2%.p; ([¢]).
We now examine the computation of a transition f[o1,02] — o by using the
description made in Section (3.2.2.3). Given 01,09 we build o, defined as a
finite subset of @4 x [0,n]° x [25"]. The last component is a number written
in binary and a tuple in o is denoted by (q,Z,0(q)(T)). We omit the tuples
(¢,Z,0(q)(T)) such that o(q)(ZT) = 0. We initialize o with the empty set. There
are at most 2°.(ndeg,,(4)(t))?.(n + 1)* tuples of the form (w, g1, ¢2,7,%) such
that o1(q1)(¥) # 0,02(g2)(Z) # 0. For each of them, we compute ¢ such that
(fyw)lq1,92] =>4 ¢, T =w+7+%, and we add 01(q1)(7).02(g2)(Z) to the current
value of 0(¢)(F). The computation time is O((ndeg,,) (t))*.n*.(p1([t]) +n?)).
(The term n? represents the computation time for the arithmetic operations on
integers in [2°"].) For f of arity r, we get O((ndegp,a)(t))".n"5.(p1(|t])+n?)),
which is P-bounded.

Similarly, for computing the output, we need at most ndegp(4)(t) checks
that a state is accepting, with cost at most p3(|[t||) for each and the same num-
ber of unions of multisets defined as functions: [0,n]° — [0,2%"]. This gives
a computation time bounded by ndeg,,(a)(t).(ps([t]) + O(n**1)). Again, as
ndegy,r(4)(t) is P-bounded, the bound on the computation time of the output is
of same type.

We get the announced result for MSpX.P(X). For SpX.P(X), #X.P(X),

MinCardX;.P(X) and Min_aX.P(X), the functions used to compute transi-
tions are simpler than those for MSpX.P(X). The size of m in a state (q,m)
is smaller, and so are the computation times of the transitions and the output.
Hence, the above argument applies as well. For Min ., X.P(X) we observe that

a state is a pair (¢, m) where m is the empty set or a single (<je,-minimal) set

(s =1).

41

(2) We now consider SetValX.3(X) where 3 is computed by a deterministic
FA A over F(®). For each term t and X € P(Pos(t))* we have B(t * X) =
Out 4(qa(t + X)). Hence, SetValX.3(X)(t) is the set of values Out 4(q) for q €
Gdet(pr(A)) (t). The time taken to compute SetValX.8(X)(t) is that for computing
the set gaet(pr(a))(t) of cardinality at most ndegy,(4)(t) plus that for computing
the final output, bounded by ndeg,,4)(t).p3(||t]). Hence, we conclude as in the
cases considered in (1).

(3) The proofs are similar if p1, p2, p3 and ndeg,,(4) are FPT- or XP-bounded.

Remarks 28: (1) Even if F is finite, we cannot omit in Theorem 27 the
hypothesis that pr(A4) has a nondeterminism degree bounded in some way, be-
cause the validity of 3X. P(Y) can be determined in polynomial time from ei-
ther MSpX.P(X), SpX.P(X), #X.P(X) or MinCardX;.P(X). Otherwise, by
Counter-example 13, we would have P=NP.

(2) Theorem 27 does not apply to Minc X.P(X), Ming,.X.P(X) and

MinqrqgX.P(X) because their outputs may be of exponential size in the size
of the input tree.

3.3 Summary of results

The following table summarizes the preservation results of this section: we mean
by this that the classes of functions and properties that are P-FA, FPT-FA or
XP-FA computable (or decidable) are preserved under constructions of three
types: composition, first-order and monadic second-order constructions.

[m]

| Construction | Conditions and proofs
Composition | go (g, ..., a.), g is P-computable,
if P then ajelse ao, Si, ..., Sy are set terms;
—-P,PvQ, PArQ,al P, by Proposition 15
a(S1, ...y Sm)s (Sl,...,Sm). and Theorem 17.
FO const. 3z.P(T), VZ.P(T), SetValZ.«(T), | by Theorem 17, Corollary 18.
SatZ.P(T), #Z. P().
MS const. IX.P(X), VX.P(X), P or « is defined by
SetValX. a(), a P-FA A
#X.P(X), MSpX.P(X), such that ndegp,(4)

Minge, X.P(X) by Theorem 27.

SpX.P(X), MinCardX.P(X), is P-, FPT- or XP-bounded;

Table 1: Preservation results.

In the next section, we develop constructions specific to graphs.
4 Application to graphs

We wish to check 3X.P(X), YX.P(X) and to compute MSpX.P(X), SpX. P(X)
etc. in graphs G(t) defined by terms ¢ in T(F.). We recall that if P(X) is a

42

graph property with s sets of vertices as auxilliary arguments, then L PX) =

{t+X e T(FO(OS)) | G(t) = P(X)}. The following fundamental result is proved in
[12], Section 7.3.1 and in [15].

Theorem 29: If P(X) is MS expressible, then the language L p(X) IS T€C
ognized by a linear FPT-FA.

The proof uses an induction on the structure of the formula ¢ that ex-
presses P(X). Fly-automata are built for the atomic formulas'® X; € X, and
edg(X1, X32). The constructions of Proposition 15(3,4) and Theorem 27 are then
used for handling logical connectives. The inductive construction shows that for
each automaton built in this way, the number of states it reaches by runs on a
term ¢t depends only on ¢ and max p(t) (this number bounds the clique-width of
the graph G(t)). It follows from Theorem 27 that the functions MSpX.P(X),
SpX.P(X), #X.P(X), MinCardX;.P(X), Min_aX.P(X) and Min., X.P(X)
are computable by FPT-FA™,

Remark 30: To simplify the discussion, we let P be an MS expressible
graph property without set arguments. A consequence of Theorem 29 (called in
[16] the Weak Recognizability Theorem) is that for every integer k, the language
Lp n T(F}) is recognized by a finite automaton Apj. A quick proof of this
fact follows from the observation that the mapping ¢t — G(t) is a monadic
second-order transduction from T(Fy) to the class of graphs of clique-width at
most k and the Backwards Translation Theorem!®. However, this technique is
not applicable to Lp € T'(Fy,) because the signature Fi, is infinite so that the
mapping t — G(t) is not a monadic second-order transduction on T'(F,,). From
the practical view point, an FA Ap constructed from this observation would
be anyway very complicated and hard to implement. o

Graphs are always given by terms over F, or 2 (and not by adjacency lists).
The constructions of Section 3 that are done for FA over an arbitrary effectively
given signature have immediate applications to graphs via the signature Fi,.
One adaptation to make is due to the fact that the set arguments Xy, ..., X
denote sets of vertices of the defined graphs, hence sets of positions in the input
terms of the nullary symbols in C. For example, the algebra Dp, used in
Section (3.2.2.1) for computing SatX.P(X) must be modified into D’ such that,
for the binary symbol ®, ®p/(X,Y) := 1.X U 2.Y. Similarily, for computing
SpX.P(X), we take D” such that @p~ (7,) := m + p. For the unary symbols
f of Fy, (they are relaby, or m%b), we take fp/(X):=1.X and fp«(m) :=m.

3For formulas of counting monadic second-order logic, we also need FA for the atomic
formulas Cardp q(X1) expressing that X; has cardinality p modulo ¢, see the appendix.

14\We will also apply this theorem to properties P (Y) that are defined by FA without being
MS expressible.

151t says that if 7 is a monadic second-order transduction and L is a monadic second-order
definable class of structures, then 7~ !(L) is monadic second-order definable ([16], Theorem
7.10).

43

Although the FA for the atomic formulas X; € X», edg(X1, X2) and Card, ¢(X1)

suffice for proving Theorem 29, it is useful to ”precompute” FA for other fre-
quently used MS properties. Table 2 lists bounds the sizes of the states in their
runs on terms in T'(F}). We will define FA for some other basic properties and
functions. By combining these automata as explained in the previous section, we
can easily build automata for checking properties and computing functions ex-
pressed by formulas written with the basic ones and the logical connectives of MS
logic. The FA of Table 2 concern the following properties: Partition(X1, ..., Xs)
meaning that (X, ..., X,) is a partition of the vertex set, St that the considered
graph is stable, i.e., has no edge, Link(X7,X5) that it has at least one edge
from some vertex of X7 to some vertex of Xo, Path(X7, X2) that X; consists of
two vertices linked by an undirected path with vertices in X5 (X5 must contain
X1), Clique that the graph is a clique, Conn that it is connected, Cycle that
it has an undirected cycle and DirCycle that it has a directed cycle. Finally,
edg(Xy, X2) is equivalent to Link(X1, X2) A Sgl(X1) A Sgl(X3). The automata
are constructed in [12] and the bounds on sizes of states are clear by inspecting
the constructions.

| Property | Size of a state |
Sgl, X1 € Xo, X1 =, Cardy, 4(X1) | independent of k
Partition(Xq, ..., Xs) independent of k
edg(X1, Xs2) O(log(k))
St, Link(Xl,Xg) O(k)
Path(X1, X2), DirCycle, Clique O(k?)
Conn, Cycle O(log(k). min{n, k.20 1)

Table 2: Sizes of states for some automata running on terms in T'(Fy).

All automata are P-FA because computing the transitions involves only

polynomial-time calculations. For the automata checking Conn and Cycle,
the upper-bound O(log(k).n) (n is the number of vertices of the input graph)
shows that they are P-FA.

Properties Sgl, St, Conn, DirCycle, Cycle and Clique are relative to the

whole graph G. However, we need frequently their relativizations to sets of
vertices, for example St[X] meaning that the induced subgraph G[X] is stable
(cf. the examples in the Introduction). However, from an FA over Fy, that

decides St, one gets by taking an appropriate inverse image'® an FA over FO(O1)
that decides St[X].

We defined in Section 1.2 the notions of good and irredundant terms. Propo-

sition 35 in the appendix gives a polynomial-time algorithm that transforms a
term into an equivalent good and irredundant one. We can build a P-FA G7
that checks if the input term is good and irredundant. If A is a deterministic

16We recall from Section 1.3 that it is based on the relabelling h: FO(Ol) — Fy such that, for

every a € C we have h((a,0)) := &, h((a,1)) := a and h(f) := f for all other operations of
Fy. The same inverse image works for relativizing any property.

44

FA, then an FA constructed with Proposition 15 from the product of A and GZ
gives correct results on good irredundant terms and rejects the others. It has
the same type (P, FPT or XP) as A.

A last technical point concerns notation. When dealing with terms t over
effectively given signatures, we denote by #X.P(X) the mapping associating
with a term ¢ the number of tuples X of sets of positions that satisfy property
P in t. In the present section, we will denote in the same way the mapping
associating with a graph G the number of tuples of sets of vertices that satisfy
P, and also the mapping t — #X.P(X)(G(t)) for t € T(F,), that we wish to
compute by FA. The same convention will apply to MSpX.P(X), SpX.P(X)
etc.

4.1 Counting induced subgraphs

Let H be a connected undirected graph. An induced subgraph of an undirected
graph G is H-induced if it is isomorphic to H. We can use FA to count and
enumerate the H-induced subgraphs of a given graph. The property of a set
X < Vi that G[X] ~ H is MS expressible. Hence, automata that compute
the functions #X.G[X] ~ H and SatX.G[X] ~ H will give us the desired
algorithms. The property G[X] ~ H implies that X has fixed cardinality |Vy|.
Hence, we can apply Corollary 18 and the following remark. However, a direct
construction yields in general a smaller FA.

For example let H be the graph House, i.e., the graph K5 with vertex set [5]
minus the four edges 1—4,1—5,3—4and 2—5. We let X = (X1, Xo, X3, X4, X5)
and P(X) stand for:

edg(X1, X2) A edg(X1, X3) A edg(Xa, X3) A edg(Xa, Xa) A edg(Xa, X5)A

edg(Xs, X5) A—edg(X1, X4) n—edg(X1, X5)A—edg(Xs, X4) A —edg(Xz, X5).

A P-FA over F} with O(k?) states for edg(X,Y) is constructed in [12],
Section 5.1.2 and [16], Section 6.3. From Propositions 15 and 16, we get for P(X)

a P-FA that uses O(k?") states on terms in T(F;:(E’)), but a specific construction
yields a P-FA using O(k®) states on these terms. By Corollary 18, we get
FA that compute #X.P(X) and SatX.P(X). However, the number of House-
induced subgraphs of G(t) is only half of #X.P(X)(t) because House has one
automorphism apart from identity. Hence, the FA that computes #X.P(X)(t)

does some useless computations. We can avoid this drawback by replacing P(X)
by P(X) A X5 < X3 where < is the lexicographic order on positions of the input
term. An FA defining < is easy to build. The role of this condition is to select a
single 5-tuple for each House-induced graph. This linear order on Vg ;) depends
on the term ¢ and the definition by Dewey words of the vertices. However, the
value #X.P(X) is the same for all terms: it is order-invariant (cf. [8] on this
notion and [23] for its applications to model-checking).

The same improvement applies to the enumeration problem in order to avoid
duplications in the enumeration of House-induced subgraphs. But even without
using any linear order, Theorem 17 and Corollary 18 yield P-FA that compute
the functions #X.G[X] ~ H and SatX.G[X]| ~ H for each fixed graph H.

45

4.2 Edge counting and degree

For a p-graph G and X < Vg, we denote by Sx the mapping that gives, for each
label a the number of a-ports in X. If X = Vi, we denote it by 8. We denote
by A[k,n] the set of mappings § : [k] — [0,7n] such that ¥;cpx5(i) < n. This
set has cardinality ("',:k) (by an easy bijective proof), hence ©(n*) for fixed k.
We will bound it by (n + 1)*.

All automata in this section will be constructed so as to work correctly on
good irredundant terms'?. Irredundancy is useful for counting edges and we
recall that the size of a good term ¢ € T(F,ES)) is O(n.k?) where n is the number
of vertices of G(t). Hence, computation times can be bounded in function of n.

(4.2.1) Counting the edges of induced subgraphs

Given a directed graph G and X < Vg, we let e(X) be the number of edges
of G[X]. This value is not the cardinality of a set Y © Vi satisfying a property
P(X,Y) by an obvious cardinality argument. However, we will compute it by

an attributed FA B over F.\ (cf. Remark 22).
We let B := A x D where A has set of states [Ny — N]y (N5 is the set of

port labels), qg(t* X) = (Bx,e(X)) for every t+ X € T(Fo(ol)) where 8 and e are
relative to G(t). The transitions of A are as follows:

®[B, 5'] = Av e Ny.(B(x) + B'(2)),

ma,b[ﬁ] - 6;

relab,—p[B] — B’ where 8'(a) := 0, 5/(b) := B(a)+B(b) and ' (x) :=
B(x) if x ¢ {a, b},

(a,i) > Az € Ny .(if z = a then i else 0), where i € {0,1}.

We now define an (Fo(ol) x Q.)-algebra D (cf. Remark 22). Its domain is N
and its operations are:

®, 5,0 (mm) =m+m,

(
(addq,p, B)p(m) = (a)ﬂ(b),
(relaba_,b, B)p(m)
(ai)p

The definition of (a_dc)la,b, B)p is correct because we assume ¢ irredundant.
The value e(X) is the second component of the state reached by B := A x D
at the root of t * X € T(Fo(ol)). Let t+ X € T(Flgl)) denote a graph G(t) with n
vertices (and X € Vi(¢)). Then ¢p(t+X) = (Bx,e(X)) € Ak, z] x[0,z(z—1)] <
A[k,n] x [0,n(n—1)] where z := | X|. There are less than (n +1)**2 such states
and they have size O(k.log(n)). Transitions and outputs can be computed in

17Tt is not hard to see that a term ¢ in T(FO(OS)) is good (resp. irredundant) if and only if
prs(t) is.

46

time O(k.log?(n)) and so, B is a P-FA. (The log?(n) factor comes from the
multiplication of two positive integers in [0, n]).

An algorithm of [6]'® computes the function Min_eX.(|X| = p), i.e., the
minimum number of edges of an induced subgraph having p vertices. This is
called the SPARSE p-SUBGRAPH problem. This algorithm takes time n.p®®*) on
terms in T'(F}'). We can obtain it as an instance of our constructions by applying
Case (c) of Proposition 21 and Definition 24. The construction we will describe
works for directed graphs and, by an easy adaptation, for undirected ones.

We let Acgra—p be the deterministic FA over Fo(ol) that checks the equality
|X| = p. We let By, := (Acard=p X A) x D (we omit some easy formal details)
be the attributed FA that computes e(X) for sets X of cardinality at most
p. Let t = X € T(F"). The state g, (t + X) is (|X|,Bx,e(X)) if |X| < p
and (Error, fx,e(X)) otherwise. Clearly, (|X|,Bx,e(X)) € [0,p] x Alk,p] x
[0,p(p — 1)]. The states (Error, Bx,e(X)) can be merged into a unique Error
state. The accepting states are those of the form (p, 3, m) and the computed
value is m = e(X) if the given set X has cardinality p. The number of states
(| X, Bx,e(X)) is less than (p + 1)*+3, these states have size O(k.log(p)), the
computation time of a transition is O(k.log?(p)) and B, is a P-FA'.

For computing Min_eX.(|X| = p), we make D into a minimizing alge-
bra (cf. Definition 24) by using the natural order on N. Then, Op = 0,
m wm’ = min{m, m'}. We take then C := pri(B,) whose nondeterminism

degree is less than (p + 1)**3 on a term in T(F},). The construction of Case (c)

of Proposition 21 gives a deterministic FPT-FA C’, whose computation time is
O(|t] .k.log?(p).p?**6) = O(n.k>.log?(p).p?**9) on input t € T(Fy) where n is
the number of vertices of G(t).

More generally, we define e(X) := e(X1)+...+e(X,) and we want to compute
the function Min_eX.P(X) where P(X) is defined by a deterministic FA Ap
over F\¥). We extend the construction given above for Min_eX (| X]| = p): for
each i = 1,...;s, we let A; compute Sx, (it is an inverse image of A) and we
build an attributed FA Bp := (A; x ... x A; x Ap) x D such that ¢z, (t* X) =
(Bx,, -, Bx.,e(X)). Then, we make D into a minimizing algebra as above and

we obtain in the same way a deterministic FA that computes Min_eX.P(X).
Its type, FPT or XP, depends on Ap.

(4.2.2) Counting the edges between disjoint sets of vertices

We consider directed graphs. We generalize the notion of outdegree of a
vertex by defining (X1, X2) as the number of edges from X; to X5 if X; and
X, are disjoint sets of vertices and as L otherwise. Hence e({z}, Vg — {z}) is the
outdegree of z in G. To compute this function similarly as in (4.2.1), we define

18The algorithms of this article assume implicitly that the input terms are irredundant.
Since the preprocessing that makes a term irredundant takes linear time, the given upper
bounds to computation times are correct. This article also gives tight lower bounds to these
computation times under the exponential time hypothesis.

197ts parameter is the bound k on clique-width, but it is also a P-FA for k + p as parameter.

47

an attributed FA B := Ax D over FS(OQ). Its set of states is {(Error,0)} U ([Ny —
NJ3 x N) and we want that, for ¢ * (X1, X3) € T(FD):

qp(t = (X1, X2)) = (Error,0) if X1 n Xa # ¢, and
q(t = (X1, X2)) = ((Bx,, Bx,), e(X1, X2)) otherwise.

The transitions and the algebra D are easy to define. On a term in T(FISQ))
that denotes a graph with n vertices, each state belongs to the set {(Error,0)}u
(A[(k,n]? x [0, (n — 1)?]) of cardinality less than (n + 1)2**2 hence, has size
O(k.log(n)). Transitions and outputs can be computed in time O(k.log(n)?).
Hence, B is a P-FA.

(4.2.3) Mazimum directed cut

For a directed graph G, we want to compute the maximal number of edges
from a subset X of Vi to its complement, hence the maximal value of e(X, X¢).
This problem is considered in [35, 29]. The deterministic FA of Section (4.2.2),
adapted by Proposition 16 to check e(X, X°) uses less than (n + 1)2*+2 states
on a term in T(F,El)) denoting a graph G with n vertices. By the method used
in Section (4.2.1), we get an algorithm that computes the maximal value of
e(X,X¢), for X C Vg, in time O(n***%) for some constant a. The article [29]
gives an algorithm taking time O(n‘LT(G)*b) where r(G) is the bi-rankwidth of
the considered graph G. We recall that 7(G)/2 < cwd(G) < 2.27(%) [32]. Hence,
our method gives an algorithm of comparable time complexity.

4.3 Regularity of a graph

The regularity of an undirected graph is not MS expressible because the com-
plete bipartite graph K, ,, is regular if and only if n = m and we can apply the
arguments of Proposition 5.13 of [16] for proving this claim.

That a graph is not regular can be expressed by the formula 3X,Y.(P(X,Y) A
Sgl(X) A Sgl(Y)) where P(X,Y) is the property e(X,X¢) # e(Y,Y¢). By the
construction of (4.2.2) and Propositions 15 and 16 it is P-FA decidable. We can
apply Proposition 11(1) to get a P-FA for checking that a graph is not regular,
hence also a P-FA that checks regularity. However, we can construct directly a
simpler P-FA without using an intermediate nondeterministic automaton.

Let G be defined by an irredundant term ¢. The key fact is that if in G(¢)/u,
two a-ports z and y have degrees d and d’, then they have in G degrees d + p
and d + p for some p > 0. The reason is that if an operation at position
w above u adds an edge between x and some vertex z, then it also adds an
edge between y and z because the labels of x and y are the same in G(t)/w
and the irredundancy condition implies that there is no edge between y and
z. Hence, the degrees of x and y are increased by the same value above u. If
the degrees are different in G(t)/u, they are so in G. We recall that 7(G) is
the set of port labels of the vertices of G and that S (a) is the number of its

48

a-ports. The notation is as in Section 4.2. The set of states of Apeq is defined
as {Error} u ([N - (Nu {L1})]f x [Ny — N]f) and we want that, for every
term t € T'(Fy):

QAp., (t) = Error if two a-ports of G(t) have different degrees;

otherwise,

QAre, (1) = (8G<t), ﬂg(t)) where, for every a in 7(G(t)), da (1) (a) is the
common degree of all a-ports of G(t) and is L if there is no a-port.

In the run on a term ¢ € T(F)) such that G(t) has n vertices, less than
(n + 1)2* states occur and these states have size O(k.log(n)). In the transition
table (Table 3), (0,8) denotes a state that is not Error. Hence, if (0, 5) is
accessible, we have 0(a) = L if and ouly if 8(a) = 0. We denote respectively by
0 and L the constant mappings with values 0 and 1. We take max{Ll,n} =n
(for the transitions on @). It is clear that the transitions can be computed in
time O(k.log(n)). Hence, we have a P-FA Ag.,.

| Transitions | Conditions |
2 —(L,0)
a—(0,5) 0(z) == if = a then 0 else .,
B(x):=if x = a then 1 else 0.
add, u[(0, 8)] — (@', 8) If B(a) =0 or B(b) =0 then ¢’ := 0,
(a) + B(b),

else ¢'(a) :=
2'(b) := o(b) + Ba) and
0'(x) := () for = ¢ {a,b}.

relab,—u[(0, 8)] — (0, 5) B(a) = 0.
relaba—[(0, 8)] — Error B(a) # 0, B(b) # 0 and 0(a) # o(b).
relab,u[(0, 8)] — (0, 5) The previous cases do not apply,

d'(a) :==1,0'(b) := d(a),

B'(a):=0,5"(b) B(b) + B(a),

B'(x) := B(x),d'(x) := () for a ¢ {a,b}.
®[(01, 61), (02, B2)] — Error | d1(a) # 02(a) for some a such that

Bi(a) # 0 and Bo(a) #

®[(01,81), (02, B2)] — (0,B) | The previous case does not apply,

() := max{d (z), d2(z)} and

B(x) := B1(z) + P2(x) for all .

Table 3: Transitions of Ageg

To take an example, we can get by Theorem 27 an XP-FA that computes
MaxCardX.Reg[X]. It is of type XP because the nondeterminism degree of
pri(Apegrx)) is XP-bounded by (n + 1)?* (and not FPT-bounded as one can
check).

To specialize the problem, we let Regq[X] mean that G[X] is d-regular,
i.e., has all vertices of degree d. The article [6] gives an algorithm for checking

49

the existence of a d-regular induced subgraph. We can replace Agrey, by an
FA By with set of states {Error} u ([Ny — ([0,d + 1] u {L})]f x [Ny —
[0,d +1]];) and we get the algorithm of time complexity n.d°*) given in [6] to
check if the given graph with n vertices defined by a term in T'(F}) has a regular
induced subgraph of degree d. This article also gives algorithms for computing
MaxCardX.Regq[X], MinCardX.(Regq[X] A X # &) and #X.Regq[X], all of
time complexity n.d°*). We can derive them from Theorem 27, similarly as in
Section (4.2.1).

The property 3X.(Card<,(X) A Reg[X¢]) expresses that the considered
graph becomes regular if we remove at most p vertices. It is P-FA decidable
by Corollary 18 and the remark at the end of Section 3.1. The property that
the graph can be partioned into at most two regular subgraphs, expressed by
IX.(Reg[X] A Reg[X€]) is XP-FA computable, with time complexity O(n8++%)
for some constant a, similar to the case of maximum directed cut.

4.4 Partition problems
Many partition problems consist in finding an s-tuple X = (X7, ..., X,) satisfy-

ing Partition(X) A Py(X1) A... A Ps(X,) where Py, ..., P, are properties of sets of
vertices that can be MS expressible or, more generally, defined by FA. We may
also wish to count the number of such partitions, or to find one that minimizes
or maximizes the cardinality of X; or the number e(X) := e(X;)+...+e(X,) (cf.
Section (4.2)). We have discussed above the partitioning of a graph into two reg-
ular induced subgraphs. Vertex coloring problems are of this type with P;(X;)
being St[X;] and a fixed number s of allowed colors (cf. the introduction).

If the properties P;(X;) are MS expressible, then the partition problem P
expressed by the MS sentence 3X. Partition(X) A Py(X1) A... A Ps(Xy) is decided
by an FPT-FA by Theorem 29. If the properties P;(X;) are decided by FPT-FA
or XP-FA, then P is decided by an FPT-FA or XP-FA, provided the conditions of
Theorem 27 on the degree of nondeterminism are satisfied. Counter-example 13
shows that these conditions cannot be avoided. We now examine some coloring

problems.

(4.4.1) Coloring problems

We let Col(X) abbreviate the MS property Partition(X) A St[X1] A ... A
St[X,]. The function #X.Col(X) counts the number of s-colorings®’. It is thus
FPT-FA computable by Theorem 27. Another number of possible interest is,
if G is s-colorable, MinCardX;.3Xs, ..., X,.Col(X) which is 0 if G is (s — 1)-
colorable; otherwise, it indicates how close G is to be (s — 1)-colorable. By
Theorem 27, this number is computable by an FPT-FA.

There are other definitions of approximate s-colorings. One of them is the
notion of (s, d)-defective coloring, expressed by the MS sentence:

20This number is xg(s) where x¢ is the chromatic polynomial of G. So, for some graphs
with known chromatic polynomial, we could check the correctness of our computations.

50

3X.(Partition(X) A Deg<g[X1] A ... A Deg<a[Xs]).

For fixed s, we can consider the problem of determining the smallest d for
which this property holds. This number is at most [n/s] for a graph with n
vertices.

The property Deg<q[X] meaning that each vertex of X has degree at most d

in G[X] is decided by an FPT-FA whose number of states on a term in T(F,:(l))
is O(d?F). Tt follows that the existence of an (s, d)-defective coloring can be
checked, for a graph with n vertices, in time O(n.d**-¥*®) for some constant a.
By checking the existence of an (s, d)-defective coloring for successive values of d
starting from 1, one can find the minimal value of d in time O(n*s-*+3+1) hence
O(nss'Qrwd(G)’L““) which is similar to the time bound O(n4s'2md(c)+b) given in
[29] (because for every undirected graph G, we have cwd(G) < 27+ _ 1),

Another possibility is to define MD(X) := (MaxDeg[X1], ..., MaxDeg[X,])
and to compute the set: SetValX.MD(X) | Partition(X), from which the
existence of an (s,d)-defective coloring can easily be determined. Since the
automaton for MazDeg uses O(n?*) states for a graph with n vertices defined
by a term in T(F}), we get for MD(X) the bound O(n?*-*) and, by Lemma 7
and Theorem 27, the bound O(n***¥*¢) for some constant ¢, which is of same
order as by the first method.

(4.4.2) Graph partition problems with numerical constraints
Some partition problems consist in finding an s-tuple X satisfying:

Partition(X) A Py(X1) A ... A Ps(Xs) A R(|1Xq], ..., | X)),

where P, ..., P are properties of sets and R is a P-computable arithmetic
condition. An example is the notion of equitable s-coloring: P;(X;) is St[X;] for
each i and R(|X1], ..., | Xs|) expresses that any two numbers | X;| and |X| differ
by at most 1. The existence of an equitable 3-coloring is not trivial: it holds for
the cycles but not for the graphs K, ,, for large n. The existence of an equitable
s-coloring is W[1]-hard for the parameter defined as s plus the tree-width [25],
hence presumably not FPT for this parameter. Our constructions yield, for each
integer s, an FPT-FA for checking the existence of an equitable s-coloring for
clique-width as parameter. We obtain the answer from SpX.(Partition(X) A
St[X1] A ... A St[X,]) that is computable by an FPT-FA.

4.5 Connected components

The empty graph is defined as connected and a connected component as nonempty.
In [12], we have discussed in detail connectedness, denoted by Conn, and we
come back to this important graph property. We show that the general construc-
tions of Theorem 27 can be improved in some cases. We consider undirected
graphs.

(4.5.1) Number and sizes of connected components.

51

We denote by «(G) the number of connected components of a graph G, by
k(G, p) the number of those with p vertices, by MinComp(G) (resp. MaxzComp(G))
the minimum (resp. maximum) number of vertices of a connected component of
G. We will compute these values by FA.

The MS formula CC(X) defined as Conn[X] A X # & A —Link(X, X¢)
expresses that X is the vertex set of a connected component. Hence, we have:

w(G) = #X.CO(X)(G).
K(G,p) = MSpX.CC(X)(G)(p),
MinComp(G) = MinCardX.CC(X)(G) and
MaxComp(G) = MaxCardX.CC(X).

These values can be computed by FPT-FA constructed by using Propositions
15, 16 and Theorem 27 in the following way: we build a deterministic FA A to
decide Link(X, X¢); it uses at most 22 on terms in T(F,:(l)). The nondetermin-
ism degree of pry(A) on a term in T'(F}) is bounded by 22*. The corresponding

bound for the deterministic FA that decides Conn[X] is 22" ([12]). Then, we
can use the above mentioned results. However, we can construct a smaller FA
by modifying the FA Acony, of [12].

We can compute x(G) = #X.CC(X)(G) for G not empty as follows. The
formula —Link(X, X¢) expresses that X is the vertex set of a (possibly empty)
union of connected components. Hence, #X.—Link(X,X¢)(G) = 2%, The
construction of the FA computing #X.—Link(X, X°)(G) is clearly easier than
that for #X.CC(X)(G). This FA allows even to check if G is connected (this
property is equivalent to #X.—Link(X, X¢)(G) = 2). However, it is an FPT-
FA, whereas we noted above (cf. the comments about Table 2) that the automa-
ton Aconn that checks connectedness is a P-FA.

We can alternatively construct directly a deterministic FA A, to compute
k(G). Its states are sets of pairs (L, m) such that J # L € Py(N;) and m is an
integer. For every term ¢ in T'(F), we want that:

ga, (t) = {(L,m) | L and m is the number of connected components
of G(t) of type L}.

The transitions are easy to write; the output function is then defined by:
Outa, (q) := X[m | (L,m) € q].

If t e T(F}) and G(t) has n vertices, the size of a state on ¢ is O(n.log(k))
and so, A, is a P-FA.

We now explain why this automaton is better than the one constructed by
using Theorem 27. We recall from [12] that the states of Acons, are such that:

52

QAconn (t) = (L, L) with L € P¢(N4) if G(¢) is not connected and all
its connected components have type L, otherwise,

GAconn (1) s the set of types of the connected components of G(t).

The graph G(t) is connected if and only if the state at the root is {L} or
the empty set (because the empty graph is connected). (It is clear that Aconn
is a homomorphic image of A,.) Note that Acony, yields more information than
just the connectedness of G(t): it computes also the set of types of the con-
nected components. By Propositions 15 and 16, we get for property CC(X) an
automaton Acc(x) such that, for every ¢ and X:

QAccix) (t * X) is Error if there is an edge between X and its
complement;

otherwise, X is a union of connected components of G(t), and

QAce(x) (t* X) records the set of types, let us denote it by o(X), of
these connected components.

We simplify for clarity: the state ga.qx, (t * X) contains more than the set
o(X). This is why we write that ”it records ...” and not ”it is o(X)”. Then,
let Aj, be constructed from Acc(xy by Theorem 27 so as to compute #(G(t)).
For each term ¢, the state g4 (t) records, for each set a of sets of labels, the
number of sets X such that o(X) = a. This is more than needed: the state
qa, (t) records only information about the connected components of G(t), not
about all unions of connected components. If for example G(t) is the graph:

a—>b a—2> b—c c—d

then ga, () = {(ab,2), (bc, 1), (cd, 1)} whereas g, (t) records {(ab,3), (bc, 1),
(abe, 3), (cd, 1), (bed, 1), (abed, 6)}.

We have tested these automata on a connected graph G = add,,(H) of
clique-width 3 with 17 vertices such that H has 8 connected components, each
with 2 or 3 vertices. The quickest automaton on a term defining G is A, (taking
0.0012 s), followed by Aconn (0.0014 s) and Az x —Link(x,xe) (0.33 s) whereas
Ay x.cc(x) takes 39 s. It is interesting to note that using unbounded integers
in A, makes the computation quicker than by using Acony, although Aconn is
finite on terms in T'(F3).

(4.5.2) Counting components by their size.

We now compute MSpX.CC(X)(G). First we observe that for each integer p,
MSpX.CC(X)(G)(p) is computable from the values MSpX.—Link(X, X°)(G)(p')
for all p’ € [0,p]. (We made above a similar observation for the computation
of k(G) from #X.—Link(X, X)(Q)). However, as in this previous case, we can
construct a P-FA B derived from Agony, (and generalizing the previous A,) such
that, for every term t € T'(F2):

93

qn(t) is the set of triples (L, p, m) such that L is a nonempty set of
port labels, m, p € N; and m is the number of connected components
of G(t) of type L having p vertices.

If t € T(F)) and G(t) has n vertices, then n = ¥,
gs(t) can be described by a word of length O(n.log(k)) (even if numbers are
written in unary; the factor log(k) corresponds to the coding of labels). Here
are the transitions:

g — @a

a— {({a}, 1, 1)},

®lq,q'] — ¢" where ¢” is the set obtained by replacing iteratively in the
multiset ¢ L1 ¢" any pair {(L, p,m), (L,p, m')} by the unique triple (L, p, m+m'),

relabp[q] — ¢': for each set L, we let h(L) be the set obtained from L by
replacing a by h(a); then ¢ is the set of triples (L', p, m’) such that:

L’ := h(L) for some (L,p,m) € q,
m’ = E[[m | L/ = h(L) and (vaam) € qﬂ

m)Eq, (t)m.p- Hence,

Finally, we describe the transitions add, »[q] — ¢’. There are two cases.

Case 1: a or b is not present in ¢ or they are both present in ¢ but in a
unique triple of the form (L,p, 1) (with a,b € L). Then ¢’ := q.

Case 2: Case 1 does not apply. We let:

q" be the set of triples in ¢ that contain neither a nor b,
L= L[(L,p,m)eq—q"},
and ¢ = q" U {(L',p', 1)} where p’ := X[p.m | (L,p,m) € ¢ — ¢"].

We illustrate this case with an example:

q={({a},2,1),({a},1,4), ({a, b, c},4,1), ({b,d},3,2), ({c,d},3,4)},
q = {({a’ b,c, d}a 16, 1), ({Ca d}’ 3, 4)};

where 16 is obtained as 2.1 + 1.4 + 4.1 + 3.2 because the connected com-
ponents of types {a}, {a,b,c} and {b,d} get fused into a unique one (of type
{a,b,c,d}).

For computing MSpX.CC(X) we take the output function:

Outg(q) := p such that p(p) ;== X[m | (L,p,m) € ¢] for pe N,.

It is clear that the transitions and the output function can be computed in
time poly(|| ¢t ||). Hence, B is a P-FA. From MSpX.CC(X)(G) we get (G, p)
for each p.

(4.5.3) Tools for separation problems.

For dealing with separation problems, it is useful to compare the cardinality
of a set of vertices X to the number of connected components of G[X €] and to
the maximal cardinality of a connected component of G[X¢] that we denote by
MaxCardCC(G[X¢]). For this purpose, we define for a graph G:

o4

a(G)
B(G)

From a(@), one can determine, for given integers p and g, if there exists
a set X of cardinality at most p whose deletion splits the graph in at least ¢
connected components. Similarly, from 8(G) one can determine if there is such
a set X whose deletion splits the graph in connected components of size at most
q.

{(1X], r(G[X°]) | X =V},
{(|X|, MaxCardCC(G[X€])) | X < Vg}.
)

Let P(X,U) mean that U has one and only one vertex in each connected
component of G[X°] and Q(X,Y) mean that Y is the vertex set of a con-
nected component of G[X¢]. These properties are MS expressible. Then a(G) =
Sp(X,U).P(X,U)(G) and 3(G) can be computed from Sp(X,Y).Q(X,Y). Hence,
by Example 14(a), Propositions 15, 16 and Theorem 27, these two values are
computable by FPT-FA.

4.6 Undecidability and intractability facts.

Let R be an s-ary P-computable numerical predicate (integers being given in
binary notation). We denote by MS + R the extension of monadic second-order
logic with the atomic formulas R(|X1],...,|Xs|). We have seen such formulas in
Section (4.4.2). We wish to examine when the model-checking problem?® for
MS+ R is FPT or XP. Actually we will only consider the case of words over finite
alphabets, so the question reduces to whether it is P-decidable. We first discuss
undecidability results. There is no implication between (un)decidability results
on the one hand and complexity results on the other, but decidability and FPT
results for terms and for graphs of bounded clique-width are proved with the
same tools. Undecidability results are actually easier to prove and they help to
foresee the difficulties regarding complexity. We let Fq(n,m) mean n = m; this
binary relation defines a semi-linear set of pairs of integers. A unary predicate
R on N is identified with the corresponding set.

Proposition 31: One cannot decide if a given sentence of MS + Fq or
MS + R where R < N is not ultimately periodic is true in some word over a
fixed finite alphabet.

Proof: The case of MS + Eq is proved in Proposition 7.60 of [16] and the
other one in [4]. o

We now consider the model-checking problem.

Definition 32: Separating sets of integers.

Let R < N, p,n € N such that n > p. We say that R separates on [0,n] the
integers in [0, p] if, for every x,y € [0, p]:

21We are interested in the data-complezity of the model-checking problem for a language £.
For each fixed sentence in £ that describes some property of interest, we consider an algorithm
whose input is a word or a term that may describe a graph.

95

x # y if and only if there exists z € N such that + y + z € [0, n]
and,

either r+zeRandy+z2¢ Rory+z2€ Rand x + 2z ¢ R.

We say that an infinite set R < N is separating if there exists ng such that,
for every n > ng, R separates on [0,n] the integers in [0, [log(n)|]. The sets
{n!' | n e N}, {2 | n € N} and that of prime numbers are separating. An
ultimately periodic set of integers is not separating. The set D := {a,, | n € N}
such that ag = 1, a,41 = 23 is not ultimately periodic and not separating
either. (To see this, observe that D does not separate a, + 1 and a, + 2 on

[0, Ap+1 — 1])

If R separates on [0, n] the integers in [0, p], then, for any two disjoint subsets
X and Y of [n] of cardinality at most p we have:

|X| = |Y] if and only if:
[n] EVZ[ZNn(XVY)=g = (R(|X uZ|) < R([Y U Z]|))].

This means that the equipotence of small sets can be expressed in MS + R.

Proposition 33: Let R be a separating subset of N. If P = NP, the model-
checking problems for MS + Eq and MS + R are not P-decidable.

Proof: We first consider MS + Eq. We use a method similar to that of
Counter-example 13. Let P be an instance of SAT in conjunctive normal form
whose variables are x1,...,2,. Let w(P) be the word representing P with x;
written as x followed by the binary writing of ¢ (with no leading 0). For example,
if Pis (1 vaeav—x3)A(x3v —zgv—2s5) then w(P) is the word (z1val0v—z1l) A
(211 v —2100 v —z101) over the alphabet A := {(,), v, A, =, 2,0, 1}. The factors
of this word that belong to {0,1}* have length at most 1 + |log(n)|. The word
w(P) is represented by the logical structure S(P) := {[Jw(P)|], <, (laba)aca)
such that lab,(i) holds if and only if w(P)[i] = a.

We build a formula ¢(U) of MS + Egq, written with < and the unary re-
lations lab, for a € A, such that P as above has a solution if and only if
S(P) = 3U.p(U). The set U defines a set of occurrences of in the word w(P)
whose corresponding variable x; takes value True. We require that, either all
occurrences of a variable x; or none of them has value True. We express this
condition by a formula ¢1(U) of MS 4+ Eq where Eq(|X]|,|Y]) is only used for
sets X and Y of consecutive occurrences of 0 and 1’s. We sketch its construc-
tion. If ¢ < j, we denote by S(P)[i,j] the factor of S(P) from position i to
position j. We construct a formula 6(i, 5,4, j') expressing that S(P)[i, 7] is a
prefix of S(P)[#',7']: it says that for each u € [i,j] there is v’ € [i’,j] such
that v/ — ¢’ = v — ¢ and S(P)[u'] = S(P)[u]. This formula uses Eq. Then, by
using 6, we construct ¢;(U) saying that U is a set of occurrences of x and that,
for each w € U, if j is maximal such that S(P)[u,j] € {0, 1}*, if «’ is another

o6

occurrence of z such that S(P)[u,j] = S(P)[v/, '] where j' is maximal such
that S(P)[v/,j'] € z{0,1}*, then v’ € U.

The formula ¢(U) is taken of the form ¢1(U) A ¢2(U) where ¢o(U) is a
first-order formula expressing that the truth values of x1,...,z, defined by U
satisfying ¢ (U) form a solution of P.

If the sentence 3U.p(U) could be checked in words w € A* in time poly (Jw]),
then each instance P of SAT could be checked in time poly(|w(P)|) and we
would have P = NP.

We now translate ¢ (U) into a sentence @3(U) of MS+ R such that 3U.(¢3(U)
Ap2(U)) is equivalent to 3U.¢(U) in every structure S(P). It is clear that 2n <
|w(P)| as all variables 1, ..., x,, occur in P. Hence, any sequence of 0 and 1’s
in w(P) has length bounded by 1 + |log(n)| = [log(2n)| < |log(|w(P)|)]. The
equality tests Eq(]X],|Y]) used in ¢1(U) can be expressed in terms of R that
we assume separating. Hence, the satisfiability of P is expressed in S(P) by
a sentence of MS + R, and so, the model-checking problem for MS + R is not
P-solvable in polynomial time either. o

Questions 34: (1) Can one replace in the previous proposition ” R is sep-
arating” by "R is not ultimately periodic”? It might happen that the model-
checking problem for MS + R where R is very sparse (like the above set D) is
P-decidable on words.

(2) Is the model-checking problem for MS + E¢ NP-decidable on words?
The same question can be raised for MS + R where R is a semi-linear subset of
Nk k> 2.

5 Implementation

The system AUTOGRAPH?2, written in LISP (and presented in the conference
paper [14]) is intended for verifications of graph properties and computations of
functions on graphs. Its main parts are as follows.

(1) A library of basic fly-automata over Fy, for the following properties and
functions:

(1.1) XY, X =&, Sgl(X), Card<,(X), Card, ,(X), Partition(X)
and the function Card(X) (they concern arbitrary sets),

(1.2) edg(X,Y) and lab,(X), the atomic formulas of MS logic over p-
graphs,

(1.3) some MS expressible graph properties: stability, being a clique,
Link(X,Y), Path(X,Y), connectedness, existence of directed or undirected cy-
cles, degree at most d, etc. cf. Table 2 and [12] and finally,

(1.4) some graph properties and functions on graphs that are not MS
expressible: regularity, number of edges between two sets, maximum degree.

22See http://dept-info.labri.u-bordeaux.fr/ idurand /autograph

o7

(2) A library of procedures that transform or compose fly-automata: these
functions implement the constructions of Propositions 10, 15, 16 and Theorems
17 and 27.

AUTOGRAPH includes no parser for the formulas ¢ expressing properties
and functions. The translation of these formulas into LISP programs that call
the basic FA and the composition procedures is easily done by hand because,
since we have FA for many basic graph properties, the formulas that specify
the problems are not too complicated. Some automata (in particular for cycles,
regularity and other degree computations) are defined so as to work correctly on
irredundant terms. A preprocessing can verify whether a term is irredundant,
and transform it into an equivalent irredundant one if it is not?3. Whether input
terms are good or not may affect the computation time, but not the correctness
of the outputs.

By using FA, we could find?* that Petersen’s graph has 12960 4-colorings,
and verify the correctness of this result by using the chromatic polynomial. We
found also that McGee’s graph has 57024 acyclic 3-colorings in less than 30
minutes.

AUTOGRAPH has a method for enumerating (that is, for listing) the sets
SatX.P(X), by using an existing FA A for P(X). A specific enumeration pro-
gram is generated for each term (see [22]). Running it is also interesting for
accelerating the verification that 3X.P(X) is true, because the computation
can stop as soon as the existence of some satisfying tuple X is confirmed. More
precisely, the nondeterministic automaton pr(.A) is not run deterministically (cf.
Definition 1(c)), but its potentially accepting runs are constructed ”one by one”.
In this way, we could check in 2 seconds that McGee’s graph is acyclically 3-
colorable. This technique works for 3X.P(X) but not for VX.P(X), #X.P(X),
MSpX.P(X) etc... because these properties and functions are based on a com-
plete knowledge of SatX.P(X).

Using terms with shared subterms.

Equal subterms of a ”large” term ¢ can be fused and t can be replaced
by a directed acyclic graph (a dag). The construction from ¢ of a dag where
any two equal subterms are shared can be done in linear time by using the
minimization algorithm of deterministic acyclic finite automata presented in
[39]. Deterministic FA can run on such dags in a straightforward manner. We
have tested that on 4-colorable graphs defined recursively by Gp41 = t(Gn, Gy,)
where t € T(F7, {z,y}) (a term with two variables z and y denoting p-graphs;
G, has O(2™) vertices and edges). We checked that these graphs are 4-colorable
by using the term in T'(F7) and the dag resulting from the recursive definition.
The computation times are in Table 4.

23 Another type of preprocessing defined in [12] consists in annotating the given term.
24 AUTOGRAPH is written in Common Lisp and run on a MacBook Pro laptop with pro-
cessor 2.53 GHz Intel Core Duo and a 4 GB memory.

58

|n |term |dag |

6 11mn | 1 mn, 6s
9 88 mn | 1 mn, 32 s

20 4 mn
28 40 mn
30 2 h, 26 mn

Table 4: Computations using dags instead of terms.

This method raises a question: can one transform a term in T'(F}) into an
equivalent one in T'(F/) for some k' not much larger than k, whose associated
minimal dag (the one with a maximal sharing of subterms) has as few nodes as
possible?

6 Conclusion

We have given logic based methods for constructing FPT and XP graph algo-
rithms based on automata. Our constructions allow several types of optimiza-
tions: different logical expressions of a property can lead to different automata
having different observed computation times and direct constructions of FA are
sometimes better than the general ones resulting from Theorem 27. We also
have cases where FPT-FA are easier to implement and practically more efficient
than certain equivalent P-FA, and similarly for XP-FA and FPT-FA. Can one
identify general criteria for the possibility of such optimizations and improve-
ments?

Do we need optimal terms? Graphs are given by terms in T'(Fy,) and no a
priori bound on the clique-width must be given since all FA are over Fy,. As
an input graph is given by a term ¢ over Fj with k£ > cwd(G), one may ask
how important it is that k be close to cwd(G). Every graph with n vertices
is denoted by a term in T'(F,,) where each vertex has a distinct label and no
relabelling is made. Such a term, if it is irredundant, has size O(n?.log(n)).
Hence, as input to a P-FA, it yields a polynomial time computation. This is of
course not the case with an FPT- or XP-FA.

Edge quantifications. The logical representation of graphs used in this article
does not allow edge set quantifications in MS formulas. MS formulas written with
edge set quantifications (MSg formulas in short) are more expressive than MS
formulas, and more functions based on them, such as #X.¢(X), can be defined.
An easy way to allow edge set quantifications is to replace a graph G by its
incidence graph Inc(G) where edges are made into new vertices and adjacency
is replaced by incidence. The clique-width of Inc(G) is at most 2.twd(G) + 4
for G directed and at most twd(G) + 3 for G undirected, where twd(G) is the
tree-width of G ([5]). MS formulas over Inc(G) allow quantifications over sets
of edges of G and correspond to MSs formulas. Hence, the constructions of

99

FA presented in this article work for the expression of properties and functions
based on MS; formulas and tree-width (but not clique-width) as parameter [10].
Other constructions based on a variant of tree-width are discussed in [9].

Acknowledgements: We thank C. Paul and the referees for their many

useful comments.

References

[1]

2]

S. Abiteboul, R. Hull and V. Vianu, Foundations of databases. Addison-
Wesley, 1995.

S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-
decomposable graphs, J. Algorithms 12 (1991) 308-340.

Y. Asahiro, H. Eto, T. Ito and E. Miyano, Complexity of finding maximum
regular induced subgraphs with prescribed degree, Theoretical Computer
Science, 550 (2014) 21-35.

A. Bés, Expansions of MSO by cardinality relations, Logical Methods in
Computer Science 9 (4) (2013).

T. Bouvier, Graphes et décompositions, Doctoral dissertation, Bordeaux
University, December 2014.

H. Broersma, P. Golovach and V. Patel, Tight complexity bounds for FPT
subgraph problems parameterized by the clique-width, Theoretical Com-
puter Science 485 (2013) 69-84.

B. Courcelle, Equivalences and transformations of regular systems; appli-
cations to recursive program schemes and grammars, Theoretical Computer
Science 42 (1986) 1-122.

B. Courcelle, The monadic second-order logic of graphs X: Linear orders,
Theoretical Computer Science 160 (1996) 87-143.

B. Courcelle, On the model-checking of monadic second-order formulas
with edge set quantifications, Discrete Applied Mathematics 160 (2012)
866-887.

B. Courcelle, Fly-automata for checking monadic second-order properties
of graphs of bounded tree-width, Proceedings of LAGOS 2015, Beberibe,
Brazil, to appear in Electronic Notes in Discrete Mathematics, 2015.

B. Courcelle, Fly-automata for checking MSO- graphs properties, full ver-
sion of [10], 2015, http://arxiv.org/abs/1511.08605

B. Courcelle and I. Durand, Automata for the verification of monadic
second-order graph properties, J. Applied Logic 10 (2012) 368-409.

60

[13]

[14]

[15]

[18]

[19]
[20]

21]

22]

23]

B. Courcelle and I. Durand, Model-checking by infinite fly-automata, in
Proceedings of 5-th Conference on Algebraic Informatics (CAI), Lec. Notes
Comput. Sci. 8080 (2013) 211-22.

B. Courcelle and I. Durand, Infinite transducers on terms denoting graphs,
in Proceedings of the 6th European Lisp Symposium, Madrid, June 2013.

B. Courcelle and I. Durand, Fly-automata, model-checking and recogniz-
ability, Proceedings of the workshop Frontiers of Recognizability, Marseille,
2014, http://arxiv.org/abs/1409.5368

B. Courcelle and J. Engelfriet, Graph structure and monadic second-order
logic, a language theoretic approach, Volume 138 of Encyclopedia of math-
ematics and its application, Cambridge University Press, 2012.

B. Courcelle, J. Makowsky and U. Rotics, Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst. 33
(2000) 125-150.

B. Courcelle and M. Mosbah, Monadic second-order evaluations on tree-
decomposable graphs. Theor. Comput. Sci. 109 (1993) 49-82.

R. Downey and M. Fellows, Parameterized complexity, Springer, 1999.

R. Downey and M. Fellows, Fundamentals of parameterized complezity,
Springer, 2013.

M. Droste, W. Kuich and H. Vogler (Eds.), Handbook of weighted automata,
Springer, 2009.

I. Durand, Object enumeration, in Proc. of 5th Furopeal LISP Conference,
Zadar, Croatia, May 2012, pp. 43-57.

V. Engelmann, S. Kreutzer and S. Siebertz, First-order and monadic
second-order model-checking on ordered structures, in Proc. of the 27th
Symposium on Logic in Computer Science, Dubrovnik, Croatia, 2012, pp.
275-284.

M. Fellows, F. Rosamond, U. Rotics and S. Szeider, Clique-width is NP-
Complete. SIAM J. Discrete Math. 23 (2009) 909-939.

M. Fellows et al., On the complexity of some colorful problems parameter-
ized by treewidth, Inf. Comput. 209 (2011) 143-153.

J. Flum and M. Grohe, Parameterized complezity theory, Springer, 2006.

E. Foustoucos and L. Kalantzi, The monadic second-order logic evaluation
problem on finite colored trees: a database-theoretic approach, Fundam.
Inform. 92 (2009) 193-231.

61

28]

29]

[30]

[31]

M. Frick and M. Grohe, The complexity of first-order and monadic second-
order logic revisited, Ann. Pure Appl. Logic 130 (2004) 3-31.

R. Ganian, P. Hlineny and J. Obdrzéalek, A unified approach to polynomial
algorithms on graphs of bounded (bi-)rank-width, Eur. J. Comb. 34 (2013)
680-701.

G. Gottlob, R. Pichler and F. Wei, Monadic datalog over finite structures
of bounded treewidth. ACM Trans. Comput. Log. 12 (2010).

M. Grohe and S. Kreutzer, Methods for algorithmic meta-theorems, in
Model theoretic methods in finite combinatorics, Contemporary Mathemat-
ics, 588, American Mathematical Society, 2011.

M. Kanté and M. Rao, The rank-width of edge-coloured graphs, Theory of
Computing Systems 52 (2013) 599-644.

J. Kneis, A. Langer and P. Rossmanith, Courcelle’s theorem - a game-
theoretic approach. Discrete Optimization 8 (2011) 568-594.

S. Kreutzer, Algorithmic meta-theorems, in Finite and algorithmic model
theory, Cambridge University Press, 2011.

M. Lampis, G. Kaouri and V. Mitsou, On the algorithmic effectiveness of
digraph decompositions and complexity measures, Discrete Optimization 8
(2011) 129-138.

A. Langer, F. Reidl, P. Rossmanith and S. Sikdar, Practical algorithms
for MSO model-checking on tree-decomposable graphs, Computer Science
Review 13-14 (2014) 39-74.

M.Rao, MSOL partitioning problems on graphs of bounded treewidth and
clique-width, Theor. Comput. Sci. 377 (2007) 260-267.

K. Reinhardt, The complexity of translating logic to finite automata, in Au-
tomata, logics, and infinite games: A guide to current research, E. Graedel
et al. eds., Lecture Notes in Computer Science 2500 (2002) 231-238.

D. Revuz, Minimisation of acyclic deterministic automata, Theoret. Com-
put. Sci. 92 (1992) 181-189.

H. Seidl, Finite tree automata with cost functions, Theoret. Comput. Sci.
126 (1994) 113-142.

M. Veanes, N. Bjorner, Symbolic automata: the toolkit, in Proceedings of
TACAS 2012, Lec. Notes Comput. Sci. 7214 (2012) 472-477.

62

Appendix

Monadic second-order logic

Representing graphs by logical structures.

We define a simple graph G as the relational structure (Vg, edgg) with do-
main Vi and a binary relation edgg such that (x,y) € edge if and only if
there is an edge from x to y (or between x and y if G is undirected). A p-
graph G whose type 7(G) is included in N, is identified with the structure
(Va,edga, (labg ¢)aen,) where lab, ¢ is the set of a-ports of G. Since only
finitely many sets lab, ¢ are not empty, this structure can be encoded by a
finite word over a fixed finite alphabet. We only consider properties of (and
functions on) graphs rather than of (and on) p-graphs, but the formal setting
allows that. By considering a graph as a relational structure, we have a well-
defined notion of logically expressible graph property. However, in the present
article, we do not use this relational structure: we handle graphs through terms
in T(Fy) (Fy is the signature of clique-width operations defined in Section
(1.2)) and we construct automata over F, from MS formulas.

Monadic second-order formulas

The basic syntax of monadic second-order formulas (MS formulas in short)
uses set variables X1, ..., X,, ... but no first-order variables. Formulas are written
without universal quantifications and they can use set terms (cf. Section 1.3).
These constraints yield no loss of generality (see, e.g., Chapter 5 of [16]).

To express properties of p-graphs we use the atomic formulas X; < Xj,
X, = , Sgl(X;) (meaning that X; denotes a singleton set) and Card, 4(X;)
(meaning that the cardinality of X is equal to p modulo ¢, with 0 < p < ¢ and
q = 2)* where the variables denote sets of vertices. We also use the atomic
formulas edg(X;, X;) meaning that X; and X; denote respectively {z} and {y}
such that + —¢ y and lab,(X;) meaning that X; denotes a singleton consisting
of an a-port.

It is convenient to require that the free variables of every formula and its
subformulas of the form 3X,,.¢ are among Xj,..., X,,_1. This syntactic con-
straint yields no loss of generality (see Chapter 6 of [16]) but it makes easier
the construction of automata. In examples, we use set variables X, Y, universal
quantifications, and other obvious notation to make formulas readable. A first-
order existential quantification is a construction of the form 3X,.(Sgl(X,) A
o(X1, ..., Xn)), also written 3z,.0(X1, ..., Xn_1, {zn}) for readability. All quan-
tifications of a first-order formula have this form. First-order order formulas may

25We do not distinguish monadic second-order formulas from counting monadic second-
order formulas, defined as those using Cardp ¢(X;), because all our results hold in the same
way for both types. See Chapter 5 of [16] for situations where the distinction matters.

63

have free set variables and may be built with set terms. So, 3z2.¢(X1, X{—{x2})
is a first-order formula if ¢ contains only first-order quantifications.

A graph property P(Xi,...,Xs) is MS expressible if there exists an MS
formula ¢(X7, ..., X) such that, for every p-graph G and for all sets of vertices
X1, ..., X, of this graph, we have (Vi, edgq, (laby ¢)aen,) FE ¢(X1, ..., X,) if and
only if P(Xy,...,X,) is true in G.

Good and irredundant terms

We prove a technical result about terms over F,, the signature of clique-width
operations. If t,t' € T(Fy), then ¢ ~ ¢’ means that these terms define isomorphic
p-graphs, 7(t) is the set of port labels of G(t), max 7(t) is the maximal label in
7(t), p(t) is the set of port labels that occur in ¢ and max p(t) is the maximal
one in pu(t); we recall that port labels are positive integers.

Proposition 35: (1) The set of good and irredundant terms in T'(Fy) is
P-FA recognizable.

(2) There exists a polynomial-time algorithm that transforms every term in
T(Fy) into an equivalent term that is good and irredundant.

Proof: (1) We have observed after Definition 7 that the set of good terms
is P-FA recognizable. By Proposition 8(2) of [12] the set of terms that are not
irredundant is accepted by a nondeterministic FA26 whose states on a term t are
pairs of port labels in u(t) and nondeterminism degree is at most |u(t)|?, hence
poly(|[t]). By determinizing it and exchanging accepting states and nonaccepting
ones, we get a P-FA A that recognizes the set of irredundant terms. By taking
the product of A with the FA recognizing good terms, we get a P-FA (by
Proposition 15) that recognizes the good and irredundant terms.

(2) Proposition 8 of [12] gives, for each integer k, a linear-time algorithm that
transforms a term ¢ in T'(F}) into an equivalent irredundant one ¢’ € T'(F};) such
that |¢/| = |t| and [¢'|| < |¢| by deleting occurrences of operations that create
redundancies. This algorithm attaches to each position of ¢ a set of pairs of port
labels from 4(t). These sets can be encoded in size |u(t)|?.1og(k) < poly(|t]).
We obtain a polynomial-time algorithm taking as input a term in T'(Fy,).

We now consider an input term ¢ that is irredundant and we transform it
into an equivalent one that is good and still irredundant. By induction on the
structure of t € T'(F},), we define:

a good term t € T'(Fy,) such that 7(¢) = [max=(¢)] and ¥’ <k,
and a bijection h : w(t) — m(t) such that ¢t ~ relaby, (¢).

The inductive definition is shown in Table 5 where Condition (*) says the
following:

26This FA guesses a pair of occurrences of edge addition operations showing that the con-
sidered term is not irredundant.

64

ht is a bijection: [|7(t)]] — w(t) such that hy(i) = hy, (7) for i €
[max m(t1)]; (clearly, |7(t)| = maxmw(t1)).

| t | t | hy | Conditions |
t] 1d w(t) = J (ie., G(t) = @)
a 1 1—>a
11 D2 to hi, () =
t @t t hi, (t2) = &
t1 @ t2 t1 @ relabp-1op,, (t2) | e m(t1) # J,m(t2) # & and (¥)
ma,b(ﬁl) ﬁl ht1 {a, b} $ 7T(t1)
addq (t1) mh; @ni (@) | {a,b} < (ty)
relabp(t1) | t1 hohy,

Table 5: Inductive construction of ¢ € T'(F.,) and h,.

It is clear that 7 and hy can be computed in polynomial time from ¢.

Claim 1: t € T(Fy) for some k' < k, n(t) = [maxw(t)], hy is a bijection:(t) —
7(t) and t ~ relaby, (t).

Proof: These facts are clear from the inductive construction and we have
k' =maxp(t). o

Claim 2: t is irredundant.
Proof: Because t is assumed irredundant. o
Claim 3: t is good.

Proof: Let n be the number of vertices of G(t), assumed to have at least
one edge. (The case of graphs without edges is easily treated separately). The
inductive construction shows that, for each subterm ¢’ of , each label in (¢
labels some vertex of G(t'), hence max p(%) is at most the number of vertices of
G(t), equal to n.

Again by induction, we can see that @ has n — 1 occurrences in t (because t
has no occurrence of @ and G(t) ~ G(t')), and that the symbols relaby, have at
most 2n — 1 occurrences (one can of course delete those of the form relabq).

The number of operations Wiaﬂb is at most (n — 1).(k"2 — k') because £ is
irredundant by Claim 2. Tt follows that |t | < n+n—14+2n—1+(n—1).(k2—k) <
(k' +1)2.n+1 as one checks by noting that &’ > 2 because G() has edges. Hence

A

t is good. o

65

