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Abstract

The validity of a monadic-second order (MS) expressible property can
be checked in linear time on graphs of bounded tree-width or clique-width
given with appropriate decompositions. This result is proved by con-
structing from the MS sentence expressing the property and an integer
that bounds the tree-width or clique-width of the input graph, a finite
automaton intended to run bottom-up on the algebraic term representing
a decomposition of the input graph. As we cannot construct practically
the transition tables of these automata because they are huge, we use fly-

automata whose states and transitions are computed ”on the fly”, only
when needed for a particular input. Furthermore, we allow infinite sets of
states and we equip automata with output functions. Thus, they can check
properties that are not MS expressible and compute values, for an exam-
ple, the number of p-colorings of a graph. We obtain XP and FPT graph
algorithms, parameterized by tree-width or clique-width. We show how
to construct easily such algorithms by combining predefined automata for
basic functions and properties. These combinations reflect the structure
of the MS formula that specifies the property to check or the function to
compute.

Keywords : monadic second-order logic, graph algorithms, infinite
automata, parameterized algorithms, tree-width, clique-width, dynamic
programming, model-checking, data complexity, algorithmic meta-theorems.

Introduction

Fixed-parameter tractable (FPT) algorithms can be built by many techniques.
In their recent book [20], Downey and Fellows distinguish ”elementary tech-
niques” (bounded search trees, kernelization, color coding, iterative compression

∗This work has been supported by the French National Research Agency (ANR) in the
IdEx Bordeaux program ”Investments for the future”, CPU, ANR-10-IDEX-03-02.
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etc.) and techniques based on well quasi-orders from those ”based on graph
structure”. The notion of graph structure includes the graph decompositions
from which tree-width, path-width, local tree-width, clique-width etc. are de-
fined. A central result is the following algorithmic meta-theorem [16, 19, 20, 26]:

The validity of a monadic-second order (MS) expressible property
can be checked in linear time on graphs of bounded tree-width and
on graphs of bounded clique-width given with appropriate decompo-
sitions.

As in [31, 34], we call it a meta-theorem because it applies in a uniform way
to all graph properties expressed by MS sentences. An easy proof of this result
consists in defining by an algorithm a finite automaton intended to run bottom-
up on the labelled tree or the algebraic term that represents the structure of the
input graph ([16], Chapter 6). This automaton is built from the MS sentence
expressing the property and an integer, say k, that bounds the tree-width or
clique-width of the input graph. The number of states is a tower of exponen-
tials of height essentially equal to the number of quantifier alternations of the
considered sentence, with the bound k at the top. In most cases we cannot con-
struct practically the sets of states and the transition tables of these automata.
This obstacle is intrinsic [28], it is not due to the choice of finite automata to
implement the meta-theorem.

However, we can remedy this problem in many significant cases by using
fly-automata (introduced in [12]). They are automata whose states and transi-
tions are computed ”on the fly”, only when needed for a particular input1. A
deterministic fly-automaton A having 21000 states only computes 100 states on
a tree or term of size 100. Actually, the evaluation algorithm determines the
smallest subautomaton A æ t of A able to process the given term t.

In this article we develop a theory of fly-automata and extend the notion
introduced in [12]. In particular, we allow infinite sets of states (e.g., a state may
contain counters recording the unbounded numbers of occurrences of particular
symbols) and we equip automata with output functions that map the accepting
states to some effective domain D (e.g., the set of integers, or of pairs of inte-
gers, or the set of words over a fixed alphabet). Thus, fly-automata can check
properties that are not monadic second-order expressible, for example that a
graph is regular (has all its vertices of same degree) and compute values, for
example, the number of p-colorings. We will construct fly-automata that yield
FPT and XP algorithms (definitions are reviewed in Section 1.5) for tree-width
or clique-width as parameter. We will combine basic fly-automata by means of
products, direct and inverse images in a way that reflects the structure of the
defining formula. For example, product of automata implements conjunction

1Fly-automata are useful when the number of states is large compared to the number of
function symbols and the size of input terms. Symbolic automata [41] are defined for the case
when the number of states is manageable but the set of function symbols is very large, and
possibly infinite. In these automata, states are listed but function symbols and transitions are
described by logical formulas. Fly-automata also admit infinite sets of function symbols.
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and taking a direct image implements existential quantification. We have im-
plemented these constructions in the system AUTOGRAPH2 and tested them
successfully on coloring and connectedness problems.

Our model-checking algorithms are intended for fixed graph properties and we
are interested in analyzing their data complexity formulated in the framework
of fixed-parameter tractability. However, these algorithms are constructed in
uniform ways from logical expressions that cover a large variety of problems. The
constructions are easily extendable to labelled graphs and relational structures.

Our computation model.
We now motivate our choices. Fly-automata have several advantages: they

overcome in many significant cases the ”size problem” met with usual finite
automata, they are not restricted to fixed bounds on clique-width, they allow
to check some properties that are not MS expressible and to compute values
attached to graphs and, last but not least, they offer a flexible framework: a
slight change in the formula that specifies the problem is quickly reflected in the
construction of a new automaton, performed by the system AUTOGRAPH.

We study fly-automata over the signature of graph operations from which
clique-width is defined. We have chosen to deal with these operations rather than
those for tree-width because the automata are much simpler [9]. This choice
also yields a gain in generality because the clique-width of a simple graph G

is bounded in terms of its tree-width but not vice-versa. All our FPT and XP
algorithms parameterized by clique-width are also FPT and XP respectively for
tree-width. Furthermore, replacing a graph G by its incidence graph allows to
handle in our setting edge quantifications, see the conclusion and [10, 11].

At the end of this introduction, we review methods for implementing the
verification of MS properties on graphs of bounded tree-width that are not
based on automata.

Overview of the main definitions.
An automaton takes as input a term t P T pF q over a signature F , i.e., a set

of operations, each given with a fixed arity. The graphs of clique-width at most
k are those defined by a term over a finite signature Fk, and F8 is the union
of the signatures Fk. We will construct fly-automata over the infinite signature
F8, with which all finite graphs can be defined.

We will construct fly-automata for basic properties and functions, for exam-
ple the regularity of a graph or the degree of a vertex, and we will also use the
automata constructed in [12] for some basic MS properties. We will combine
these automata in order to define more complex properties and functions, for
example the possibility of partitioning the vertex set of a graph into two sets
inducing regular subgraphs.

Here are some typical examples of decision problems and functions that we
can handle in this way:

2See http://dept-info.labri.u-bordeaux.fr/˜idurand/autograph
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(1) Is it possible to cover the edges of a graph with those of s cliques?
(2) Does there exist an equitable s-coloring? Equitable means that the sizes

of any two color classes differ by at most 1 [25]. We can express this property
by DX1, . . . , Xs.pPartitionpX1, . . . , Xsq ^ StrX1s ^ ...^ StrXss ^ ”|X1| “ ... “
|Xi´1| ě |Xi| “ ... “ |Xs| ě |X1| ´ 1 for some i”) where StrXs means that

the induced subgraph GrXs of the considered graph G is stable, i.e., has no
edge.

(3) Assuming the graph s-colorable, what is the minimum size of the first
color class of an s-coloring?

(4) What is the minimum number of edges between X and Y for a partition
pX,Y q of the vertex set such that GrXs and GrY s are connected?

More generally, let P pX1, ..., Xsq be a property of sets of vertices X1, ..., Xs

or of positions of a term; we will use X to denote pX1, ..., Xsq and t |ù P pXq
to mean that X satisfies P in the term t or in the graph Gptq defined by t; this
writing does not assume that P is written in any particular logical language.
We are interested, not only to check the validity of DX.P pXq in t or in Gptq for
some given term t, but also to compute (among others) the following objects
associated with t:

#X.P pXq, defined as the number of assignments X such that t |ù
P pXq,

SpX.P pXq, the spectrum of P pXq, defined as the set of tuples p|X1|, . . . , |Xs|q
such that t |ù P pXq,

MSpX.P pXq, the multispectrum of P pXq, defined as the multiset

of tuples p|X1|, . . . , |Xs|q such that t |ù P pXq,

MinCardX1.P pXq defined as mint|X1| | t |ù DX2, ..., Xs.P pXqu,

SatX.P pXq, defined as the set of tuples X such that t |ù P pXq.

We will say that the functions #X.P pXq, SpX.P pXq, MSpX.P pXq, MinCardX1.P pXq
and SatX.P pXq taking terms as arguments are MS expressible if P pXq is an
MS expressible property. Their values are numbers or sets of tuples of numbers
in the first four cases and our automata will give XP or FPT algorithms. Com-
puting SatX.P pXqptq is more difficult because the result may be of exponential
size in the size of t.

Our main results
Here are the four main ideas and achievements. First, we recall that the

state of a deterministic bottom-up automaton collects, at each position u of an
input term, some information about the subterm issued from u. This information
should be of size as small as possible so that the computation of a run be efficient.
An appealing situation is when the set of states is finite, but finiteness alone
does not guarantee efficient algorithms. This is well-known for MS definable
sets of terms over a finite signature: the number of states of an automaton that

4



implements an MS formula has a number of states that cannot be bounded
by an elementary function (an iterated exponentiation of bounded height) in
the size of the formula, see [28, 38]. The notion of fly-automaton permits to
construct usable algorithms based on finite automata whose transitions cannot
be compiled in manageable tables.

Second, as we do not insist on compiling transitions in tables, we have no
reason to insist on finiteness of the set of states. So we use fly-automata whose
states are integers, or pairs of integers or any information representable by
a finite word over a fixed finite alphabet. These automata yield polynomial-
time dynamic programing algorithms if the computation of each transition takes
polynomial time in the size of the input term.

Third, fly-automata can run on terms over countably infinite signatures,
encoded in effective ways. In particular, we will define automata that run on
terms describing input graphs. These terms yield upper-bounds to the clique-
width of these graphs. As no finite set of such operations can generate all graphs,
the use of an infinite signature is necessary3. By analyzing how these automata
are constructed from logical descriptions, we can understand (in part) why some
algorithms constructed from automata are FPT whereas others are only XP.

Fourth, we go beyond MS logic in two ways. We adapt the classical con-
struction of finite automata from formulas exposed in Chapter 6 of [16] and in
[12] to properties of terms and graphs that are not MS expressible (for example
the regularity of a graph) and we build automata that compute functions (for
example, the largest size of an induced subgraph that is regular). Such prop-
erties and functions are defined by formulas using new atomic formulas, such
as RegrXs expressing that the induced subgraph GrXs of the considered graph
G is regular, and new constructions, such as #X.P pXq or SpX.P pXq, that can
be seen as generalized quantifications, as they bind the variables of X while
delivering more information than DX.P pXq. From the usual case of MS logic,
we keep the inductive construction of an automaton based on the structure of
the defining formula.

We generalize results from [2, 17, 18] that build algorithms for properties of
terms or of graphs of bounded tree-width or clique-width that are of the form
DX1, . . . , Xs.pϕpX1, . . . , Xsq^Rp|X1|, . . . , |Xs|qq where ϕpX1, . . . , Xsq is an MS
formula and R is an s-ary arithmetic relation that can be checked in polynomial
time. However, we cannot allow such atomic formulas Rp|X1|, . . . , |Xs|q to occur
everywhere in formulas. We discuss this issue in Section 4.6.

Our automata that compute functions generalize the automata with cost
functions of [40] and the weighted automata of [21], Chap. 9. However, these
automata do not allow infinite signatures that we use for handling graphs, and
the results they prove for finite automata are not related with our constructions.

We do not investigate here the parsing problem: graphs are given by terms
over the signature of graph operations F8 from which clique-with is defined.

To summarize, we provide logic based methods for constructing FPT and XP

3The corresponding constructed algorithms that are FPT (or XP) for clique-width are
immediately FPT (or XP) for tree-width.
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dynamic programming graph algorithms by means of fly-automata on terms. The
system AUTOGRAPH, currently under development, implements the presented
constructions.

Alternative tools.
There are other methods intended to overcome the ”size problem” that is

unavoidable with finite automata [28, 38]. Kneis et al. [33, 36] use games in the
following way. From a graph G given with a tree-decomposition T and an MS
sentence ϕ to check, they build a model-checking game GpT, ϕq that is actually
a tree. An alternating automaton running on this tree can decide if the graph G

satisfies ϕ. The game GpT, ϕq is of bounded size because equivalent subgames
are merged by taking into account the fact that MS formulas of bounded quan-
tifier height have a limited power of distinguishing structures. It depends on
G, and not only on ϕ and on a bound on its tree-width. This is similar to our
use of fly-automata where a subautomaton A æ t of a ”huge” automaton A is
computed for the input term t. (A precise comparison of the states of A æ t

and these games would be interesting but is beyond the scope of the present
article.) This game approach extends to optimization problems such as comput-
ing MinCardX1.P pXq or more generally, those considered in [18]. It has been
implemented and works for several problems on graphs with about 200 vertices.
However, the correctness proof of the method and the programming task are by
far much more complex than those for our fly-automata.

Another proposal consists in using Datalog [27, 30]. However, it seems to be
nothing but a translation of automata on terms into monadic Datalog programs
together with some manual optimization. It is unclear whether and how the
”size problem” is avoided. This approach is discussed in detail in [36].

Summary of article: Section 1 reviews notation and definitions relative to
terms, graphs and computability notions. Section 2 reviews the definitions con-
cerning fly-automata. Section 3 gives the main algorithms to build fly-automata
by transforming or combining previously constructed automata. Section 4 de-
tails some applications to graphs. It gives also some direct constructions of
automata smaller than those obtained by the general construction based on
logic. Section 5 gives an overview of the software AUTOGRAPH and reports
some experiments. Section 6 is a conclusion. An appendix recalls definitions
concerning MS logic and establishes a technical lemma about terms that define
graphs.

Fly-automata and AUTOGRAPH have been presented in conferences; see
[13, 14, 15].

1 Definitions

We review all necessary definitions, mostly from [12], and we give some new
ones. Monadic second-order logic on graphs is reviewed in the appendix.
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1.1 General notation

We denote by N the set of natural numbers, by N` the set of positive ones,
by rn,ms the interval ti | n ď i ď mu and by rns the interval r1, ns. We
denote by wris the i-th element of a sequence or the i-th letter of a word w. As
usual, logarithms are in base 2 and logpxq stands for maxt1, log2pxqu. Countable
means countably infinite.

The cardinality of a set A is denoted by |A|. An encoding of a finite set
is larger than its cardinality. For example, a set of m integers in rns can be
encoded in size Opm. logpnq ` 1q by a word over a fixed finite alphabet. We
denote by }A} the size of such an encoding.

We denote by A ´ B the difference of two sets A,B and by Bc (the com-
plement of B in A) if B Ď A and A is clear from the context. We denote by
rA Ñ Bs the set of mappings (i.e., of total functions): A Ñ B. If C Ď A

and f P rA Ñ Bs, we denote by f æ C the restriction of f to C and we will
consider that rC Ñ Cs is a subset of rA Ñ As by identifying h : C Ñ C with
its extension h1 to A such that h1paq :“ a if a P A ´ C. However, no such
identification is needed if we represent h by the set of pairs pa, hpaqq such that
a P C and hpaq ‰ a, because in this case the set of pairs corresponding to h1 is
exactly the same. This observation yields a way to implement h if C is finite
and A is infinite.

If A is any set PpAq, Pf pAq, PnpAq, PďnpAq denote respectively its set of
subsets, of finite subsets, of subsets of cardinality n and of subsets of cardinality
at most n, and Z denotes the union of disjoint sets (B Z C is undefined if B
and C are not disjoint).

A multiset over a finite or countable set A is a mapping α: A Ñ N Y tωu
where αpaq is the number of occurrences of a P A in the multiset α. We denote
byH the empty multiset (αpaq “ 0 for all a) and by \ the union of two multisets
(we have pα \ βqpaq “ αpaq ` βpaq). The cardinality of α is |α| :“ ΣaPAαpaq
and this gives a notion of finite multiset. If furthermore A is a commutative
monoid with an addition ` and a zero 0, we define α as finite if ΣaPA´t0uαpaq is
finite. Then we define Σα :“ ΣaPA´t0uαpaq.a. We have ΣH “ 0 and Σpα\βq “
Σα` Σβ. Furthermore, Σα “ 0 if α consists of countably many occurrences of
0. We denote respectively by MpAq and MfpAq the sets of multisets and of
finite multisets over A.

Let f P rA Ñ Bs and X Ď A where A is finite or countable. We denote by
Jfpxq | x P XK the multiset β over B such that βpbq :“

ˇ̌
f´1pbq XX

ˇ̌
and by

tfpxq | x P Xu, or fpXq as usual, the corresponding set. Let for an example
A :“ ta, b, c, du, B :“ t1, 2, 3u, fpaq :“ fpbq :“ fpcq :“ 1, fpdq :“ 2 and
X :“ ta, b, du. Then tfpxq | x P Xu “ t1, 2u, Jfpxq | x P XK is the multiset
t1, 1, 2u and ΣJfpxq | x P XK “ 4.

The set of finite words over an alphabet Z is denoted by Z˚ and the empty
word is ε.

7



Terms and their syntactic trees
A signature F is a finite or countable set of function symbols, each being given

with a natural number called its arity: ρpfq denotes the arity of the symbol f
and ρpF q the maximal arity of a symbol of F, provided its symbols have bounded
arity. We denote by T pF q the set of finite terms over F and by Posptq the set
of positions of a term t. Each position is an occurrence of some symbol and
Posf ptq is the set of occurrences of f P F . Positions are defined as Dewey
words. For example, the positions of the term fpgpa, bq, gpb, cqq are denoted
by the Dewey words ε, 1, 11, 12, 2, 21, 22. For a term t “ hpt1, t2, t3q, we have
Posptq “ tεuY1.Pospt1qY2.Pospt2qY3.Pospt3q where . denotes concatenation.
(If function symbols have arity at most 9, we can omit the concatenation marks,
as in the above example). We denote by Sigptq the finite subsignature of F
consisting of the symbols that have occurrences in t.

The syntactic tree of a term t is a rooted, labelled and ordered tree with set
of nodes in bijection with Posptq; each node u is labelled by a symbol f and
has a sequence of ρpfq sons; its root denoted by roott corresponds to the first
position relative to the linear writing of t, and the leaves to the occurrences of
the nullary symbols.

We denote by t{u the subterm of t issued from position u and by Posptq{u
the set of positions of t below u or equal to it. In terms of Dewey words,
we have Posptq{u “ u.Pospt{uq. Note that Posptq{u ‰ Pospt{uq unless u “ ε

corresponding to the root. If X is a set of positions of t, then X{u denotes
X X pPosptq{uq, hence is the set of elements of X below or equal to u. The
height htptq of a term t is 1 if t is a nullary symbol and 1`maxthtpt1q, ..., htptrqu
if t “ fpt1, ..., trq.

Let H be a signature and h : H Ñ F be an arity preserving mapping, i.e., a
mapping such that ρphpfqq “ ρpfq for every f P H . For every t P T pHq, we let
hptq P T pF q be the term obtained from t by replacing f by hpfq at each of its
occurrences. Such a mapping is called a relabelling.

We denote by |t| the number of positions of a term t. In order to discuss
algorithms taking terms as input, we must define the size of t. If F is finite, we
can take |t| as its size. If F is infinite, its symbols must be encoded by words of
variable length. We define the size }t} of t as the sum of lengths of the words
that encode its symbols4. In both cases, we denote the size of t by }t}. We
have |Sigptq| ď |t| ď }t}. We say that an algorithm takes time polyp}t}q if its
computation time is bounded by pp}t}q for some polynomial p that we do not
specify.

A language is either a set of words or a set of terms.

F-algebras
Let F be a signature and D “ xD, pfDqfPF y be an F -algebra. The set D is

its domain. We denote by valD the mapping: T pF q Ñ D that yields the value

4If wx ‰ ε encodes a symbol x, then }fpgpa, bq, gpb, cqq} “ |wf |`2.|wg|`|wa|`2.|wb|`|wc|.
The length of a LISP list implementing a term t is between }t} and 3.}t}. (We use LISP to
implement fly-automata, see Section 5.)

8



of a term. We let then F] be the signature F Z t],0u such that ] is binary
and 0 is nullary.

A distributive F-algebra is an F]-algebra E “ xE,]E ,0E , pfEqfPF y such that
]E is associative and commutative with neutral element 0E , and the functions
fE satisfy the following distributivity properties:

fEp..., d]E d1, ...q “ fEp..., d, ...q ]E fEp..., d
1, ...q,

fEp...,0E , ...q “ 0E .

We extend ]E to finite subsets of E by:

]EpAZBq :“ p]EAq ]E p]EBq and

]EH :“ 0E ,

and similarly for finite multisets. If A is infinite and g : AÑ E is a mapping
such that gpaq ‰ 0E for finitely many a P A, then ]EJgpaq | a P X and
gpaq ‰ 0EK is well-defined and will be denoted more shortly by ]EJgpaq | a P XK.

The powerset algebra (of finite subsets) of an F -algebra D is5:

Pf pDq :“
@
PfpDq,Y,H, pfPf pDqqfPF

D

fPf pDqpA1, ..., Arq :“ tfDpa1, ..., arq | a1 P A1, ..., ar P Aru.

We define also its multiset algebra (of finite multisets):

Mf pDq :“
@
Mf pDq,\,H, pfMf pDqqfPF

D
where

fMf pDqpα1, ..., αrq is the multiset β such that βpbq (the number of
occurrences in β of b P Dq is the sum over all r-tuples pa1, ..., arq
such that a1 P α1, ..., ar P αr and b “ fDpa1, ..., arq of the numbers
α1pa1q ˆ ...ˆ αrparq.

It is easy to check that Pf pDq and Mf pDq are distributive F -algebras. If
t P T pF q, then its values in Pf pDq and in MfpDq are tvalDptqu.

1.2 Graphs and clique-width

Notation and definitions are as in [12, 16]. Some technical points are developped
in the appendix.

Graphs
All graphs are finite, loop-free and simple (without parallel edges). A graph

G is identified with the relational structure xVG, edgGy where edgG is a binary
relation representing the directed or undirected adjacency. If X Ď VG, we
denote by GrXs the induced subgraph of G with vertex set X , i.e., GrXs :“
xX, edgG X pX ˆXqy. If E Ď edgG, then GrEs :“ xVG, Ey.

5Powerset algebras are called powerset magmas in [7].
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If P is a property of graphs and X Ď VG, then P rXs expresses that GrXs
satisfies P . A graph is stable if it has no edge and we denote this property, called
stability, by St. Hence, StrXs used in the introduction says that GrXs has no
edge.

In order to build graphs by means of graph operations, we use labels attached
to vertices. We let L be a fixed countable set of port labels. A p-graph (or graph
with ports) is a triple G “ xVG, edgG, πGy where πG is a mapping: VG Ñ L.
So, πGpxq is the label of x and, if πGpxq “ a, we say that x is an a-port.
If X is a set of vertices, then πGpXq is the set of its port labels. The set
πpGq :“ πGpVGq is the type of G. A p-graph G is identified with the relational
structure xVG, edgG, plabaGqaPLy where laba is a unary relation and labaG is
the set of a-ports of G. Since we only consider simple graphs, two graphs or
p-graphs G and H are isomorphic if and only if the corresponding relational
structures are isomorphic. In this article, we will take port labels in L :“ N`.

We denote by G « G1 the fact that two p-graphs G and G1 are isomorphic
and by G » G1 that they are isomorphic up to port labels.

Operations on p-graphs
We let Fk consist of the following function symbols; they define operations

on the p-graphs of type included in the set of port labels C :“ rks that we also
define:

- the binary symbol ‘ denotes the union of two disjoint p-graphs
(i.e., G ‘ H :“ xVG Y VH , edgG Y edgH , plabaG Y labaHqaPCy with
VG X VH “ Hq,

- the unary symbol relabh denotes the relabelling that replaces in the
argument p-graph every port label a by hpaq, where h is a mapping
from C to C defined as a subset6 of C ˆ C, as explained in Section
1.1;

- the unary symbol
ÝÝÑ
adda,b, for a ‰ b, denotes the edge-addition that

adds an edge from every a-port x to every b-port y, unless there is
already an edge x Ñ y because graphs are simple; this operation is
idempotent,

- the nullary symbol a, for a P C, denotes an isolated a-port, and
the nullary symbol ∅ denotes the empty graph.

We denote ta | a P Cu by C. For constructing undirected graphs, we use
the operation adda,b where a ă b (the set C is linearly ordered as it is of the

form rks) as an abbreviation of
ÝÝÑ
adda,b ˝

ÝÝÑ
addb,a. For constructing undirected

graphs, we will use the signature F u
k defined as Fk where the operations

ÝÝÑ
adda,b

are replaced by adda,b. Every operation of Fk (resp. F u
k q is an operation of Fk1

(resp. F u
k1q if k ă k1 by our convention on mappings h in relabh. We let F8

6For example, if k “ 3, then relabtp1,2q,p3,1qu “ relabh where hp1q :“ 2, hp2q :“ 2 and
hp3q :“ 1. We denote also relabtpa,bqu by relabaÑb. Each operation relabh can be expressed
as a composition of operations relabaÑb. See Proposition 2.118 of [16] for details.
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(resp. F u
8) be the union of the signatures Fk (resp. F u

k q. Hence, Fk (resp. F u
k q

is the restriction of F8 (resp. F u
8) to the operations and constants involving

labels in rks.
Let t P T pF8q. We say that a port label a occurs in t if either a,

ÝÝÑ
adda,b,

ÝÝÑ
addb,a or relabh such that hpaq ‰ a or hpbq “ a ‰ b has an occurrence in t. We
denote by µptq the set of port labels that occur in t and by maxµptq its maximal
element. We also denote by πptq the set of port labels πpGptqq and by maxπptq
its maximal element. Clearly, πptq Ď µptq.

Clique-width
Every term t in T pFkq Y T pF u

k q denotes a p-graph Gptq that we now define
formally. We let Pos0ptq be the set of occurrences in t of the symbols from C.
For each u P Posptq, we define a p-graph Gptq{u, whose vertex set is Pos0ptq{u,
the set of leaves of t below u that are not occurrences of ∅. The definition of
Gptq{u is by bottom-up induction on u.

If u is an occurrence of ∅, then Gptq{u is the empty graph,

if u is an occurrence of a , then Gptq{u has the unique vertex u that
is an a-port,

if u is an occurrence of ‘ with sons u1 and u2, then Gptq{u :“
Gptq{u1 ‘Gptq{u2; note that Gptq{u1 and Gptq{u2 are disjoint,

if u is an occurrence of relabh with son u1, thenGptq{u :“ relabhpGptq{u1q,

if u is an occurrence of
ÝÝÑ
adda,b with son u1, thenGptq{u :“

ÝÝÑ
adda,bpGptq{u1q,

if u is an occurrence of adda,b with son u1, thenGptq{u :“ adda,bpGptq{u1q.

Finally, Gptq :“ Gptq{roott. Its vertex set is thus Pos0ptq. Note the following
facts:

(1) up to port labels, Gptq{u is a subgraph of Gptq: a port label of
a vertex of Gptq{u can be modified by a relabelling occurring on the
path in t from u to its root;

(2) if u and w are incomparable positions under the ancestor rela-
tion, then the graphs Gptq{u and Gptq{w are disjoint.

If t P T pFkqY T pF u
k q, X Ď Pos0ptq and t1 is the term obtained by replacing,

for each u P X , the symbol occurring there by ∅, then Gpt1q is the induced
subgraph GptqrPos0ptq ´Xs of Gptq.

The clique-width of a graph G, denoted by cwdpGq, is the least integer k such
that G » Gptq for some term t in T pFkq (in T pF u

k q if G is undirected). A term t

in T pFkq YT pF u
k q is optimal if k “ cwdpGq. Every graph G has clique-width at

most |VG|. Two terms t and t1 are equivalent, denoted by t » t1, if Gptq » Gpt1q.

All definitions and results stated below for Fk and F8 apply to F u
k and

F u
8. Let t P T pFkq. Each of its symbols can be encoded by a word of length
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Oplogpkqq for a and
ÝÝÑ
adda,b and Opk. logpkqq for relabh. Hence, its size }t} is

Opk. logpkq.|t|q. Clearly, |VGptq| ď |t| ď }t} but }t} is not bounded by a function
of |VGptq| because a graph can be denoted by arbitrary large terms, in particular

because
ÝÝÑ
adda,b is idempotent. To avoid this, we define a term t P T pF8q as good

if, for some k, we have t P T pFkq, k ď |VGptq| and |t| ď pk ` 1q2.|VGptq| ` 1. We
denote by TgoodpF8q the set of good terms. In Proposition 35 of the appendix,
we give an algorithm that transforms a term t P T pFkq into an equivalent good
term in T pFk1q for some k1 ď k. Its proof constructs a kind of normal form that
justifies the bound pk ` 1q2.|VGptq| ` 1 in the definition. For example the term
relab5Ñ1padd1,9padd1,8p1‘5‘8qqq is not good and can be replaced by the good
term relab2Ñ1padd1,3p1‘ 2‘ 3qq. This preprocessing takes time polyp}t}q.

If t is good, we have }t} “ Opk. logpkq.|t|q “ Opk3. logpkq.|VGptq|q where
k “ maxµptq. A computation time is this case bounded by a polynomial in }t}
if and only if it is by a polynomial in |VGptq| `maxµptq.

A term t is irredundant if, for each of its subterms of the form
ÝÝÑ
adda,bpt

1q (or
adda,bpt

1q), there is in Gpt1q no edge from an a-port to a b-port (or between an a-

port and a b-port). This means that none of its operations
ÝÝÑ
adda,b tries to add an

edge, say from x to y, when there exists already one. The construction of several
automata in Section 4 will be based on the assumption that the input terms are
irredundant. The corresponding preprocessing is considered in Proposition 35.

We do not investigate the parsing problem, that consists, for fixed k, in
finding a term in T pFkq that denotes a given graph. See however Section 1.5.

1.3 Sets of positions of terms and sets of vertices

Let E be a set, X Ď E and u P E. Then ru P Xs denotes the Boolean value 1
(i.e., True) if u P X and 0 otherwise. An s-tuple X “ pX1, ..., Xsq of subsets of

E can be described by the function rX : E Ñ t0, 1us such that, for u P E, rXpuq
is the word ru P X1s...ru P Xss. If X is a partition of E (a typical case is when

it represents a vertex coloring with s colors of a graph G and E “ VG), then rX
can be replaced by pX : E Ñ rss such that pXpuq “ i if and only if u P Xi. We
now consider in more detail the two cases where E is the set of positions of a
term and the set of vertices of a graph defined by a term.

Sets of positions of terms.
Let F be a signature and s be a positive integer. Our objective is to encode

a pair pt,Xq such that t P T pF q and X P PpPosptqqs by a term t ˚X P T pF psqq
where F psq is the new signature Fˆt0, 1us with arity mapping ρppf, wqq :“ ρpfq.
We let prs : F

psq Ñ F be the relabelling that deletes the second component of
a symbol pf, wq. We denote it by pr if s need not be specified.

If t P T pF q and X P PpPosptqqs, then the term t ˚X P T pF psqq is obtained
from t by replacing, at each position u of t, the symbol f occurring there by
pf, rXpuqq P F psq. It is clear that t ˚X P T pF psqq and prspt ˚Xq “ t; we define
νpt ˚Xq :“ X. Every term in T pF psqq is of the form t ˚X and encodes a term t

in T pF q and the s-tuple νpt ˚Xq P PpPosptqqs.
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A property7 P pX1, ..., Xsq of sets of positions of terms over a signature F

is thus characterized by the language TP pXq :“ tt ˚X | t |ù P pXqu Ď T pF psqq.

It can also be considered as the property P of the terms in T pF psqq such that
t ˚ X |ù P if and only if t |ù P pXq. Conversely, every subset of T pF psqq is
TP pXq for some property P pXq. A key fact about the relabelling prs is that

TDX.P pXq “ prspTP pXqq.

More generally (because every property is a Boolean-valued function) a func-
tion α whose arguments are t P T pF q and s-tuples X of positions of t, and whose
values are in a set D, corresponds to the function α : T pF psqq Ñ D such that
αpt ˚Xq :“ αpt,Xq.

In a situation where the tuples X are partitions of Posptq, we can use pX
instead of rX, and the signature F ˆ rss denoted by F

psq
col (because of the appli-

cations to coloring problems) instead of F psq “ F ˆ t0, 1us.

Sets of vertices.
A similar technique applies to sets of vertices of graphs defined by terms

in T pF8q. We first recall that the vertices are the occurrences of the nullary

symbols a. We define F
psq
8 from F8 by replacing each symbol a by the nullary

symbols8 pa, wq for all w P t0, 1us. We define pr : F
psq
8 Ñ F8 as the mapping

that deletes the sequences w from nullary symbols. It extends into a relabelling

pr : T pF
psq
8 q Ñ T pF8q. A term t1 in T pF

psq
8 q defines the graph Gpprpt1qq and the

s-tupleX P PpVGpprpt1qqq
s such that rXpuq “ w if and only if u is an occurrence of

pa, wq for some a. The nullary symbol pa, wq defines an isolated a-port together
with the information about the components of X to which it belongs, hence
it does not define an pa, wq-port. The edge additions and relabellings do not

depend on the components w. They act in a term t P T pF
psq
8 q exactly as in the

term prptq P T pF8q.
As for sets of positions in terms, we use the notation t˚X (where t “ prpt1q).

Hence, a property P pX1, ..., Xsq of sets of vertices of Gptq is characterized by

the language LP pX1,...,Xsq :“ tt ˚X P T pF
psq
8 q | Gptq |ù P pXqu. It can also be

considered as the property P of terms in T pF
psq
8 q such that t ˚ X |ù P if and

only if Gptq |ù P pXq.
As for terms, this definition extends to functions on graphs taking sets of

vertices as auxiliary arguments. For example, let epX1, X2q be the number of
undirected edges between sets X1 and X2 if these sets are disjoint and K, a
special symbol that means ”undefined”, if X1 and X2 are not disjoint. It can be

handled as a mapping e : T pF
up2q
8 q Ñ tKu Y N, cf. Section 4.2.2.

For handling coloring problems, hence, partitions of vertex sets, we can also
use pX instead of rX, as for positions of terms (cf. [12], Section 7.3.3). Hence,

7X abbreviates pX1, ...,Xsq and P pXq stands for P pX1, ...,Xsq.
8We need not modify the operations

ÝÝÑ
adda,b and relabh because they do not create vertices.

Hence, the notation F
psq
8 is not an instance of the notation F psq of the previous case where

F is an arbitrary signature and we want to encode sets of positions of terms in T pF q. We do
not set a specific notation, the context will make things clear.
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we can use F
psq
8 col, where each unary symbol a is replaced by the symbols pa, iq

for all i P rss.

Set terms and substitutions of variables.
We consider set variables X1, ..., Xs denoting subsets of E, the set of po-

sitions of a term t P T pF q. A set term over X1, ..., Xs is a term S written
with them, the constant symbol ∅ for denoting the empty set and the opera-
tions X, Y and c (for complementation). Hence, ∅c denotes E. An example is
S0 “ pX1 YXc

3q X pX2 YX5q
c.

To each set term S overX1, ..., Xs corresponds a mapping rS : t0, 1us Ñ t0, 1u

such that, for each u P E, ru P SpXqs “ rSp rXpuqq where X “ pX1, ..., Xsq. For

S0 as above, ĂS0pw1...w5q “ pw1 _ w3q ^ pw2 _w5q. The general definition is
clear from this example.

If now Y “ pY1, ..., Ymq is defined from X “ pX1, ..., Xsq by Yi :“ SipXq for
set terms S1, ..., Sm over X1, ..., Xs. Let X P PpPosptqqs. Then t˚Y “ hpt˚Xq
where h is the relabelling h:F psq Ñ F pmq that replaces, in each symbol pf, wq,

the word w P t0, 1us by the word ĂS1pwq... ĂSmpwq P t0, 1u
m.

Let now αpY1, ..., Ymq be a function on terms in T pF q with set arguments
Y1, ..., Ym and values in a set D. Let S1, ..., Sm be set terms over X1, ..., Xs

and βpXq :“ αpS1pXq, ..., SmpXqq. Hence α maps T pF pmqq into D and β maps
T pF psqq into D. We have β “ α˝h where h:T pF psqq Ñ T pF pmqq is the relabelling
that encodes the tuple (S1, ..., Sm). For an example, we take s :“ 4, m :“
3, S1 :“ X1 Y Xc

3 , S2 :“ ∅, S3 :“ ∅
c. Then βpX1, X2, X3, X4q defined as

αpX1 YXc
3 ,∅,∅cq satisfies the equality β “ α ˝ h with h defined by:

hppf, x1x2x3x4qq :“ pf, px1 _  x3q01q, that is, for all x, y P t0, 1u
and f P F :

hppf, 1x0yqq :“ hppf, 1x1yqq :“ hppf, 0x0yqq :“ pf, 101q and
hppf, 0x1yqq :“ pf, 001q.

This shows that from an automaton that computes α, we get by composition
with the relabelling h an automaton having the same states that computes β

(cf. Definition 4(5) in Section 2.1 below). This technique can also be used if
the terms S1, ..., Sm are just variables, say Xi1 , ..., Xim , hence for handling a
substitution of variables. We have stated these facts for an arbitrary signature
F . They hold with obvious adaptations for the signature F8. In this case, t P
T pF8q, E “ Pos0ptq “ VGptq.

Induced subgraphs and relativization
Let αpX1, ¨ ¨ ¨ , Xs´1q be a function with (vertex) set arguments in graphs G

to be defined by terms. We define βpX1, ¨ ¨ ¨ , Xsq as αpX1XXs, ¨ ¨ ¨ , Xs´1XXsq
computed in the induced subgraph GrXss. We define h as the relabelling:

F
psq
8 Ñ F

ps´1q
8 such that, for every a P C and w P t0, 1us´1, we have hppa, w0qq :“

∅, hppa, w1qq :“ pa, wq and hpfq :“ f for all other operations of F8. With these
hypotheses and notation, we have β “ α˝h and a corresponding transformation
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of automata as in the case of set terms. This fact motivates the introduction of
the nullary symbol ∅ to denote the empty graph.

If α is a property P and s “ 1, we obtain a property denoted by P rX1s
called the relativization of P to X1.

First-order variables
If P pX,Y, Zq is a property of subsets of a set E, we denote by P pX, y, Zq

the property P pX, tyu, Zq where y P E. Accordingly, Dy.P pX, y, Zq abbreviates
DY.pP pX,Y, Zq ^ SglpY qq where SglpY q means that Y is singleton. If α is a
ternary function on PpEq, we let similarly αpX, y, Zq abbreviate αpX, tyu, Zq.

1.4 Effectively given sets

A set D is effectively given if it is a decidable subset of Z˚ for some finite
alphabet Z and, furthermore, the list of its elements is computable if it is finite.
More precisely, such a set can be specified either by a list of words (if not too
long) or by a triple pZ,M, kq such that M is an algorithm that decides the
membership in D of a word in Z˚, k “ ω if D is infinite and k P N, k ě |w|
for every w in D if it is finite. From M and k, one can compute D whenever it
is finite9. Examples of effectively given sets are B :“ tFalse, T rueu,Nk, Posptq
(for a term t, it is a set of Dewey sequences, cf. Section 1.2). The set of finite
graphs up to isomorphism is effectively given (the proof is left to the reader).

We get immediately the notion of a computable mapping from an effectively
given set to another one. If D is effectively given, then so are Ds, Pf pDq and
MfpDq.

In many cases, an effectively given set D has a special element that we call a
zero, denoted by zeroD. It can be a special symbol K standing for an undefined
value, it can be 0 if D “ N, the empty set if D “ Pf pEq or the neutral element
0D if D is a distributive algebra. A mapping f : D1 Ñ D is finite if the set of
elements d of D1 such that fpdq ‰ zeroD is finite. Then, f can be identified with
the finite set tpd, fpdqq | fpdq ‰ zeroDu. If D

1 is also effectively given, the set
rD1 Ñ Dsf of finite mappings: D1 Ñ D is effectively given.

We will consider terms over finite or countable signatures F that satisfy the
following conditions:

(a) the set F is effectively given,
(b) the arity of a symbol can be computed in constant time,
(c) its symbols have bounded arity and ρpF q denotes the maximal arity.
We will simply say that F is an effectively given signature. To insure (b),

we can begin the word that encodes a symbol by its arity. It follows that
one can check in linear time whether a labelled tree is actually the syntactic
tree of a ”well-formed” term in T pF q. We will only use relabellings: F Ñ F 1

9In [16], Definition 2.8, we take for k the cardinality of D. This gives an equivalent notion
but in our applications, it is easier to bound the length of a word in D than to determine its
exact cardinality.
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that are computable in linear time. Their extensions: T pF q Ñ T pF 1q are also
computable in linear time by our definition of the size of a term (cf. Section
1.1).

An F -algebra D is effectively given if its signature and its domain are ef-
fectively given and its operations are computable. The mapping valD is then
computable.

1.5 Parameterization

We give definitions relative to parameterized complexity [19, 20, 26].
Let F be a signature, for which the notion of size of a term is fixed. A

function h : T pF q Ñ N is P-bounded if there exists a constant a such that
hptq ď }t}a for every term t in T pF q. It is FPT-bounded if hptq ď fpSigptqq.}t}a

and XP-bounded if hptq ď fpSigptqq.}t}gpSigptqq for some fixed functions f and
g and constant a. Since |t| ď }t} ď |t| .ℓpSigptqq for some function ℓ, }t} can be
replaced by |t| in the last two cases.

A function α : T pF q Ñ D is P-computable (resp. FPT-computable, XP-
computable) if it has an algorithm whose computation time is P-bounded (resp.
FPT-bounded, XP-bounded). We use Sigptq as a parameter in the sense of
parameterized complexity. If F is finite, these three notions are equivalent. If
α is a property, we say that it is, respectively, P-, FPT- or XP-decidable.

We will consider graph algorithms whose inputs are given by terms t over
F8. By constructing automata, we will obtain algorithms that are polynomial-
time, FPT or XP for Sigptq as parameter. The size of the input is }t}. If the
graph is given without any defining term t, we must construct such a term and
we get algorithms with same parameterized time complexity for the following
reasons.

First we observe that every graph with n vertices is defined by a good term
in T pFnq where each vertex has a distinct label and no relabelling is made.
Such a term has size Opn2. logpnqq (cf. Section 1.2) and can be constructed in
polynomial time in n. Hence, if a function α on graphs whose input is a term
in T pF8q is P-computable, then it is also P-computable if the graph of interest
is given without any defining term.

The situation is more complicated for FPT- and XP-computability. The
parsing problem, i.e., the problem of deciding if a graph has clique-width at
most k is NP-complete where k part of the input [24]. However, finding an
optimal term is not necessary. There is an algorithm that computes, for every
directed or undirected graph G, a good term in T pFhpcwdpGqqq that defines this
graph without being necessarily optimal ([16], Proposition 6.8). This algorithm
takes time gpcwdpGqq.|VG|

3 where g and h are fixed functions. It follows that an
FPT or XP graph algorithm taking as input a term in T pF8q yields an equivalent
FPT or XP graph algorithm for clique-width as parameter that takes a graph
as input.
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2 Fly-automata

2.1 Fly-automata: definitions

We review definitions from [12] and we extend them by equipping automata
with output functions.

Definitions 1: Fly-automata that recognize languages.
(a) Let F be an effectively given signature. A fly-automaton over F (in

short, an FA over F ) is a 4-tuple A “ xF,QA, δA,AccAy such that QA is
an effectively given set called the set of states, AccA is a decidable subset of
QA called the set of accepting states, (equivalently, AccA “ α´1pTrueq for
some computable mapping α : QA Ñ tTrue, Falseuq, and δA is a computable
function such that, for each tuple pf, q1, . . . , qmq such that q1, . . . , qm P QA,
f P F and ρpfq “ m, δApf, q1, . . . , qmq is a finite (enumerated) set of states.
The transitions are f rq1, . . . , qms ÑA q if and only if q P δApf, q1, . . . , qmq. We
say that f rq1, . . . , qms ÑA q is a transition that yields q.

Each state is a word over a finite alphabet Z hence has a size defined as the
length of that word. Each set δApf, q1, . . . , qmq is ordered by some linear order
on Z˚. We say that A is finite if F and QA are finite. If furthermore, QA, AccA
and its transitions are listed in tables, we call A a table-automaton.

Remark : An infinite FA A is specified by a finite tuple A of programs, or in
an abstract setting, of Turing machines, that decide membership in F , QA and
AccA and compute δA and the arity function of F . But since one cannot decide
if the function defined by a program or a Turing machine is total on its domain,
the set of such tuples A is not recursive. We could strengthen the definition
(and make it heavier) by requiring that each program of A is accompanied
with a proof that it is terminating. This requirement will hold for the FA we
will construct because their ”termination properties” will be straightforward to
prove. Furthermore, all transformations and combinations of fly-automata will
preserve these termination properties.

(b) A run of an FA A on a term t P T pF q is a mapping r : Posptq Ñ QA

such that:

if u is an occurrence of a function symbol f P F and u1, ..., uρpfq

is the sequence of its sons, then f rrpu1q, . . . , rpuρpfqqs ÑA rpuq; if
ρpfq “ 0, the condition reads f ÑA rpuq.

Automata are bottom-up without ε-transition. For state q, LpA, qq is the set
of terms t in T pF q on which there is a run r of A such that rproot tq “ q. A run r

on t is accepting if rproot tq is accepting. The language recognized ( or accepted
by A) is LpAq :“

Ť
tLpA, qq | q P AccAu Ď T pF q. A state q is accessible if
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LpA, qq ‰ H. We denote by QA æ t the set of states that occur in the runs
on t and on its subterms, and by QA æ L the union of the sets QA æ t for t in
L Ď T pF q.

A sink is a state s such that, for every transition f rq1, . . . , qρpfqs ÑA q, we
have q “ s if qi “ s for some i. If F has at least one symbol of arity at least
2, an automaton has at most one sink. A state named Success (resp. Error)
will always be an accepting (resp. a nonaccepting) sink, but accepting (resp.
nonaccepting) states may be different from Success (resp. from Error).

Unless A is finite, we cannot decide if a state is accessible, hence we cannot
perform on FA the classical trimming operation that removes the inaccessible
states. This fact raises no problem as we will see next.

(c) Deterministic automata. An FA A is deterministic if all sets δApf, q1, . . . ,
qρpfqq have cardinality 1, hence, ”deterministic” means deterministic and com-
plete. A deterministic FA A has, on each term t, a unique run denoted by runA,t

and qAptq :“ runA,tproottq. The mapping qA is computable and the membership
in LpAq of a term t is decidable.

Every FA A over F can be determinized as follows. For every term t P
T pF q, we denote by run˚

A,t the mapping: Posptq Ñ Pf pQAq that associates
with every position u the finite set of states of the form rproott{uq for some
run r on the subterm t{u of t. If A is finite, then run˚

A,t “ runB,t where B
is its classical determinized automaton, denoted by detpAq, with set of states
included in Pf pQAq. If A is infinite, we have the same equality where B is a
deterministic FA with set of states Pf pQAq that we denote also by detpAq (cf.
[12], Proposition 45(2)). In both cases, the run of detpAq on a term is called the
determinized run of A on this term. The mapping run˚

A,t is computable and
the membership in LpAq of a term in T pF q is decidable because t P LpAq if and
only if the set run˚

A,tproottq contains an accepting state. We define ndegAptq,
the nondeterminism degree of A on t, as the maximal cardinality of run˚

A,tpuq
for u in Posptq. We have ndegAptq ď |QA æ t|.

If A is deterministic, then detpAq is not identical to A because its accessible
states are singletons tqu such that q P QA. However, the determinized run of A
is isomorphic to the run detpAq and the two automata recognize the same lan-
guages. It is not decidable whether an FA A given by a tuple A is deterministic.
However, when we construct an FA, we know whether it is deterministic.

Whether all states of an FA are accessible or not, does not affect the mem-
bership algorithm: the inaccessible states never appear in any run. There is no
need to remove them as for table-automata, in order to get small transition
tables. The emptiness of LpAq is semi-decidable (one can enumerate all terms
and, for each of them, check its membership in LpAq) but undecidable ([16];
Proposition 3.95).

Definition 2: Fly-automata that compute functions.
An FA with output is a 4-tuple A “ xF,QA, δA,OutAy as in Definition 1

except that the set AccA is replaced by a computable output function OutA:
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QA Ñ D where D is effectively given. If A is deterministic, the function com-
puted by A is ComppAq : T pF q Ñ D such that ComppAqptq :“ OutApqAptqq.
In the general case, the computed function is CompndpAq : T pF q Ñ Pf pDq
such that CompndpAqptq :“ tOutApqq | q P run˚

A,tproottqu. The latter set is
equal to ComppBqptq where B is detpAq equipped with the output function
OutB : Pf pQAq Ñ Pf pDq such that OutBpαq :“ tOutApqq | q P αu. If A is
deterministic, then CompndpAqptq :“ tCompAptqu.

Examples 3: (a) The height htptq of a term t is computable by a determin-
istic FA. More generally, if M is an effectively given F -algebra, then valM is
computable by a deterministic FA over F with set of states M , the identity as
output function and transitions f rm1, ...,mρpfqs Ñ fMpm1, ...,mρpfqq.

(b) Let F be an effectively given signature, r :“ ρpF q and f P F . If t P T pF q,
Posf ptq is the set of occurrences of f in t. The function Posf is computed by
the following deterministic FA Af : its states are the finite sets of words over
rrs (denoting positions of terms in T pF q). The transitions are as follows, for
q1, ..., qr P Pf prrs

˚q :

f rq1, ..., qss Ñ tεu Y 1.q1 Y ...Y s.qs,

f 1rq1, ..., qs1 s Ñ 1.q1 Y ...Y s1.qs1 if f 1 ‰ f .

At each position u of t, runAf ,tpuq “ Posf pt{uq, hence ComppAf q “ Posf
if we take the identity as output function.

Definitions 4: Subautomata; products and other transformations of au-
tomata .

(1) Subautomata. We say that a signature H is a subsignature of F , written
H Ď F , if every operation of H is an operation of F with same arity. We say
that an FA B over H is a subautomaton of an FA A over F , which we denote
by B Ď A, if:

H Ď F , QB Ď QA,

δBpf, q1, . . . , qρpfqq “ δApf, q1, . . . , qρpfqq Ď QB if f P H and

q1, . . . , qρpfq P QB,

and AccB “ AccA XQB or OutB “ OutA æ QB .

If A is deterministic then B is so. If A recognizes a language, then LpBq “
LpAq X T pHq. If it computes a function and is deterministic, then ComppBq “
ComppAq æ T pHq; in the general case, CompndpBq “ CompndpAq æ T pHq. If
A is an FA over F and H Ď F, then A æ H :“ xH,QA, δAæH ,OutAy where
δAæH is the restriction of δA to the tuples pf, q1, . . . , qρpfqq such that f P H, is a
subautomaton of A. Its set of states is QA (some states may not be accessible).

The Weak Recognizability Theorem ([16], Chapters 5 and 6 and [15]) states
that, for each MS sentence ϕ expressing a graph property and each integer k,
one can construct a deterministic finite automaton Aϕ,k over Fk that recognizes
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the set of terms t P T pFkq such that Gptq |ù ϕ. In [12], Section 7.3.1 we prove
more: we construct a deterministic FA Aϕ,8 on F8 that recognizes the terms
t P T pF8q such that Gptq |ù ϕ. The automata Aϕ,k are subautomata of Aϕ,8.

(2) Products of fly-automata. Let A1, ...,Ak be FA over a signature F , and g

be a computable mapping from QA1
ˆ ...ˆQAk

to some effectively given domain
D. We define A :“ A1ˆg ...ˆg Ak as the FA with set of states QA1

ˆ ...ˆQAk
,

transitions defined by:

δApf, q1, . . . , qρpfqq :“

tpp1, . . . , pρpfqq | pi P δAi
pf, q1ris, . . . , qρpfqrisq for each iu

where qris is the i-th component of a ρpfq-tuple of states q,

and output function defined by:

OutAppp1, . . . , pkqq :“ gpp1, . . . , pkq.

Depending on g, A recognizes a language or defines a function.

(3) Output composition. Let A be an FA with output mapping: QA Ñ D
and g be computable: D Ñ D1. We let g ˝A be the automaton obtained from
A by replacing OutA by g ˝OutA. If A is deterministic, then Comppg ˝Aq “
g ˝ ComppAq. In the general case, Compndpg ˝ Aq “ pg ˝ CompndpAq where
pgpαq :“ tgpdq | d P αu.

(4) Image. Let h : T pHq Ñ T pF q be a relabelling having a computable
inverse h´1 such that h´1pfq is finite for each f P F . If L Ď T pHq, then
hpLq :“ thptq | t P Lu. If A is an FA over H , we let hpAq be the automaton
over F obtained from A by replacing each transition f rq1, ¨ ¨ ¨ , qρpfqs ÑA q by
hpfqrq1, ¨ ¨ ¨ , qρpfqs Ñ q. It is an FA by Proposition 45 of [12]. We say that
hpAq is the image of A under h. It is not deterministic in general, even if A is.
We have hpLpA, qqq “ LphpAq, qq for every state q and, if A defines a language,
then hpLpAqq “ LphpAqq because hpAq has the same accepting states as A. If A
computes a function, then CompndphpAqqptq=

Ť
tCompndpAqpt

1q | t1 P h´1ptqu.

(5) Inverse image. Let h : T pHq Ñ T pF q be a computable relabelling. If
K Ď T pF q, then h´1pKq :“ tt P T pHq | hptq P Ku. If A is an FA over F , we
define h´1pAq as the FA over H with transitions of the form f rq1, ¨ ¨ ¨ , qρpfqs Ñ
q such that hpfqrq1, ¨ ¨ ¨ , qρpfqs ÑA q. We call h´1pAq the inverse image of
A under h ([12], Definition 17(h)); it is deterministic if A is so. We have
Lph´1pAq, qq “ h´1pLpA, qqq for every state q. If A defines a language, then
Lph´1pAqq “ h´1pLpAqq. If A computes a function α: T pF q Ñ D, then h´1pAq
defines α ˝ h : T pHq Ñ D. In Section 1.3 we have noted that if αpY1, ..., Ymq
is a function on terms in T pF q, S1, ..., Sm are set terms over X1, ..., Xs and
βpXq :“ αpS1pXq, ..., SmpXqq (with X “ pX1, ..., Xsq) then β “ α ˝ h where
h:T pF psqq Ñ T pF pmqq is the relabelling that encodes the tuple pS1, ..., Smq. If
α is computed by an FA A, then β is computed by h´1pAq.
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Example 5: The number of runs of a nondeterministic FA.
Let A be a nondeterministic FA over F without output. For each t P T pF q,

we define #AccRunptq as the number of accepting runs of A on t. We will
construct a deterministic FA B that computes #AccRun.We define it from detpAq
in such a way that, for each term t, if qdetpAqptq “ tq1, ..., qpu, then qBptq “
tpq1,m1q, ..., pqp,mpqu where mi is the number of runs of A that yield qi at
the root of t. It is convenient to consider such a state as the finite mapping
µ:QA Ñ N such that µpqiq “ mi and µpqq “ 0 if q R tq1, ..., qpu. As output
function, we take OutBpµq :“ ΣJµpqq | q P AccAK. Some typical transitions are
as follows, with states handled as finite mappings:

aÑ µ such that µpqq :“ if aÑA q then 1 else 0, for each q P QA,

f rµ1, µ2s Ñ µ such that µpqq :“ ΣJµ1pq1q.µ2pq2q | f rq1, q2s ÑA qK,
for each q P QA.

The summations are over multisets and do not give the infinite value ω. If
A has nondeterminism degree d on a term t, then it has at most |t|d runs on
this term; the size of a state of B is thus Opd2. logp|t|qq where numbers of runs
are written in binary.

In this example, we can consider that a state q of A at a position u is
enriched with an attribute that records information about all the runs of A
on the subterm issued from u that reach state q at u. This information is the
number of such runs. We get a nondeterministic FA A1 whose states are pairs
pq,mq in QA ˆ N`. The FA B is then obtained from detpA1q. This observation
will be developped and formalized in Section 3.2.

2.2 Polynomial-time fly-automata

We now classify fly-automata according to their computation times.

Definitions 6: Polynomial-time fly-automata and related notions
A deterministic FA over a signature F , possibly with output, is a polynomial-

time FA (a P-FA) if its computation time on any term t P T pF q is P-bounded
(cf. Section 1.5). It is an FPT-FA or an XP-FA if its computation time is, respec-
tively, FPT-bounded or XP-bounded. It is a linear FPT-FA if the computation
time is bounded by fpSigptqq.}t} (equivalently by f 1pSigptqq. |t|) for some fixed
function f (or f 1). The first three notions coincide if F is finite. A determin-
istic FA A over F is an XP-FA if and only if A æ F 1 is a P-FA for each finite
subsignature F 1 of F .

Lemma 7: Let A be an FA over a signature F.

(1) If A is deterministic, it is a P-FA, an FPT-FA or an XP-FA if and only
if there are functions p1, p2, p3 such that, in the run of A on any term t P T pF q:
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p1p}t}q bounds the time for computing a transition,

p2p}t}q bounds the size of a state,

p3p}t}q bounds the time for checking if a state is accepting or for
computing the output10,

and these functions are respectively polynomials, FPT-bounded or XP-bound-
ed.

(2) In the general case, detpAq is a P-FA, an FPT-FA or an XP-FA if and
only if there are functions p1, ..., p4 such that, in the determinized run of A on
any term t P T pF q:

p1p}t}q bounds the time for computing the next transition11,

p2p}t}q and p3p}t}q are as in (1),

p4p}t}q bounds the nondeterminism degree of A on t,

and these functions are respectively polynomials, FPT-bounded or XP-bound-
ed.

Proof : We prove (2) that yields (1).
”Only if”. If detpAq is a P-FA with bounding polynomial p (i.e., the com-

putation time is bounded by pp}t}q), then, one can take pi “ p for i “ 1, ..., 4.
”If”. Let us conversely assume that A has bounding polynomials p1, ..., p4.

Let t be a term of size }t} “ n. The states of detpAq on t are sets of at most
p4pnq words of length at most p2pnq, that we organize as trees with at most
p4pnq branches. Firing a transition of detpAq at an occurrence u in t of a
binary symbol f with sons u1 and u2 uses the following operations:

for all states q1 at u1 and q2 at u2, we compute in time bounded
by p4pnq

2.p1pnq the states of δApf, q1, q2q and we insert them in the
already constructed tree intended to encode the state of detpAq at
u. In this way we eliminate duplicates. Each insertion takes time
at most p2pnq, hence the total time is bounded by p4pnq

3.pp1pnq`
p2pnqq.

In time bounded by p3pnq.p4pnq we can check if the state at the root is
accepting, and in this case, we can compute the output. The case of symbols
of different arities is similar. As |t| ď n, we can take the polynomial ppnq :“
n.pp1pnq ` p2pnqq.p4pnq

ρpF q`1 ` p3pnq.p4pnq to bound the global computation
time.

The proof yields the result for the two other types of bound. ˝

10By using OutA; it bounds also the size of the output.
11We recall from Definition 1 that the sets δApf, q1, . . . , qρpfqq are linearly ordered; firing

the next transition includes recognizing that there is no next transition.
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Remarks and examples 8: (1) For finding if a deterministic FA is a
P-FA, an FPT-FA or an XP-FA, the main value to examine is the maximal
size of a state, to be bounded by p2, because in most cases, computing the
output or the state yielded by a transition is doable in polynomial time (with
a small constant exponent) in the size of the considered states. For an FA that
is not deterministic, we must also examine the degree of nondeterminism to be
bounded by p4.

(2) For every MS formula ϕpXq with X “ pX1, ..., Xsq that expresses a graph

property, we can construct a linear FPT-FA A8 over F
psq
8 that recognizes the

set of terms t ˚ X such that Gptq |ù ϕpXq. The functions p1, p2, p3 of Lemma

7(1) depend only on the minimum k such that t P T pF
psq
k q. The recognition

time is thus fpkq. |t| and even f 1pkq.
ˇ̌
VGptq

ˇ̌
if t is a good term (cf. the end of

Section 1.2). The function fpkq may be a polynomial or a hyper-exponential
function. (Concrete cases are shown in Table 20 of [12].) For each k, A8 has

a finite subautomaton Ak over F
psq
k that recognizes the set tt ˚X P T pF

psq
k q |

Gptq |ù ϕpXqu. We have Ak Ď Ak1 if k ă k1 ([12], Section 7.3.1).
(3) In our applications to graphs, ρpF q “ 2. Furthermore, the only non-

deterministic transitions are those from the nullary symbols. It follows that
the bound p4pnq

3.pp1pnq` p2pnqq in the proof of Lemma 7 can be replaced by
p4pnq

2.pp1pnq` p2pnqq. As global time complexity, we get n.pp1pnq`p2pnqq.p4pnq
2

`p3pnq.p4pnq and, in most cases, Opn.p1pnq.p4pnq
2q.

(4) If t P T pF8q, its height, the number of vertices of Gptq (it is the number
of occurrences of the nullary symbols in C) and the finite sets of port labels πptq
and µptq (cf. Section 1.2) can be computed by P-FA. The set of good terms is
thus P-FA recognizable.

The states of the P-FA Aht that computes the height are positive integers
and its transitions are such that qAht

ptq “ htptq. A term t is uniform if and only
if any two leaves of its syntactic tree are at the same distance to the root. This
property is not MS expressible. It is equivalent to the condition that, for every
position u with sons u1 and u2, the subterms t{u1 and t{u2 have same height. The
automaton Aht can thus be modified into a P-FA AUnif that decides uniformity.
Its set of states is N` Y tErroru and its transitions are such that qAUnif

ptq is
htptq if t is uniform and Error otherwise.

(5) The mapping SatX.P pXq that associates with a term t the set of sets
X Ď Posptq that satisfy P pXq is not P-FA computable, and even not XP-FA
computable in general for the obvious reason that its output is not always of
polynomial size (take P pXq always true)12.

Proposition 9: Let F be a signature. Every P-computable (resp. FPT-
computable or XP-computable) function α on T pF q is computable by a P-FA
(resp. by an FPT-FA or an XP-FA).

Proof : Consider the deterministic FA A over F with set of states T pF q

12Unless SatX.P pXq is encoded in a particular compact way; here we take it as a straight
list of sets.
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that associates with each position u of the input term t the state t{u, i.e., the
subterm of t issued from u. The state at the root is t itself, and is obtained in
linear time. We take α as output function. Then A is a P-FA (resp. an FPT-FA
or an XP-FA). ˝

Hence, our three notions of FA may look uninteresting. Actually, we will be
interested by giving effective constructions of P-FA, FPT-FA and XP-FA from
logical expressions of functions and properties (possibly not MS expressible)
that are computable or decidable in polynomial time on graphs of bounded
tree-width or clique-width. Our motivation is to obtain uniform, flexible and
implementable constructions.

All our existence proofs are effective. When we say that a function is P-FA
computable, we mean that it is computable by a P-FA that we have constructed
or that we know how to construct by an algorithm, and for which the polynomial
bound on the computation time can be proved. The same remark applies to
FPT-FA and XP-FA computability.

2.3 Transformations and compositions of automata

In view of building algorithms by combining previously constructed automata,
we define and analyze several operations on automata.

Proposition 10: Let A1, ...,Ar be P-FA that compute functions α1, ..., αr :
T pF q Ñ D. There exists a P-FA A that computes the function α : T pF q Ñ Dr

such that αptq :“ pα1ptq, ..., αrptqq. If A1, ...,Ar are FPT-FA or XP-FA, then A
is of same type.

Proof : The product automaton A “ A1 ˆg ... ˆg Ar where gpq1, ..., qrq :“
pOutA1

pq1q, ..., OutAr
pqrqq is a deterministic FA (cf. Definition 4(2)) that com-

putes α. The computation time of A on a term is the sum of the computation
times of A1, ...,Ar on this term. The claimed results follow.˝

Next we consider operations defined in Definition 4 that transform single
automata.

Proposition 11: Let A be a P-FA that computes α : T pF q Ñ D.

(1) If g is a P-computable function D Ñ D1, then, there is a P-FA over F
that computes g ˝ α.

(2) Let h : F 1 Ñ F be a relabelling. There exists a P-FA over F 1 that
computes the mapping α ˝ h : T pF 1q Ñ D.

The same implications hold for FPT-FA and XP-FA.

Proof : (1) The deterministic FA g ˝A defined from A (output composition)
by replacing OutA by g ˝ OutA computes g ˝ α. The size of an output is
polynomially bounded, hence, we get a P-FA.
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(2) Immediate by the inverse image construction. Recall that h is com-
putable in linear time (cf. Section 1.4).

Each class P-FA, FPT-FA and XP-FA is preserved in both cases. ˝

Proposition 12: Let h : F Ñ F 1 be a relabelling with a computable
inverse. Let A be a P-FA (resp. an FPT-FA or an XP-FA) that computes
α : T pF q Ñ D. The fly-automaton detphpAqq over F 1 is a P-FA (resp. an FPT-
FA or an XP-FA) if and only if the nondeterminism degree of hpAq is P-bounded
(resp. FPT-bounded or XP-bounded) in the size of terms over F 1.

Proof : Immediate consequence of the definitions and Lemma 7. ˝

In the sufficient conditions, the bounds on ndeghpAqptq can be replaced by

bounds on
ˇ̌
QA æ h

´1ptq
ˇ̌
, the number of states of A used on input terms t1 such

that hpt1q “ t, that are frequently easier to evaluate.

The following counter-example shows that unless P“NP, there is no alter-
native image construction that preserves the polynomial-time property.

Counter-example 13: There exist a finite signature F and a P-FA de-
cidable property P pXq of terms in T pF p1qq such that DX.P pXq is not P-FA
decidable unless P“NP.

We give a sketch of proof that uses a reduction from SAT, the satisfiability
problem for propositional formulas. There exists a finite signature F and a P-
decidable property P pXq of terms in T pF p1qq such that each instance of SAT is
encoded by a term t P T pF p1qq and each solution of this problem corresponds to
a set X of positions of t that satisfies P pXq. Hence P pXq is P-FA decidable by
Proposition 9. Since DX.P pXq is not P-decidable unless P“NP, it is not P-FA
decidable, again by Proposition 9. ˝

Examples 14: P-FA for cardinality and identity.
(a) We consider the function Card that associates with a set X of positions

of a term t P T pF q its cardinality |X |. Hence, the corresponding mapping
: T pF p1qq Ñ N is computed by a P-FA ACardpXq whose states are the natural
numbers. The computation time is Opn. logpnqq. It is Opnq if we admit that the
addition of two numbers can be done in constant time.

From ACardpXq we can construct, for each integer p, a P-FA ACardpXqďp to
check that X has at most p elements. However, the automata ACardpXqďp can
be handled as instanciations of a unique P-FA that takes as input a term t, a
set of positions X of this term and an integer p as auxiliary input.

(b) We consider the function Id that associates with a set X of positions
of a term this set itself. The construction of a FA denoted by AIdpXq for the
function Id is straightforward (cf. Example 3(b)). Its states are sets of positions

of the input term, hence have size Op}t}2q (cf. Section 1.1). The automaton
AIdpXq is a P-FA. It may look trivial, but it will be useful for Corollary 18 or
when combined with others, by means of Proposition 15 (see Section 4.1.1 for
an example).

25



3 Fly-automata for logically defined properties

and functions

We now examine if and when the transformations of automata representing cer-
tain logical constructions preserve the classes P-FA, FPT-FA and XP-FA. From
Counter-example 13, we know that this is not the case for existential set quan-
tifications. We also examine in the same perspective the logic based functions
defined in the Introduction. We consider automata on general effectively given
signatures, that check properties or compute functions on terms. Applications
to graphs will be considered in Section 4.

Two functions (or properties) α and β are of same type if they have the same
number of set arguments.

Proposition 15: (1) If α1, ..., αr are P-FA computable functions of same
type and g is a P-computable function (or relation) of appropriate type, the
function (or the property) g ˝ pα1, ..., αrq is P-FA computable (or P-FA decid-
able).

(2) If α1, α2 and P are P-FA computable functions of same type and P is
Boolean-valued, then the function if P then α1 else α2 is P-FA computable.

(3) If P and Q are P-FA decidable properties of same type, then, so are  P ,
P _Q and P ^Q.

(4) The same three properties hold with FPT-FA and XP-FA.

Proof: Straightforward consequences of Propositions 10 and 11(1). ˝

We denote by α æ P ^ ...^Q the function if P ^ ...^Q then α else K:
it is the restriction of α to its arguments that satisfy P ^ ... ^Q and could be
written p...pα æ P q æ ...q æ Q. (The symbol K stands for an undefined value).
We now consider substitutions of set terms and variables (cf. Section 1.3).

Proposition 16: Let αpY1, ..., Ymq denote a P-FA function on terms in T pF q
with set arguments Y1, ..., Ym. Let S1, ..., Sm be set terms over X1, ..., Xs. The
function βpX1, ..., Xsq :“ αpS1, ..., Smq is P-FA computable. The same holds
with FPT-FA and XP-FA.

Proof : We recall from Section 1.3 that β “ α ˝ h where h is a relabelling:
T pF psqq Ñ T pF pmqq that modifies only the Boolean part of each symbol. If A
is a P-FA that computes α, then B :“ h´1pAq is a P-FA by Proposition 11(2)
that computes β. The same proof works for FPT-FA and XP-FA. ˝

In Proposition 15, we combine functions and properties of same type. With
the previous proposition, we can extend it to properties and functions that
are not of same type. For example if we need P pX1, X2q ^ QpX1, X2, X3q, we
redefine P pX1, X2q into P 1pX1, X2, X3q that is true if and only if P pX1, X2q
is, independently of X3. Proposition 16 shows how to transform an automaton
for P pX1, X2q into one for P 1pX1, X2, X3q. Then P pX1, X2q ^QpX1, X2, X3q is
equivalent to P 1pX1, X2, X3q^QpX1, X2, X3q and we can apply Proposition 15.
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3.1 First-order constructions

Let P be a property of terms t taking also as argument an s-tuple of sets of
positions X “ pX1, ..., Xsq. We recall that Dx1, ..., xs.P px1, ..., xsq (also written
Dx.P pxq) abbreviates DX.pP pXq ^ SglpX1q ^ ...^ SglpXsqq.

We define Satx.P pxqptq as tpu1, ..., usq P pPosptqqs | P ptu1u, ..., tusuq holds
in term tu. This set is in bijection with SatX.pP pXq^SglpX1q^...^SglpXsqqptq.
(The function SatX.p.q is defined in the introduction).

If αpXq is a function, we define SetValX.αpXqptq as the set of values αpXq
different fromK and SetValx.αpxqptq as SetValX.pαpXq æ SglpX1q^...^SglpXsqqptq.

Theorem 17: (1) If P pXq is a P-FA decidable property, then the properties
Dx.P pxq and @x.P pxq are P-FA decidable.

(2) If αpXq is a P-FA computable function, then the function SetValx.αpxq
is P-FA computable.

(3) The same implications hold for the classes FPT-FA and XP-FA.

Proof : (1) and (3). We let A be a deterministic FA over F psq that decides
P pXq. We let Bi be the deterministic FA over F psq for SglpXiq with states 0,1
and ErrorBi

such that:

run
Bi,t˚X

puq “ 0 if Xi{u “ H,

run
Bi,t˚X

puq “ 1 if |Xi{u| “ 1 and

run
Bi,t˚X

puq “ ErrorBi
if |Xi{u| ě 2.

There is, by Proposition 15, a deterministic FA that decides property P pX1,

..., Xsq^SglpX1q^ ...^SglpXsq. Its set of states is QAˆQB1
ˆ ...ˆQBs

and its
set of accepting states is AccAˆt1uˆ ...ˆt1u. We build a smaller deterministic
FA C with set of states tErrorCu Y ppQA ´ tErrorAuq ˆ t0, 1u

sq and same set
of accepting states by merging into a unique error state ErrorC all tuples of
QA ˆQB1

ˆ ...ˆQBs
, one component of which is an error state.

The nondeterministic automaton prspCq decides the property Dx.P pxq. Its
states at a position u in a term t P T pF q are ErrorC or the tuples of the
form prun

A,t˚Xpuq, |X1{u|, ..., |Xs{u|q such that |X1{u|, ..., |Xs{u| ď 1. Since
A is deterministic, there are at most 1 ` p|t| ` 1qs different such states and
the nondeterminism degree of prspCq is bounded by the polynomial ppnq “
1` pn` 1qs that does not depend on Sigptq. Hence detpprspCqq is a P-FA, an
FPT-FA or an XP-FA by Lemma 7 if A is so.

Property @x.P pxq can be written  Dx. P pxq. The results follow since, by
by Proposition 15(3,4) the classes of P-FA, FPT-FA and XP-FA that check
properties are closed under the transformation implementing negation.

(2) and (3). We apply the same construction to an FA A over F psq that
computes αpXq. As output function for C, we take:

OutCppq, 1, ..., 1qq :“ OutApqq, for q P QA,

OutCppq :“ K, for all other states p of C.
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By the definitions, ComppdetpprspCqqq is equal to SetValx.αpxq hence, is P-
FA, or FPT-FA or XP-FA computable by Lemma 7, depending on A as above.
˝

The construction of this proof is generic in that it applies to any deter-
ministic FA A over F psq, even that is not of type XP. The hypotheses on the
type, P, FPT or XP of A are only used to determine the type of the resulting
automaton.

Corollary 18: If P pXq is a P-FA decidable property, then the functions
Satx.P pxq and #x.P pxq are P-FA computable. The same implication holds
with FPT-FA and XP-FA.

Proof: We observe that Satx.P pxq “ SetValx.αpxq where αpxq :“ if P pxq
then x else K. The result follows then from Propositions 15(2), Theorem 17
and a variant of AIdpXq of Example 14(b). However, we can give a direct
construction that modifies the one of the proof of Theorem 17. We replace each
Bi by B1i such that:

run
B1

i
,t˚Xpuq “ H if Xi{u “ H,

run
B1

i
,t˚Xpuq “ twu if Xi{u “ tu.wu (positions are Dewey words)

and

run
B1

i
,t˚Xpuq “ ErrorB1

i
if |Xi{u| ě 2.

Then, we make the product AˆB11ˆ ...ˆB1s into a deterministic automaton
C1 with set of states tErrorC1u Y ppQA ´ tErrorAuq ˆ Pď1prρpF qs

˚qsq similarly
as in the proof of Theorem 17. The deterministic automaton C2, defined as
detpprpC1qq equipped with the output function such that for Z Ď QC1 “ QprpC1q:

OutC2pZq :“ tpx1, ..., xsq | pq, tx1u, ..., txsuq P Z,AccApqq “ Trueu, p1q

defines Satx.P pxq. The states of prpC1q at a position u of t are ErrorC1 and
tuples prunA,t˚pX1,...,Xsqpuq, X1, ..., Xsq such that |X1|, ..., |Xs| ď 1 and X1 Y ...

YXs Ď rrs
˚. Since A is deterministic, there are at most 1 ` p|t| ` 1qs different

such states at each position u. The nondeterminism degree of detpprpC1qq is
bounded as in the proof of Theorem 17. The conclusions follow from Lemma 7.

Since the value #x.P pxq on a term t is computable in linear time from that
of Satx.P pxq, we get the corresponding assertions (by using Proposition 11(1)).
However there is a more direct construction that does not use Satx.P pxq as an
intermediate step (see below (3.2,2.4)). It is related to (but does not coincide
with) counting the number of accepting runs of prpC1q, which we did in Example
5. ˝

Remarks 19: (1) From SetValx.αpxq, we can obtain in polynomial time
the maximum or the minimum value of αptx1u, ..., txsuq if the range of α is
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linearly ordered and two values can be compared in polynomial time. The
corresponding functions are thus P-FA (or FPT-FA, or XP-FA) computable.
Alternative constructions will be given below.

(2) The results of Theorem 17 and Corollary 18 remain valid if each condition
SglpXiq is replaced by CardpXiq “ ci or CardpXiq ď ci for fixed integers ci. In
particular, we can compute:

#X.pP pXq ^ CardpX1q ď c1 ^ ...^ CardpXsq ď csq.

The exponents in the bounding polynomial become larger, but they still
depend only on the numbers c1, ..., cs. (The polynomial ppnq “ 1 ` pn` 1qs in
the proof of Theorem 17(1) is replaced by 1 ` pn ` 1qc1`...`cs). By Counter-
example 20 below, this fact does not hold with CardpXiq ě ci: just take ci “ 0.
˝

In Theorem 17, we only handle first-order quantifications. Counter-example
13 has shown that we cannot replace them by arbitrary set quantifications. We
now give a counter-example that does not use any complexity hypothesis.

Counter-example 20: We sketch a proof that the image construction for
FA that corresponds to an existential set quantification does not preserve the
polynomial-time property.

We consider terms over F “ tf, g, au where f is binary, g is unary and a is
nullary. For every position u of t P T pF q, we let spuq :“ |Posptq{u|. For a set X
of positions of t, we define mpXq as the multiset of numbers Jspuq | u P XK. We
let P pXq mean the following:

(i) X ‰ H, its elements are first sons of occurrences of f and

(ii) the multiset mpXq contains exactly two occurrences of each of
its elements.

There is a P-FA A over F p1q that decides P pXq. The state runA,t˚Xpuq is
Error if X{u contains a position different from u that is not the first son of
an occurrence of f or if mpX{uq contains at least three occurrences of some
integer. Otherwise, runA,t˚Xpuq “ pα,mpX{uqq with α :“ if u P X then 1
else 0. The accepting states are p0,mq where m is not empty and contains
exactly two occurrences of each of its elements.

The nondeterministic FA pr1pAq decides DX.P pXq. The second components
of any state belonging to run˚

prpAq,tpuq are the multisets mpX{uq that do not

contain three occurrences of a same integer and are associated with a set X of
positions containing only first sons of occurrences of f . The maximum cardi-
nality of the set run˚

prpAq,tpuq is the nondeterminism degree of prpAq on t. It is

not polynomially bounded in |t| hence prpAq is not a P-FA.
For a comparison with Counter-example 13, note that we can easily build a

P-FA that decides DX.P pXq without using prpAq as an intermediate step. ˝
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3.2 Monadic Second-order constructions

Although Theorem 17 does not extend to arbitrary existential set quantifica-
tions, we can get some results for them and more generally, for the computa-
tion of multispectra and the derived functions such as #X.P pXq, SpX.P pXq,
MinCardX.P pXq defined in the introduction and some others. In particular, we
will consider SatX.P pXqptq (the set of tuples X that satisfy P in t). This func-
tion generalizes Satx.P pxqptq considered in Section 3.1. We first present some
general constructions relative to FA. To simplify notation, we write definitions,
conditions and transitions of automata for operation symbols of arity 0 or 2.
The generalization to other arities is immediate.

3.2.1 Attributed automata

Let H be an effectively given signature and A be a deterministic FA over H

without output. Let D be an effectively given H-algebra. The mapping valD æ
LpAq (a partial function: T pHq Ñ Dq is computed by the deterministic FA
AˆgD with set of states QAˆD and output function g (cf. Definition 4(2) and
Example 3(a)) such that gpq, dq :“ if q P AccA then d else K (with K R D,
standing for ”undefined”).

We will denote this FA by A˙D and call it an attributed fly-automaton. We
consider d in a state pq, dq as an attribute of q (cf. Example 5). We will give a
slightly more general notion of attributed FA at the end of this section.

Assume that we also have a signature F and a computable relabelling h :
H Ñ F (cf. Definition 4(4); in particular h´1pfq is finite for each f) extended
into h : T pHq Ñ T pF q. We want to compute, for every term t P T pF q, the
following objects:

(a) γptq :“ tvalDpt
1q | t1 P LpAq X h´1ptqu P Pf pDq,

(b) ξptq :“ JvalDpt
1q | t1 P LpAq X h´1ptqK PMf pDq (ξptq is a finite

multiset over D).

In the next case, D is a distributive H-algebra and we want to compute:

(c) θptq :“ ]ξptq,

where ] is applied to finite multisets over D, that is a commutative monoid
with neutral element 0D. We recall from Section 1.1 that a multiset over D

is finite if the total number of occurrences of its elements different from 0D is
finite. Then, ]α is well-defined if α is finite. We have ]α :“ ]β where β is
obtained from α by removing all occurrences of 0D and we evaluate ]β with
the rules ]pβ1 \ β2q :“ p]β1q ] p]β2q and ]H :“ 0D.

We will prove that SpX.P pXq and SatX.P pXq are instances of Case (a),
MSpX.P pXq of Case (b) and #X.P pXq of Case (c) with A “ AP pXq, H “ F psq

and h “ pr : F psq Ñ F . Case (c) will also be useful for computing optimizing
functions (see Section (3.2.3)).
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Proposition 21: Let F,H, h,A and D be as above. The functions γ, ξ and
θ are computable by deterministic FA’s.

Proof : In all cases we will use B :“ hpA˙Dq, the image of the deterministic
FA A ˙ D under h, that is not deterministic in general. Cases (a) and (b) are
particular instances of Case (c), but we think useful to present Case (a) first.

Case (a) The function computed by detpBq is γ, up to the value K that is
not in D. More precisely γptq “ CompndpBqptq ´ tKu.

To prove this claim, we consider an element of γptq of the form valDpt
1q

for t1 P LpAq X h´1ptq. We have qA˙Dpt
1q “ pq, valDpt

1qq for some q in AccA.
Then B has a run on t “ hpt1q that yields state pq, valDpt

1qq at the root. Since
valDpt

1q ‰ K, we have valDpt
1q “ gppq, valDpt

1qqq P CompndpBqptq´tKu. For the
other direction, let d P CompndpBqptq´tKu. Then pq, dq P run

˚
B,tproottq for some

accepting state q. There is t1 P LpA, qq such that hpt1q “ t and d “ valDpt
1q.

Hence, d P γptq and we have the claimed equality.
The set γptq can thus be computed by running B deterministically (i.e., by

running detpBq, cf. Section 2.1) or by using an enumeration algorithm that
outputs one by one its elements [22].

Remarks: (1) When defining detpBq or running B deterministically, we can
eliminate the pairs pError, dq as the values d arising from the corresponding
runs will not contribute to γptq (but they can occur in alternative accepting
runs).

(2) The states of detpBq are finite subsets of QA ˆ D (or rather pQA ´
tErroruq ˆ D). It is convenient to identify such a set α with the mapping
α : QA Ñ Pf pDq such that αpqq :“ td P D | pq, dq P αu. This mapping is finite
in the sense of Section (1.4) if the empty set is the ”zero element” of PfpDq.
That is, α´1pPf pDq ´ tHuq is finite. It can also be identified with the finite set
of pairs pq, αpqqq such that αpqq ‰ H. In further constructions, the sets αpqq will
be aggregated into combinations of values by the associative and commutative
operation ] of a distributive algebra with domain of D.

(3) For clarity, we spell out the transitions of detpBq by using the latter
presentation of its states. For a nullary symbol a P F , we have a ÑdetpBq β

where β is the set of pairs pq, tbD | b P h´1paq X δ´1
A
pqquq such that h´1paq X

δ´1
A
pqq ‰ H. For a binary symbol f P F, we have f rα1, α2s ÑdetpBq β where β is

the set of pairs of the form pq,
Ť
tgDpα1pq1q, α2pq2qq | g P h

´1pfq, grq1, q2s ÑA

quq such that the second component of this pair is not empty. This formulation
shows that β can be computed with the following operations on PfpDq: set
union and the extensions to sets of the operations gD. ˝

Case (c) Here D “xD,],0, pgDqgPHy is a distributive H-algebra, and we
want to compute:

θptq :“ ]JvalDpt
1q | t1 P LpAq X h´1ptqK.

First we extend the mapping valD to finite sets of terms T Ď T pHq by:
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valDpT q :“ ]JvalDptq | t P T K.

Note that JvalDptq | t P T K is a finite multiset. The associativity and com-
mutativity of ] and the distributivity of gD over ] yield:

valDpT Z T 1q “ valDpT q ] valDpT
1q and p2q

valDpgpT, T
1qq “ gDpvalDpT q, valDpT

1qq. p3q

Recall that we only write such equalities for binary symbols g because their
extensions to other positive arities are obvious.

For q P QA, we define θpt, qq :“ valDpLpA, qq X h´1ptqq and we get θptq “
]Jθpt, qq | q P AccAK. The righthand side of this equality is well-defined because
θpt, qq ‰ 0 for finitely many states q, since h´1ptq is finite. The sets LpA, qq X
h´1ptq for q P QA are pairwise disjoint because A is deterministic, which ensures
the equality.

We define as follows a deterministic FA C over F :

its states are functions σ : QA Ñ D such that σ´1pD´t0uq is finite
(they can be seen as finite subsets of QA ˆ pD ´ t0uqq;

its transitions are defined in such a way that qCptq, the state reached
by C at the root of any term t P T pF q, is the mapping

λq P QA.θpt, qq (that can be seen as the finite set of pairs

pq, θpt, qqq P QA ˆD such that θpt, qq ‰ 0);

its output function is OutCpσq :“ ]Jσpqq | q P AccAK.

We now define the transitions. For a nullary symbol a P F , we define:

aÑC λq P QA.valDph
´1paq X δ´1

A
pqqq.

It is well-defined because h´1paq X δ´1
A
pqq is finite. For a binary symbol

f P F, we define:

f rσ1, σ2s ÑC λq. ] JgDpσ1pq1q, σ2pq2qq | hpgq “ f , grq1, q2s ÑA qK.
(4)

The operation ] is applied to a finite multiset (having finitely many elements
different from 0) because h´1pfq is finite, σ1pq1q ‰ 0 for finitely many states
q1, similarly for σ2pq2q and gDp0, dq “ gDpd,0q “ 0.

Before proving the validity of this construction, we compare C with detpBq.
The state qdetpBqptq is a finite subset, say α, of QAˆD (we use the same notation
as in the remark after Case (a)). The state qCptq can be seen as the finite subset
of QA ˆ D obtained by replacing the pairs pq, dq of α having the same first
component q by the single pair pq,]βpqqq where βpqq is a finite multiset whose
underlying set is αpqq. The multiplicity of an element d of βpqq counts the
number of ways it can be produced with state q.
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Claim: For every t P T pF q, we have qCptq “ λq P QA.θpt, qq.
Proof : By induction on the structure of t.
If t “ a P F , the equality follows from the definitions.
Let t “ fpt1, t2q and q P QA. By definition, we have θpt, qq “ valDpLpA, qqX

h´1ptqq. For each term t1 in LpA, qqXh´1ptq, there is a unique 5-tuple pg, t11, t
1
2, q1,

q2q such that t1 “ gpt11, t
1
2q and:

hpgq “ f , t11 P LpA, q1q X h´1pt1q,

t12 P LpA, q2q X h´1pt2q and grq1, q2s ÑA q. p5q

The existence and unicity of pg, t11, t
1
2q follows from the equality hpt1q “ t.

The pair pq1, q2q such that t11 P LpA, q1q, t
1
2 P LpA, q2q is unique because A is

deterministic. Then we have grq1, q2s ÑA q because t P LpA, qq.
Conversely, every such 5-tuple satisfying (5) yields a term t1 “ gpt11, t

1
2q P

LpA, qqXh´1ptq. It follows that LpA, qqXh´1ptq is the disjoint union of the sets
gpT1pq1q, T2pq2qq for all triples pg, q1, q2q such that hpgq “ f and grq1, q2s ÑA q

where, for every state p P QA, T1ppq :“ LpA, pqXh´1pt1q and T2ppq :“ LpA, pqX
h´1pt2q. For each such triple:

valDpgpT1pq1q, T2pq2qqq “ gDpvalDpT1pq1qq, valDpT2pq2qqq (6)

by (3). Hence, by (2) and the definitions:

θpt, qq “ ]JgDpvalDpT1pq1qq, valDpT2pq2qqq | hpgq “ f

and grq1, q2s ÑA qK

“ ]JgDpθpt1, q1q, θpt2, q2qq | hpgq “ f and grq1, q2s ÑA qK. (7)

This equality is true for all states q P QA. By induction, we have θpt1, pq “
qCpt1qppq and θpt2, pq “ qCpt2qppq for all p P QA. Hence,

θpt, qq “ ]JgDpqCpt1qpq1q, qCpt2qpq2qq | hpgq “ f , grq1, q2s ÑA qK (8)

and λq P QA.θpt, qq “ qCptq by the definition of C, which completes the proof
of the claim.˝

Hence, the deterministic FA C computes θ, as desired.
As noted above in Case (a), we can delete the Error state of A and define

C so that qCptq “ λq P pQA ´ tErroruq.θpt, qq.

Case (b) is a special case of (c): we replace the effectively given H-algebra
D by the distributive H-algebra E :“MfpDq (cf. Section 2.1). For t1 P T pHq,
valEpt

1q “ tvalDpt
1qu, as observed in Section 2.1. It follows that

ξptq :“ JvalDpt
1q | t1 P LpAq X h´1ptqK “ valEpLpAq X h´1ptqq.
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The states of C are finite mappings σ : QA Ñ Mf pDq such that we have
qCptq “ λq P QA.JvalDpt

1q | t1 P LpA, qq X h´1ptqK.

Case (a) is the instance of Case (c) where we take similarly E :“ Pf pDq. ˝

Remark 22: More general attributed automata.
Let A be a deterministic FA over a signature H . We define H ˚QA as the

signature of ρpfq-ary symbols pf, q1, ..., qρpfqq for all f P H and q1, ..., qρpfq P QA.
Let D be an effectively given H ˚QA-algebra. Extending the notation of Section
1.1, we define valD : T pHq Ñ D by using the run of A on the considered term:

valDpfpt1, ..., tρpfqq :“ pf, q1, ..., qρpfqqDpd1, ..., dρpfqq

where qi “ qAptiq and di “ valDptiq for i “ 1, ..., ρpfq.

Hence valDptq is computed by a deterministic FA with set of states QAˆD.
We denote this FA by A ˙ D and call it also an attributed fly-automaton. (As
we do not exclude to extend in future articles the notion of an attributed FA,
we leave ”open” the definition).

As in Proposition 21, we let h be a computable relabelling: T pHq Ñ T pF q
and we are interested in computing the functions γ, ξ and θ defined as above
in terms of valD, now based on the H ˚ QA-algebra D. For θ, we also assume
that D is distributive. The construction for Case (c) (that yields the two other
cases) works with the following adaptations: Equality (3) is replaced by:

valDpgpT, T
1qq “

]Jpg, q1, q2qDpvalDpTXLpA, q1qq, valDpT
1XLpA, q2qqq | q1, q2 P QAK,

and, in Equalities (4),(6), (7) and (8), gD is replaced by pg, q1, q2qD.˝

3.2.2 Sets of satisfying tuples and counting functions.

We now compute the functions SatX.P pXq, #X.P pXq, SpX.P pXq, MSpX.P pXq,
MinCardX1.P pXq and a few others by FA derived in uniform ways from a de-
terministic FA A that recognizes the language TP pXq representing P . (This

language is defined Section 1.3).
As before, F is an effectively given signature, X “ pX1, ..., Xsq and P pXq is a

property of terms in T pF q with s set arguments. We will use Proposition 21 with
H :“ F psq and h “ pr : F psq Ñ F . We first consider the computation of the
function SatX.P pXq. All other functions (they are called aggregate functions
in the context of databases [1]) can be computed from it, but we will give
direct constructions yielding XP algorithms whereas SatX.P pXq is not XP-
computable in general.

(3.2.2.1) Computation of SatX.P pXq.
In order to apply Case (a) of Proposition 21, we define an F psq-algebra D

such that:
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valDpt ˚Xq “ X for all t ˚X P T pF psqq. p9q

Each tupleX is an s-tuple of finite sets positions of t (they are Dewey words).
We let r :“ ρpF q and we take D :“ Pf prrs

˚qs. If X P D and i P rrs, we define
i.X by replacing in X each word u P rrs˚ by i.u.

If pa, wq is a nullary symbol in F psq, (a P F and w P t0, 1us) we define:

pa, wqD :“ w where w :“ tpX1, ..., Xsqu such that:

Xi :“ if wris “ 1 then tεu else H.

If pf, wq is binary, and with w as above, we define:

pf, wqDpX,Y q :“ w Y 1.X Y 2.Y

where the union of sets is extended to tuples by: XYY :“ pX1YY1, ..., XsY
Ysq. The validity of (9) is easy to check. We will denote by ASat the deterministic
FA detpBq obtained by Proposition 21 to compute γptq :“ tX | t ˚X P LpAqu “
SatX.P pXqptq.

For later use of D, we will denote it by DF,s.

Remarks : (1) The definitions are similar if X is a partition of Posptq encoded

by a finite subset pX of rrs˚ ˆ rss (cf. Section 1.3).
(2) To make things (hopefully) clear we work out the construction of ASat.

Our description is based on the construction of Proposition 21 and the remark
about Case (a). Each state of detpBq is handled as a finite function σ: QA Ñ
Pf pDq “ Pf pPf prrs

˚qsq. We fix t P T pF q. For each state q of A, we define σpqq
as the finite set of s-tuples X P PpPosptqqs such that qApt ˚ Xq “ q. Since
A is deterministic, σpqq X σpq1q “ H if q ‰ q1 and clearly, SatX.P pXqptq “Ť

qPAccA
σpqq. The transitions of detpBq are thus, for a nullary symbol a in F :

aÑ λq P QA.tw | pa, wq ÑA qu.

For definining in a compact way the transitions on binary symbols, we define
for disjoint sets E and E1, Z Ď PpEqs and Z 1 Ď PpE1qs:

Z f Z 1 :“ tpX1 Y Y1, . . . , Xs Y Ysq | X P Z, Y P Z 1u.

This operation is nothing but the extension to sets of the union of tuples of
sets. Then, for a binary symbol f :

pf, wqrσ1, σ2s Ñ λq P QA.
Ť
pf,wqrq1,q2sÑAq w f 1.σ1pq1q f 2.σ2pq2q,

OutASatpσq :“
Ť

qPAccA
σpqq. ˝

(3.2.2.2) Computation of SpX.P pXq.
We use again Case (a) of Proposition 21 with D such that:
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valDpt ˚Xq “ p|X1| , ..., |Xs|q for all t ˚X P T pF psqq. p10q

We take D :“ N
s and we define (with ` denoting the addition of vectors):

pa, wqD :“ pwr1s, ..., wrssq,

pf, wqDpm, pq :“ pwr1s, ..., wrssq `m` p.

The verification that (10) is true is straightforward. We will denote by ASp

the deterministic FA detpBq obtained in this way to compute

γptq :“ tp|X1| , ..., |Xs|q | t ˚X P LpAqu “ SpX.P pXqptq.

(3.2.2.3) Computation of MSpX.P pXq.
We use Case (b) of Proposition 21 with the same F psq-algebra D as in the

previous case. We will denote by AMSp the obtained deterministic FA that
computes ξptq :“ Jp|X1| , ..., |Xs|q | t ˚X P LpAqK “MSpX.P pXqptq.

We now detail the transitions of AMSp. A finite multiset over Ns is a function
m : Ns Ñ N such that m´1pN`q is finite. We have the following transitions:

aÑ λq P QA.pλx P N
s.if x P t0, 1us^ pa, xq ÑA q then 1 else 0q

and

f rσ1, σ2s Ñ λq P QA.pλx P N
s.ΣJσ1pq1qpyq.σ2pq2qpzq | w P t0, 1u

s,

pf, wqrq1, q2s ÑA q and x “ w ` y ` zKq.

In the second transition, the multiset is indexed by the 5-tuples pw, q1, q2, y, zq
that satisfy x “ w ` y ` z ^ pf, wqrq1, q2s ÑA q.

Hence, qAMSpptq is a finite mapping, say σ, from QA to Mf pN
sq such that,

for every state q of A, σpqq is the finite multiset of tuples p|X1| , ..., |Xs|q such
that qApt ˚Xq “ q. Here, σpqq is a particular aggregation of the values in γpqq
relative to the FA ASat.

(3.2.2.4) Computation of #X.P pXq.
We want to compute #X.P pXqptq “ θptq defined as the cardinality of the

set tX | t ˚ X P LpAqu. As the multiset JX | t ˚ X P LpAqK has only one
occurrence of each element, θptq is its cardinality. In order to apply Case (c) of
Proposition 21, we define a distributive F psq-algebra D :“ xN,`, 0, pgDqgPF psqy

with pa, wqD :“ 1 and pf, wqDpm, pq :“ m.p. Clearly, valDpt ˚ Xq “ 1 for all
t ˚X P T pF psqq. We will denote by A# the deterministic FA C obtained in this
way by Case (c) of Proposition 21.

Theorem 23: Let A be a deterministic FA over F psq that decides a property
P pXq. The functions SatX.P pXq,MSpX.P pXq, SpX.P pXq and #X.P pXq are
computable by deterministic FA’s constructed from the tuple A that defines A.

Complexity issues will be discussed in Section (3.2.4).

36



3.2.3 Optimizing functions

We now consider how to compute certain values defined by optimizing functions
that minimize or maximize values defined from the set SatX.P pXqptq without
using it as intermediate value for efficiency purposes. We will only discuss
minimizations because maximizations are fully similar.

(3.2.3.1) Minimizing cardinalities or other values.
In order to compute:

MinCardX1.P pXqptq :“

if t |ù DX.P pXq then mint|X1| | t |ù DX2, ..., Xs.P pXqu else 8,

we use Case (c) of Proposition 21. We takeD :“ xNYt8u,min,8, pgDqgPF psqy
with pa, wqD :“ wr1s and pf, wqDpm, pq :“ wr1s `m ` p. Clearly, minH “ 8.
We will denote by AMinCard the obtained deterministic FA.

More generally, in order to compute:

Min αX.P pXqptq :“

if t |ù DX.P pXq then mintαpXq | t |ù P pXqu else 8

where αpXq :“ c1. |X1| ` ... ` cs. |Xs| for fixed integers c1, ..., cs in Z, we
take D :“ xZYt8u,min,8, pgDqgPF psqy with:

pa, wqD :“ c1.wr1s ` ...` cs.wrss,

pf, wqDpm, pq :“ c1.wr1s ` ...` cs.wrss `m` p.

This construction works because αpX1ZY1, ..., XsZYsq “ αpXq`αpY q. We
will denote by AMin α the obtained deterministic FA.

(3.2.3.2) Minimal satisfying sets.
We describe, in a uniform way, several FA that extract particular ”minimal”

sets from SatX.P pXqptq. (The extension to SatX.P pXqptq is easy.)
Let ď be a partial order on Pfprrs

˚q. For each Z Ď Pf prrs
˚q, we define

MinpZq as the subset of Z consisting of its minimal elements with respect to
ď. We want to compute, for each term t P T pF q, the set MinďX.P pXqptq :“
MinpSatX.P pXqptqq. Some interesting orders X ď Y on Pf prrs

˚q are:

(i) X Ď Y,

(ii) X Ď Pref pY q, (Pref pY q is the set of prefixes of the words in Y ),

(iii) |X | ď |Y | ,

(iv) |X | ă |Y | or, |X | “ |Y | and X ďlex Y,

(v) X ďlex Y,

where ďlex is a lexicographic order on Pf prrs
˚q defined below.
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In the last two cases, ď is a linear order so that MinpZq is empty or singleton.
Our method is also applicable to the quasi-order mint|u| | u P Xu ď mint|u| |
u P Y u, but we will not discuss this extension.

The following notion will be useful in several cases.

Definition 24: Minimizing algebras.
Let D be an effectively given H-algebra whose domain D has a decidable

partial order ď and whose functions gD are increasing, i.e., gDp..., d, ...q ď
gDp..., d

1, ...q if d ď d1. For Z P PfpDq, the subset MinpZq of Z consists of its
minimal elements with respect to ď. Hence it is empty if and only if Z is empty;
it is computable if Z is finite.

We let MinpDq Ď Pf pDq be the set of finite subsets Z of D such that
MinpZq “ Z. It is effectively given as the property MinpZq “ Z is decidable.
We define a distributive H-algebra:

MinpDq “ xMinpDq,],H, pgDqgPHy such that:

Z ] Z 1 :“MinpZ Y Z 1q,

aMinpDq :“ taDu if a is nullary,

gMinpDqpZ,Z
1q :“ MinpgDpZ,Z

1qq (“ MinptgDpd, d
1q | d P Z, d1 P

Z 1uq if g is binary.

It is clear that ] is associative and commutative with neutral element H.
We need only verify the distributivity property of gD over ]. We check that,
for Z,Z 1, Z2 in MinpDq:

gMinpDqpZ ] Z 1, Z2q “ gMinpDqpZ,Z
2q ] gMinpDqpZ

1, Z2q,

i.e., by the definitions:

MinpgDpMinpZYZ 1q, Z2qq “MinpMinpgDpZ,Z
2qqYMinpgDpZ

1, Z2qqq.

The righthand side is MinpgDpZ,Z
2q Y gDpZ

1, Z2qq. Clearly:

gDpMinpZ Y Z 1q, Z2q Ď gDpZ,Z
2q Y gDpZ

1, Z2q,

but, since gD is increasing, for every d P gDpZ,Z
2q Y gDpZ

1, Z2q, there is
d1 P gDpMinpZ Y Z 1q, Z2q such that d1 ď d. It follows that:

MinpgDpMinpZ Y Z 1q, Z2qq “MinpgDpZ,Z
2q Y gDpZ

1, Z2qq.

Hence, MinpDq is a distributive H-algebra. We call it a minimizing H-
algebra.

In order to compute minimizing functions by FA, we will use the F p1q-
algebra D “ DF,1 :“

@
Pf prrs

˚q, pgDqgPF p1q

D
defined for computing SatX.P pXq

(cf. Section 3.2.2.1). For each partial order ď on Pf prrs
˚q such that the func-

tions pf, wqD with f of positive arity and w P t0, 1u are increasing, we make D
into a minimizing F p1q-algebra. We recall the definition of pf, wqD for a binary
function fpX,X 1q where X,X 1 are finite subsets of rrs˚):

38



pf, wqDpX,X 1q :“ w Y 1.X Y 2.X 1, p11q

where w :“ if w “ 1 then tεu else H.

Proposition 25: Let F be an effectively given signature and P pXq be a
property of terms over it defined by a deterministic FA A over F p1q. Let ď be
partial order making DF,1 into a minimizing algebra. The function MinďX.P pXq
is computable by a deterministic FA constructed from A (defined by a tuple of
programs A) and the algorithm that decides ď.

Proof : We apply Case (c) of Proposition 21 to the distributive and mini-
mizing F p1q-algebra MinpDq defined from ď. ˝

We now examine the first four partial orders on Pf prrs
˚q defined above. In

each case we use Equality (11) to verify that pf, wqD is increasing.

(i) Case of Ď.
Each function pf, wqD is increasing, hence, we can compute for t P T pF q the

set MinĎX.P pXqptq :“ MinpSatX.P pXqptqq of inclusion minimal sets X such
that t |ù P pXq.

(ii) Case of X ďanc Y :ô X Ď Pref pY q.
Each function pf, wqD is increasing, in particular because X ďanc Y ñ

i.X ďanc i.Y . Hence, MinpSatX.P pXqptqq is the set of minimal sets X such
that t |ù P pXq where minimality means that one cannot reduce a satisfying set
by removing a node u or replacing it by one of its ancestors in Pref ptuuq. We
denote by MinancX.P pXq the corresponding function.

(iii) Case of X ďcard Y :ô |X | ď |Y | :
Equality (7) shows that |pf, wqDpX,X 1q| “ w`|X |` |X 1|. Hence, |X | ď |Y |

implies |pf, wqDpX,X 1q| ď |pf, wqDpY,X
1q|. We can thus compute the set

MinpSatX.P pXqptqq of sets X of minimal cardinality such that t |ù P pXq.
Their common cardinality is MinCardX.P pXqptq that we already know how
to compute. We denote by MincardX.P pXq the corresponding function.

(iv) Case of X ďclex Y :ô |X | ă |Y | or, |X | “ |Y | and X ďlex Y.

We denote by ĺlexthe lexicographic order on rrs
˚. Hence, every finite subset

X of rrs˚ can be written in a unique way as a sequence of words SeqpXq :“
pw1, ..., wpq such that X “ tw1, ..., wpu and w1 ălex ... ălex wp; we have
SeqpHq “ pq not to be confused with pεq. The set Pfprrs

˚q can thus be ordered
lexicographically ; we denote this order by ďlex . Its least element is the empty
set. IfX “ t1, 2, 11, ε, 222u and Y “ t1, 2, ε, 111u then SeqpXq “ pε, 1, 11, 2, 222q
and SeqpY q “ pε, 1, 111, 2q so that X ălex Y . The order ďclex is lexicographic
with priority on cardinality. We will denote the corresponding function by
MinclexX.P pXq. To verify that the functions pf, wqD are increasing for ďclex,
we have by (11):
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Seqppf, wqDpX,Y qq “ Seqpwq˝1.SeqpXq˝2.SeqpY q, p12q

where ˝ denotes the concatenation of sequences and i.pw1, ..., wpq :“ pi.w1, ...,

i.wpq. We have Seqpwq :“ if w “ 0 then pq else pεq. It is then clear that
X ďclex Y and X 1 ďclex Y 1 imply pf, wqDpX,X 1q ďclex pf, wqDpY, Y

1q.

This technique does not apply to ďlex because the functions pf, wqD are not
increasing.

Example: Let F “ tf, g, a, b, cu with a, b, c nullary, g unary and f binary.
We let P pXq mean that, either each occurrence of a and no occurrence of b
or c is below a position in X or, that each occurrence of b and no occurrence
of a or c is below a position in X. One can construct terms showing that the
five minimization functions based on property P pXq and the orders (i)-(v) are
pairwise different.˝

The constructions of this section establish the following theorem, where F

is an effectively given signature and X is an s-tuple of set variables.

Theorem 26: Let A be a deterministic FA over F psq that decides a prop-
erty P pXq and αpXq be a linear function of the cardinalities of the sets forming
its argument. The functions MinCardX1.P pXq, Min αX.P pXq, MinĎX.P pXq,
MinancX.P pXq, MincardX.P pXq and MinclexX.P pXq are computable by deter-
ministic FA constructed from α and the tuple A that defines A.

Proof : The corresponding constructions are done in Section (3.2.3.1) and
Proposition 25. ˝

This theorem does not exhaust the possibilities of building FA by general
methods, see Section 4.2.1.

3.2.4 Parameterized complexity

We now consider conditions ensuring that the automata constructed by Theo-
rems 23 and 26 are P-FA, FPT-FA or XP-FA. We recall that if the signature F
is finite, the notions of P-FA, FPT-FA and XP-FA coincide. Lemma 7 shows the
importance of the nondeterminism degree for analyzing the computation time
of determinized automata.

Theorem 27: Let F, s, A, P pXq and α be as in Theorems 23 and 26.
(1) If A is a P-FA such that the mapping ndegprpAq is P-bounded, then,

the properties DX.P pXq and @X.P pXq are P-FA decidable and the functions
MSpX.P pXq, SpX.P pXq, #X.P pXq, MinCardX1.P pXq, Min αX.P pXq and
MinclexX.P pXq are P-FA computable.

(2) If β: T pF psqq Ñ D is computed by a P-FA A such that ndegprpAq is

P-bounded, then the function SetValX.βpXq is P-FA computable.
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(3) These implications hold if we replace P- by FPT- or XP-.

Since we have ndegprpAqptq ď |QA æ pr´1ptq| (cf. Proposition 12), we can
replace in these statements, the P-, FPT- or XP-boundings of ndegprpAq by the
corresponding ones for the mapping t ÞÝÑ |QA æ pr

´1ptq|.

Proof : We use Lemma 7 for all proofs.
(1) As A is a P-FA, p1, p2, p3 are polynomials. Then, prpAq satisfies the

hypotheses of Lemma 7(2). Hence, DX.P pXq and @X.P pXq are checked by
detpprpAqq that is a P-FA.

Next we consider the deterministic FA AMSp that computes MSpX.P pXq
(Section 3.2.2.3). At position u in a term t, the state of AMSp is the set tpq,mq |
m ‰ Hu where m is a multiset of s-tuples of integers that are cardinalities
of subsets of Posptq. The cardinality of this set is bounded by ndegprpAqptq.
Each multiset m is a function: N

sÑ N that maps r0, nss to r0, 2s.ns where
n :“ |Posptq|. It is finite and can be encoded by a word of length at most
pn` 1qs. logp2s.nq “ Opns`1q. (The numbers mpxq for x P r0, nss are written in
binary). Hence the size of a state is OpndegprpAqptq.}t}

s`1q.
We must also bound the time for computing the transitions and the output.
The time for computing a transition of A is bounded by p1p}t}q. Computing

the transition of AMSp at a nullary symbol of t takes time at most 2s.p1p}t}q.
We now examine the computation of a transition f rσ1, σ2s Ñ σ by using the
description made in Section (3.2.2.3). Given σ1, σ2 we build σ, defined as a
finite subset of QA ˆ r0, ns

s ˆ r2s.ns. The last component is a number written
in binary and a tuple in σ is denoted by pq, x, σpqqpxqq. We omit the tuples
pq, x, σpqqpxqq such that σpqqpxq “ 0. We initialize σ with the empty set. There
are at most 2s.pndegprpAqptqq

2.pn ` 1q2s tuples of the form pw, q1, q2, y, zq such
that σ1pq1qpyq ‰ 0, σ2pq2qpzq ‰ 0. For each of them, we compute q such that
pf, wqrq1, q2s ÑA q, x “ w`y`z, and we add σ1pq1qpyq.σ2pq2qpzq to the current
value of σpqqpxq. The computation time is OppndegprpAqptqq

2.n2s.pp1p}t}q`n2qq.
(The term n2 represents the computation time for the arithmetic operations on
integers in r2s.ns.) For f of arity r, we get OppndegprpAqptqq

r .nr.s.pp1p}t}q`n2qq,
which is P-bounded.

Similarly, for computing the output, we need at most ndegprpAqptq checks
that a state is accepting, with cost at most p3p}t}q for each and the same num-
ber of unions of multisets defined as functions: r0, nss Ñ r0, 2s.ns. This gives
a computation time bounded by ndegprpAqptq.pp3p}t}q ` Opns`1qq. Again, as
ndegprpAqptq is P-bounded, the bound on the computation time of the output is
of same type.

We get the announced result for MSpX.P pXq. For SpX.P pXq, #X.P pXq,
MinCardX1.P pXq and Min αX.P pXq, the functions used to compute transi-
tions are simpler than those for MSpX.P pXq. The size of m in a state pq,mq
is smaller, and so are the computation times of the transitions and the output.
Hence, the above argument applies as well. For MinclexX.P pXq we observe that
a state is a pair pq,mq where m is the empty set or a single (ďclex-minimal) set
(s “ 1).
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(2) We now consider SetValX.βpXq where β is computed by a deterministic
FA A over F psq. For each term t and X P PpPosptqqs we have βpt ˚ Xq “
OutApqApt ˚Xqq. Hence, SetValX.βpXqptq is the set of values OutApqq for q P
qdetpprpAqqptq. The time taken to compute SetValX.βpXqptq is that for computing
the set qdetpprpAqqptq of cardinality at most ndegprpAqptq plus that for computing
the final output, bounded by ndegprpAqptq.p3p}t}q. Hence, we conclude as in the
cases considered in (1).

(3) The proofs are similar if p1, p2, p3 and ndegprpAq are FPT- or XP-bounded.˝

Remarks 28: (1) Even if F is finite, we cannot omit in Theorem 27 the
hypothesis that prpAq has a nondeterminism degree bounded in some way, be-
cause the validity of DX.P pXq can be determined in polynomial time from ei-
ther MSpX.P pXq, SpX.P pXq, #X.P pXq or MinCardX1.P pXq. Otherwise, by
Counter-example 13, we would have P=NP.

(2) Theorem 27 does not apply to MinĎX.P pXq, MinancX.P pXq and
MincardX.P pXq because their outputs may be of exponential size in the size

of the input tree.

3.3 Summary of results

The following table summarizes the preservation results of this section: we mean
by this that the classes of functions and properties that are P-FA, FPT-FA or
XP-FA computable (or decidable) are preserved under constructions of three
types: composition, first-order and monadic second-order constructions.

Construction Conditions and proofs

Composition g ˝ pα1, ..., αrq, g is P-computable,
if P then α1else α2, S1, ..., Sm are set terms;
 P , P _Q, P ^Q, α æ P, by Proposition 15
αpS1, ..., Smq, P pS1, ..., Smq. and Theorem 17.

FO const. Dx.P pxq, @x.P pxq, SetValx.αpxq, by Theorem 17, Corollary 18.
Satx.P pxq, #x.P pxq.

MS const. DX.P pXq, @X.P pXq, P or α is defined by
SetValX.αpXq, a P-FA A

#X.P pXq, MSpX.P pXq, such that ndegprpAq
SpX.P pXq, MinCardX.P pXq, is P-, FPT- or XP-bounded;
MinclexX.P pXq by Theorem 27.

Table 1: Preservation results.

In the next section, we develop constructions specific to graphs.

4 Application to graphs

We wish to check DX.P pXq, @X.P pXq and to compute MSpX.P pXq, SpX.P pXq
etc. in graphs Gptq defined by terms t in T pF8q. We recall that if P pXq is a
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graph property with s sets of vertices as auxilliary arguments, then LP pXq :“

tt ˚X P T pF
psq
8 q | Gptq |ù P pXqu. The following fundamental result is proved in

[12], Section 7.3.1 and in [15].

Theorem 29: If P pXq is MS expressible, then the language LP pXq is rec-
ognized by a linear FPT-FA.

The proof uses an induction on the structure of the formula ϕ that ex-
presses P pXq. Fly-automata are built for the atomic formulas13 X1 Ď X2 and
edgpX1, X2q. The constructions of Proposition 15(3,4) and Theorem 27 are then
used for handling logical connectives. The inductive construction shows that for
each automaton built in this way, the number of states it reaches by runs on a
term t depends only on ϕ and maxµptq (this number bounds the clique-width of
the graph Gptq). It follows from Theorem 27 that the functions MSpX.P pXq,
SpX.P pXq, #X.P pXq, MinCardX1.P pXq, Min αX.P pXq and MinclexX.P pXq
are computable by FPT-FA14.

Remark 30: To simplify the discussion, we let P be an MS expressible
graph property without set arguments. A consequence of Theorem 29 (called in
[16] the Weak Recognizability Theorem) is that for every integer k, the language
LP X T pFkq is recognized by a finite automaton AP,k. A quick proof of this
fact follows from the observation that the mapping t ÞÑ Gptq is a monadic
second-order transduction from T pFkq to the class of graphs of clique-width at
most k and the Backwards Translation Theorem15. However, this technique is
not applicable to LP Ď T pF8q because the signature F8 is infinite so that the
mapping t ÞÑ Gptq is not a monadic second-order transduction on T pF8q. From
the practical view point, an FA AP,k constructed from this observation would
be anyway very complicated and hard to implement. ˝

Graphs are always given by terms over F8 or F u
8 (and not by adjacency lists).

The constructions of Section 3 that are done for FA over an arbitrary effectively
given signature have immediate applications to graphs via the signature F8.
One adaptation to make is due to the fact that the set arguments X1, ..., Xs

denote sets of vertices of the defined graphs, hence sets of positions in the input
terms of the nullary symbols in C. For example, the algebra DF,s used in
Section (3.2.2.1) for computing SatX.P pXq must be modified into D1 such that,
for the binary symbol ‘, ‘D1pX,Y q :“ 1.X Y 2.Y . Similarily, for computing
SpX.P pXq, we take D2 such that ‘D2pm, pq :“ m ` p. For the unary symbols
f of F8 (they are relabh or

ÝÝÑ
adda,b), we take fD1pXq :“ 1.X and fD2pmq :“ m.

13For formulas of counting monadic second-order logic, we also need FA for the atomic
formulas Cardp,qpX1q expressing that X1 has cardinality p modulo q, see the appendix.

14We will also apply this theorem to properties P pXq that are defined by FA without being
MS expressible.

15It says that if τ is a monadic second-order transduction and L is a monadic second-order
definable class of structures, then τ´1pLq is monadic second-order definable ([16], Theorem
7.10).
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Although the FA for the atomic formulasX1 Ď X2, edgpX1, X2q and Cardp,qpX1q
suffice for proving Theorem 29, it is useful to ”precompute” FA for other fre-
quently used MS properties. Table 2 lists bounds the sizes of the states in their
runs on terms in T pFkq. We will define FA for some other basic properties and
functions. By combining these automata as explained in the previous section, we
can easily build automata for checking properties and computing functions ex-
pressed by formulas written with the basic ones and the logical connectives of MS
logic. The FA of Table 2 concern the following properties: PartitionpX1, ..., Xsq
meaning that pX1, ..., Xsq is a partition of the vertex set, St that the considered
graph is stable, i.e., has no edge, LinkpX1, X2q that it has at least one edge
from some vertex of X1 to some vertex of X2, PathpX1, X2q that X1 consists of
two vertices linked by an undirected path with vertices in X2 (X2 must contain
X1), Clique that the graph is a clique, Conn that it is connected, Cycle that
it has an undirected cycle and DirCycle that it has a directed cycle. Finally,
edgpX1, X2q is equivalent to LinkpX1, X2q^SglpX1q^SglpX2q. The automata
are constructed in [12] and the bounds on sizes of states are clear by inspecting
the constructions.

Property Size of a state

Sgl, X1 Ď X2, X1 “ H, Cardp,qpX1q independent of k
PartitionpX1, ..., Xsq independent of k
edgpX1, X2q Oplogpkqq
St, LinkpX1, X2q Opkq
PathpX1, X2q, DirCycle, Clique Opk2q

Conn,Cycle Oplogpkq.mintn, k.2Opkquq

Table 2: Sizes of states for some automata running on terms in T pFkq.

All automata are P-FA because computing the transitions involves only
polynomial-time calculations. For the automata checking Conn and Cycle,
the upper-bound Oplogpkq.nq (n is the number of vertices of the input graph)
shows that they are P-FA.

Properties Sgl, St, Conn, DirCycle, Cycle and Clique are relative to the
whole graph G. However, we need frequently their relativizations to sets of
vertices, for example StrXs meaning that the induced subgraph GrXs is stable
(cf. the examples in the Introduction). However, from an FA over F8 that

decides St, one gets by taking an appropriate inverse image16 an FA over F
p1q
8

that decides StrXs.

We defined in Section 1.2 the notions of good and irredundant terms. Propo-
sition 35 in the appendix gives a polynomial-time algorithm that transforms a
term into an equivalent good and irredundant one. We can build a P-FA GI
that checks if the input term is good and irredundant. If A is a deterministic

16We recall from Section 1.3 that it is based on the relabelling h: F
p1q
8 Ñ F8 such that, for

every a P C we have hppa, 0qq :“ ∅, hppa, 1qq :“ a and hpfq :“ f for all other operations of
F8. The same inverse image works for relativizing any property.
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FA, then an FA constructed with Proposition 15 from the product of A and GI
gives correct results on good irredundant terms and rejects the others. It has
the same type (P, FPT or XP) as A.

A last technical point concerns notation. When dealing with terms t over
effectively given signatures, we denote by #X.P pXq the mapping associating
with a term t the number of tuples X of sets of positions that satisfy property
P in t. In the present section, we will denote in the same way the mapping
associating with a graph G the number of tuples of sets of vertices that satisfy
P , and also the mapping t ÞÝÑ #X.P pXqpGptqq for t P T pF8q, that we wish to
compute by FA. The same convention will apply to MSpX.P pXq, SpX.P pXq
etc.

4.1 Counting induced subgraphs

Let H be a connected undirected graph. An induced subgraph of an undirected
graph G is H-induced if it is isomorphic to H . We can use FA to count and
enumerate the H-induced subgraphs of a given graph. The property of a set
X Ď VG that GrXs » H is MS expressible. Hence, automata that compute
the functions #X.GrXs » H and SatX.GrXs » H will give us the desired
algorithms. The property GrXs » H implies that X has fixed cardinality |VH |.
Hence, we can apply Corollary 18 and the following remark. However, a direct
construction yields in general a smaller FA.

For example let H be the graph House, i.e., the graph K5 with vertex set r5s
minus the four edges 1´4, 1´5, 3´4 and 2´5. We let X “ pX1, X2, X3, X4, X5q
and P pXq stand for:

edgpX1, X2q ^ edgpX1, X3q ^ edgpX2, X3q ^ edgpX2, X4q ^ edgpX4, X5q^
edgpX3, X5q^ edgpX1, X4q^ edgpX1, X5q^ edgpX3, X4q^ edgpX2, X5q.
A P-FA over F u

k with Opk2q states for edgpX,Y q is constructed in [12],
Section 5.1.2 and [16], Section 6.3. From Propositions 15 and 16, we get for P pXq

a P-FA that uses Opk20q states on terms in T pF
up5q
k q, but a specific construction

yields a P-FA using Opk5q states on these terms. By Corollary 18, we get
FA that compute #X.P pXq and SatX.P pXq. However, the number of House-
induced subgraphs of Gptq is only half of #X.P pXqptq because House has one
automorphism apart from identity. Hence, the FA that computes #X.P pXqptq
does some useless computations. We can avoid this drawback by replacing P pXq
by P pXq^X2 ă X3 where ă is the lexicographic order on positions of the input
term. An FA defining ă is easy to build. The role of this condition is to select a
single 5-tuple for each House-induced graph. This linear order on VGptq depends
on the term t and the definition by Dewey words of the vertices. However, the
value #X.P pXq is the same for all terms: it is order-invariant (cf. [8] on this
notion and [23] for its applications to model-checking).

The same improvement applies to the enumeration problem in order to avoid
duplications in the enumeration ofHouse-induced subgraphs. But even without
using any linear order, Theorem 17 and Corollary 18 yield P-FA that compute
the functions #X.GrXs » H and SatX.GrXs » H for each fixed graph H .
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4.2 Edge counting and degree

For a p-graph G and X Ď VG, we denote by βX the mapping that gives, for each
label a the number of a-ports in X . If X “ VG, we denote it by βG. We denote
by Λrk, ns the set of mappings β : rks Ñ r0, ns such that ΣiPrksβpiq ď n. This

set has cardinality
`
n`k
k

˘
(by an easy bijective proof), hence Θpnkq for fixed k.

We will bound it by pn` 1qk.
All automata in this section will be constructed so as to work correctly on

good irredundant terms17. Irredundancy is useful for counting edges and we

recall that the size of a good term t P T pF
psq
k q is Opn.k2q where n is the number

of vertices of Gptq. Hence, computation times can be bounded in function of n.

(4.2.1) Counting the edges of induced subgraphs
Given a directed graph G and X Ď VG, we let epXq be the number of edges

of GrXs. This value is not the cardinality of a set Y Ď VG satisfying a property
P pX,Y q by an obvious cardinality argument. However, we will compute it by

an attributed FA B over F
p1q
8 (cf. Remark 22).

We let B :“ A ˙ D where A has set of states rN` Ñ Nsf (N` is the set of

port labels), qBpt˚Xq “ pβX , epXqq for every t˚X P T pF
p1q
8 q where β and e are

relative to Gptq. The transitions of A are as follows:

‘rβ, β1s Ñ λx P N`.pβpxq ` β1pxqq,
ÝÝÑ
adda,brβs Ñ β,

relabaÑbrβs Ñ β1 where β1paq :“ 0, β1pbq :“ βpaq`βpbq and β1pxq :“
βpxq if x R ta, bu,

pa, iq Ñ λx P N`.pif x “ a then i else 0q, where i P t0, 1u.

We now define an (F
p1q
8 ˆQAq-algebra D (cf. Remark 22). Its domain is N

and its operations are:

p‘, β, β1qDpm,m1q :“ m`m1,

p
ÝÝÑ
adda,b, βqDpmq :“ m` βpaq.βpbq,

prelabaÑb, βqDpmq :“ m,

pa, iqD :“ 0.

The definition of p
ÝÝÑ
adda,b, βqD is correct because we assume t irredundant.

The value epXq is the second component of the state reached by B :“ A ˙ D

at the root of t ˚X P T pF
p1q
8 q. Let t ˚X P T pF

p1q
k q denote a graph Gptq with n

vertices (and X Ď VGptq). Then qBpt˚Xq “ pβX , epXqq P Λrk, xsˆr0, xpx´1qs Ď
Λrk, nsˆr0, npn´1qs where x :“ |X |. There are less than pn`1qk`2 such states
and they have size Opk. logpnqq. Transitions and outputs can be computed in

17It is not hard to see that a term t in T pF
psq
8 q is good (resp. irredundant) if and only if

prsptq is.
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time Opk. log2pnqq and so, B is a P-FA. (The log2pnq factor comes from the
multiplication of two positive integers in r0, ns).

An algorithm of [6]18 computes the function Min eX.p|X | “ pq, i.e., the
minimum number of edges of an induced subgraph having p vertices. This is
called the sparse p-subgraph problem. This algorithm takes time n.pOpkq on
terms in T pF u

k q. We can obtain it as an instance of our constructions by applying
Case (c) of Proposition 21 and Definition 24. The construction we will describe
works for directed graphs and, by an easy adaptation, for undirected ones.

We let ACard“p be the deterministic FA over F
p1q
8 that checks the equality

|X | “ p. We let Bp :“ pACard“p ˆ Aq ˙ D (we omit some easy formal details)
be the attributed FA that computes epXq for sets X of cardinality at most

p. Let t ˚ X P T pF
p1q
k q. The state qBp

pt ˚ Xq is p|X | , βX , epXqq if |X | ď p

and pError, βX , epXqq otherwise. Clearly, p|X | , βX , epXqq P r0, ps ˆ Λrk, ps ˆ
r0, ppp´ 1qs. The states pError, βX , epXqq can be merged into a unique Error

state. The accepting states are those of the form pp, β,mq and the computed
value is m “ epXq if the given set X has cardinality p. The number of states
p|X | , βX , epXqq is less than pp ` 1qk`3, these states have size Opk. logppqq, the
computation time of a transition is Opk. log2ppqq and Bp is a P-FA19.

For computing Min eX.p|X | “ pq, we make D into a minimizing alge-
bra (cf. Definition 24) by using the natural order on N. Then, 0D “ 0,
m ] m1 :“ mintm,m1u. We take then C :“ pr1pBpq whose nondeterminism
degree is less than pp` 1qk`3 on a term in T pFkq. The construction of Case (c)
of Proposition 21 gives a deterministic FPT-FA C1, whose computation time is
Op|t| .k. log2ppq.p2k`6q “ Opn.k3. log2ppq.p2k`6q on input t P T pFkq where n is
the number of vertices of Gptq.

More generally, we define epXq :“ epX1q`...`epXsq and we want to compute
the function Min eX.P pXq where P pXq is defined by a deterministic FA AP

over F
psq
8 . We extend the construction given above for Min eX.p|X | “ pq: for

each i “ 1, ..., s, we let Ai compute βXi
(it is an inverse image of A) and we

build an attributed FA BP :“ pA1 ˆ ...ˆAs ˆAP q ˙D such that qBP
pt ˚Xq “

pβX1
, ..., βXs

, epXqq. Then, we make D into a minimizing algebra as above and
we obtain in the same way a deterministic FA that computes Min eX.P pXq.
Its type, FPT or XP, depends on AP .

(4.2.2) Counting the edges between disjoint sets of vertices
We consider directed graphs. We generalize the notion of outdegree of a

vertex by defining epX1, X2q as the number of edges from X1 to X2 if X1 and
X2 are disjoint sets of vertices and as K otherwise. Hence eptxu, VG´txuq is the
outdegree of x in G. To compute this function similarly as in (4.2.1), we define

18The algorithms of this article assume implicitly that the input terms are irredundant.
Since the preprocessing that makes a term irredundant takes linear time, the given upper
bounds to computation times are correct. This article also gives tight lower bounds to these
computation times under the exponential time hypothesis.

19Its parameter is the bound k on clique-width, but it is also a P-FA for k`p as parameter.
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an attributed FA B :“ A˙D over F
p2q
8 . Its set of states is tpError, 0quYprN` Ñ

Ns2f ˆ Nq and we want that, for t ˚ pX1, X2q P T pF
p2q
8 q:

qBpt ˚ pX1, X2qq “ pError, 0q if X1 XX2 ‰ H, and

qBpt ˚ pX1, X2qq “ ppβX1
, βX2

q, epX1, X2qq otherwise.

The transitions and the algebra D are easy to define. On a term in T pF
p2q
k q

that denotes a graph with n vertices, each state belongs to the set tpError, 0quY
pΛrpk, ns2 ˆ r0, pn ´ 1q2sq of cardinality less than pn ` 1q2k`2 hence, has size
Opk. logpnqq. Transitions and outputs can be computed in time Opk. logpnq2q.
Hence, B is a P-FA.

(4.2.3) Maximum directed cut
For a directed graph G, we want to compute the maximal number of edges

from a subset X of VG to its complement, hence the maximal value of epX,Xcq.
This problem is considered in [35, 29]. The deterministic FA of Section (4.2.2),
adapted by Proposition 16 to check epX,Xcq uses less than pn ` 1q2k`2 states

on a term in T pF
p1q
k q denoting a graph G with n vertices. By the method used

in Section (4.2.1), we get an algorithm that computes the maximal value of
epX,Xcq, for X Ď VG, in time Opn4k`aq for some constant a. The article [29]

gives an algorithm taking time Opn4.2rpGq`bq where rpGq is the bi-rankwidth of
the considered graph G. We recall that rpGq{2 ď cwdpGq ď 2.2rpGq [32]. Hence,
our method gives an algorithm of comparable time complexity.

4.3 Regularity of a graph

The regularity of an undirected graph is not MS expressible because the com-
plete bipartite graph Kn,m is regular if and only if n “ m and we can apply the
arguments of Proposition 5.13 of [16] for proving this claim.

That a graph is not regular can be expressed by the formula DX,Y.pP pX,Y q^
SglpXq^SglpY qq where P pX,Y q is the property epX,Xcq ‰ epY, Y cq. By the
construction of (4.2.2) and Propositions 15 and 16 it is P-FA decidable. We can
apply Proposition 11(1) to get a P-FA for checking that a graph is not regular,
hence also a P-FA that checks regularity. However, we can construct directly a
simpler P-FA without using an intermediate nondeterministic automaton.

Let G be defined by an irredundant term t. The key fact is that if in Gptq{u,
two a-ports x and y have degrees d and d1, then they have in G degrees d ` p

and d1 ` p for some p ě 0. The reason is that if an operation at position
w above u adds an edge between x and some vertex z, then it also adds an
edge between y and z because the labels of x and y are the same in Gptq{w
and the irredundancy condition implies that there is no edge between y and
z. Hence, the degrees of x and y are increased by the same value above u. If
the degrees are different in Gptq{u, they are so in G. We recall that πpGq is
the set of port labels of the vertices of G and that βGpaq is the number of its
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a-ports. The notation is as in Section 4.2. The set of states of AReg is defined
as tErroru Y prN` Ñ pN Y tKuqsf ˆ rN` Ñ Nsfq and we want that, for every
term t P T pF8q:

qAReg
ptq “ Error if two a-ports of Gptq have different degrees;

otherwise,

qAReg
ptq “ pBGptq, βGptqq where, for every a in πpGptqq, BGptqpaq is the

common degree of all a-ports of Gptq and is K if there is no a-port.

In the run on a term t P T pFkq such that Gptq has n vertices, less than
pn` 1q2k states occur and these states have size Opk. logpnqq. In the transition
table (Table 3), pB, βq denotes a state that is not Error. Hence, if pB, βq is
accessible, we have Bpaq “ K if and only if βpaq “ 0. We denote respectively by
0 and K the constant mappings with values 0 and K. We take maxtK, nu “ n

(for the transitions on ‘). It is clear that the transitions can be computed in
time Opk. logpnqq. Hence, we have a P-FA AReg .

Transitions Conditions

∅Ñ pK,0q
aÑ pB, βq Bpxq :“ if x “ a then 0 else K,

βpxq :“ if x “ a then 1 else 0.
adda,brpB, βqs Ñ pB1, βq If βpaq “ 0 or βpbq “ 0 then B1 :“ B,

else B1paq :“ Bpaq ` βpbq,
B1pbq :“ Bpbq ` βpaq and
B1pxq :“ Bpxq for x R ta, bu.

relabaÑbrpB, βqs Ñ pB, βq βpaq “ 0.
relabaÑbrpB, βqs Ñ Error βpaq ‰ 0, βpbq ‰ 0 and Bpaq ‰ Bpbq.
relabaÑbrpB, βqs Ñ pB1, β1q The previous cases do not apply,

B1paq :“ K, B1pbq :“ Bpaq,
β1paq :“ 0, β1pbq :“ βpbq ` βpaq,
β1pxq :“ βpxq, B1pxq :“ Bpxq for x R ta, bu.

‘rpB1, β1q, pB2, β2qs Ñ Error B1paq ‰ B2paq for some a such that
β1paq ‰ 0 and β2paq ‰ 0.

‘rpB1, β1q, pB2, β2qs Ñ pB, βq The previous case does not apply,
Bpxq :“ maxtB1pxq, B2pxqu and
βpxq :“ β1pxq ` β2pxq for all x.

Table 3: Transitions of AReg

To take an example, we can get by Theorem 27 an XP-FA that computes
MaxCardX.RegrXs. It is of type XP because the nondeterminism degree of
pr1pARegrXsq is XP-bounded by pn ` 1q2k (and not FPT-bounded as one can
check).

To specialize the problem, we let RegdrXs mean that GrXs is d-regular,
i.e., has all vertices of degree d. The article [6] gives an algorithm for checking
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the existence of a d-regular induced subgraph. We can replace AReg by an
FA Bd with set of states tErroru Y prN` Ñ pr0, d ` 1s Y tKuqsf ˆ rN` Ñ
r0, d` 1ssfq and we get the algorithm of time complexity n.dOpkq given in [6] to
check if the given graph with n vertices defined by a term in T pFkq has a regular
induced subgraph of degree d. This article also gives algorithms for computing
MaxCardX.RegdrXs, MinCardX.pRegdrXs ^X ‰ Hq and #X.RegdrXs, all of
time complexity n.dOpkq. We can derive them from Theorem 27, similarly as in
Section (4.2.1).

The property DX.pCardďppXq ^ RegrXcsq expresses that the considered
graph becomes regular if we remove at most p vertices. It is P-FA decidable
by Corollary 18 and the remark at the end of Section 3.1. The property that
the graph can be partioned into at most two regular subgraphs, expressed by
DX.pRegrXs^RegrXcsq is XP-FA computable, with time complexity Opn8k`aq
for some constant a, similar to the case of maximum directed cut.

4.4 Partition problems

Many partition problems consist in finding an s-tuple X “ pX1, ..., Xsq satisfy-
ing PartitionpXq^P1pX1q^...^PspXsq where P1, ..., Ps are properties of sets of
vertices that can be MS expressible or, more generally, defined by FA. We may
also wish to count the number of such partitions, or to find one that minimizes
or maximizes the cardinality of X1 or the number epXq :“ epX1q`...`epXsq (cf.
Section (4.2)). We have discussed above the partitioning of a graph into two reg-
ular induced subgraphs. Vertex coloring problems are of this type with PipXiq
being StrXis and a fixed number s of allowed colors (cf. the introduction).

If the properties PipXiq are MS expressible, then the partition problem P
expressed by the MS sentence DX.PartitionpXq^P1pX1q^...^PspXsq is decided
by an FPT-FA by Theorem 29. If the properties PipXiq are decided by FPT-FA
or XP-FA, then P is decided by an FPT-FA or XP-FA, provided the conditions of
Theorem 27 on the degree of nondeterminism are satisfied. Counter-example 13
shows that these conditions cannot be avoided. We now examine some coloring
problems.

(4.4.1) Coloring problems
We let ColpXq abbreviate the MS property PartitionpXq ^ StrX1s ^ ... ^

StrXss. The function #X.ColpXq counts the number of s-colorings20. It is thus
FPT-FA computable by Theorem 27. Another number of possible interest is,
if G is s-colorable, MinCardX1.DX2, ..., Xs.ColpXq which is 0 if G is ps ´ 1q-
colorable; otherwise, it indicates how close G is to be ps ´ 1q-colorable. By
Theorem 27, this number is computable by an FPT-FA.

There are other definitions of approximate s-colorings. One of them is the
notion of ps, dq-defective coloring, expressed by the MS sentence:

20This number is χGpsq where χG is the chromatic polynomial of G. So, for some graphs
with known chromatic polynomial, we could check the correctness of our computations.
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DX.pPartitionpXq ^DegďdrX1s ^ ... ^DegďdrXssq.

For fixed s, we can consider the problem of determining the smallest d for
which this property holds. This number is at most rn{ss for a graph with n

vertices.
The property DegďdrXs meaning that each vertex of X has degree at most d

in GrXs is decided by an FPT-FA whose number of states on a term in T pF
up1q
k q

is Opd2kq. It follows that the existence of an ps, dq-defective coloring can be
checked, for a graph with n vertices, in time Opn.d4s.k`aq for some constant a.
By checking the existence of an ps, dq-defective coloring for successive values of d
starting from 1, one can find the minimal value of d in time Opn4s.k`a`1q hence

Opn8s.2rwdpGq`a`1q which is similar to the time bound Opn4s.2rwdpGq`bq given in
[29] (because for every undirected graph G, we have cwdpGq ď 2rwdpGq`1 ´ 1q.

Another possibility is to define MDpXq :“ pMaxDegrX1s, ...,MaxDegrXssq
and to compute the set: SetValX.MDpXq æ PartitionpXq, from which the
existence of an ps, dq-defective coloring can easily be determined. Since the
automaton for MaxDeg uses Opn2kq states for a graph with n vertices defined
by a term in T pFkq, we get for MDpXq the bound Opn2k.sq and, by Lemma 7
and Theorem 27, the bound Opn4s.k`cq for some constant c, which is of same
order as by the first method.

(4.4.2) Graph partition problems with numerical constraints
Some partition problems consist in finding an s-tuple X satisfying:

PartitionpXq ^ P1pX1q ^ ... ^ PspXsq ^Rp|X1|, ..., |Xs|q,

where P1, ..., Ps are properties of sets and R is a P-computable arithmetic
condition. An example is the notion of equitable s-coloring: PipXiq is StrXis for
each i and Rp|X1|, ..., |Xs|q expresses that any two numbers |Xi| and |Xj| differ
by at most 1. The existence of an equitable 3-coloring is not trivial: it holds for
the cycles but not for the graphs Kn,n for large n. The existence of an equitable
s-coloring is W[1]-hard for the parameter defined as s plus the tree-width [25],
hence presumably not FPT for this parameter. Our constructions yield, for each
integer s, an FPT-FA for checking the existence of an equitable s-coloring for
clique-width as parameter. We obtain the answer from SpX.pPartitionpXq ^
StrX1s ^ ... ^ StrXssq that is computable by an FPT-FA.

4.5 Connected components

The empty graph is defined as connected and a connected component as nonempty.
In [12], we have discussed in detail connectedness, denoted by Conn, and we
come back to this important graph property. We show that the general construc-
tions of Theorem 27 can be improved in some cases. We consider undirected
graphs.

(4.5.1) Number and sizes of connected components.
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We denote by κpGq the number of connected components of a graph G, by
κpG, pq the number of those with p vertices, byMinComppGq (resp.MaxComppGq)
the minimum (resp. maximum) number of vertices of a connected component of
G. We will compute these values by FA.

The MS formula CCpXq defined as ConnrXs ^ X ‰ H ^  LinkpX,Xcq
expresses that X is the vertex set of a connected component. Hence, we have:

κpGq “ #X.CCpXqpGq,

κpG, pq “MSpX.CCpXqpGqppq,

MinComppGq “ MinCardX.CCpXqpGq and

MaxComppGq “ MaxCardX.CCpXq.

These values can be computed by FPT-FA constructed by using Propositions
15, 16 and Theorem 27 in the following way: we build a deterministic FA A to

decide LinkpX,Xcq; it uses at most 22k on terms in T pF
up1q
k q. The nondetermin-

ism degree of pr1pAq on a term in T pF u
k q is bounded by 22k. The corresponding

bound for the deterministic FA that decides ConnrXs is 22
k

([12]). Then, we
can use the above mentioned results. However, we can construct a smaller FA
by modifying the FA AConn of [12].

We can compute κpGq “ #X.CCpXqpGq for G not empty as follows. The
formula  LinkpX,Xcq expresses that X is the vertex set of a (possibly empty)
union of connected components. Hence, #X. LinkpX,XcqpGq “ 2κpGq. The
construction of the FA computing #X. LinkpX,XcqpGq is clearly easier than
that for #X.CCpXqpGq. This FA allows even to check if G is connected (this
property is equivalent to #X. LinkpX,XcqpGq “ 2q. However, it is an FPT-
FA, whereas we noted above (cf. the comments about Table 2) that the automa-
ton AConn that checks connectedness is a P-FA.

We can alternatively construct directly a deterministic FA Aκ to compute
κpGq. Its states are sets of pairs pL,mq such that H ‰ L P Pf pN`q and m is an
integer. For every term t in T pF u

8q, we want that:

qAκ
ptq “ tpL,mq | L and m is the number of connected components

of Gptq of type Lu.

The transitions are easy to write; the output function is then defined by:

OutAκ
pqq :“ ΣJm | pL,mq P qK.

If t P T pF u
k q and Gptq has n vertices, the size of a state on t is Opn. logpkqq

and so, Aκ is a P-FA.

We now explain why this automaton is better than the one constructed by
using Theorem 27. We recall from [12] that the states of AConn are such that:
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qAConn
ptq “ pL,Lq with L P Pf pN`q if Gptq is not connected and all

its connected components have type L, otherwise,

qAConn
ptq is the set of types of the connected components of Gptq.

The graph Gptq is connected if and only if the state at the root is tLu or
the empty set (because the empty graph is connected). (It is clear that AConn

is a homomorphic image of Aκ.) Note that AConn yields more information than
just the connectedness of Gptq: it computes also the set of types of the con-
nected components. By Propositions 15 and 16, we get for property CCpXq an
automaton ACCpXq such that, for every t and X :

qACCpXq
pt ˚ Xq is Error if there is an edge between X and its

complement;

otherwise, X is a union of connected components of Gptq, and

qACCpXq
pt ˚Xq records the set of types, let us denote it by σpXq, of

these connected components.

We simplify for clarity: the state qACCpXq
pt ˚Xq contains more than the set

σpXq. This is why we write that ”it records ...” and not ”it is σpXq”. Then,
let A1κ be constructed from ACCpXq by Theorem 27 so as to compute κpGptqq.
For each term t, the state qA1

κ
ptq records, for each set α of sets of labels, the

number of sets X such that σpXq “ α. This is more than needed: the state
qAκ

ptq records only information about the connected components of Gptq, not
about all unions of connected components. If for example Gptq is the graph:

a´ b a´ b b´ c c´ d

then qAκ
ptq “ tpab, 2q, pbc, 1q, pcd, 1qu whereas qA1

κ
ptq records tpab, 3q, pbc, 1q,

pabc, 3q, pcd, 1q, pbcd, 1q, pabcd, 6qu.

We have tested these automata on a connected graph G “ adda,bpHq of
clique-width 3 with 17 vertices such that H has 8 connected components, each
with 2 or 3 vertices. The quickest automaton on a term defining G is Aκ (taking
0.0012 s), followed by AConn (0.0014 s) and A#X. LinkpX,Xcq (0.33 s) whereas
A#X.CCpXq takes 39 s. It is interesting to note that using unbounded integers
in Aκ makes the computation quicker than by using AConn although AConn is
finite on terms in T pF3q.

(4.5.2) Counting components by their size.
We now compute MSpX.CCpXqpGq. First we observe that for each integer p,

MSpX.CCpXqpGqppq is computable from the values MSpX. LinkpX,XcqpGqpp1q
for all p1 P r0, ps. (We made above a similar observation for the computation
of κpGq from #X. LinkpX,XcqpGqq. However, as in this previous case, we can
construct a P-FA B derived from AConn (and generalizing the previous Aκ) such
that, for every term t P T pF u

8q:
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qBptq is the set of triples pL, p,mq such that L is a nonempty set of
port labels, m, p P N` andm is the number of connected components
of Gptq of type L having p vertices.

If t P T pF u
k q and Gptq has n vertices, then n “ ΣpL,p,mqPq

B
ptqm.p. Hence,

qBptq can be described by a word of length Opn. logpkqq (even if numbers are
written in unary; the factor logpkq corresponds to the coding of labels). Here
are the transitions:

∅ÑH,

aÑ tptau, 1, 1qu,
‘rq, q1s Ñ q2 where q2 is the set obtained by replacing iteratively in the

multiset q\q1 any pair tpL, p,mq, pL, p,m1qu by the unique triple pL, p,m`m1q,
relabhrqs Ñ q1: for each set L, we let hpLq be the set obtained from L by

replacing a by hpaq; then q1 is the set of triples pL1, p,m1q such that:

L1 :“ hpLq for some pL, p,mq P q,

m1 :“ ΣJm | L1 “ hpLq and pL, p,mq P qK.

Finally, we describe the transitions adda,brqs Ñ q1. There are two cases.
Case 1 : a or b is not present in q or they are both present in q but in a

unique triple of the form pL, p, 1q (with a, b P L). Then q1 :“ q.
Case 2 : Case 1 does not apply. We let:

q2 be the set of triples in q that contain neither a nor b,

L1 :“
ď
tL | pL, p,mq P q ´ q2u,

and q1 :“ q2 Y tpL1, p1, 1qu where p1 :“ ΣJp.m | pL, p,mq P q ´ q2K.

We illustrate this case with an example:

q “ tptau, 2, 1q, ptau, 1, 4q, pta, b, cu, 4, 1q, ptb, du, 3, 2q, ptc, du, 3, 4qu,

q1 “ tpta, b, c, du, 16, 1q, ptc, du, 3, 4qu,

where 16 is obtained as 2.1 ` 1.4 ` 4.1 ` 3.2 because the connected com-
ponents of types tau, ta, b, cu and tb, du get fused into a unique one (of type
ta, b, c, du).

For computing MSpX.CCpXq we take the output function:

OutBpqq :“ µ such that µppq :“ ΣJm | pL, p,mq P qK for p P N`.

It is clear that the transitions and the output function can be computed in
time polyp‖ t ‖q. Hence, B is a P-FA. From MSpX.CCpXqpGq we get κpG, pq
for each p.

(4.5.3) Tools for separation problems.
For dealing with separation problems, it is useful to compare the cardinality

of a set of vertices X to the number of connected components of GrXcs and to
the maximal cardinality of a connected component of GrXcs that we denote by
MaxCardCCpGrXcsq. For this purpose, we define for a graph G:
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αpGq “ tp|X |, κpGrXcsqq | X Ď VGu,

βpGq “ tp|X |,MaxCardCCpGrXcsqq | X Ď VGu.

From αpGq, one can determine, for given integers p and q, if there exists
a set X of cardinality at most p whose deletion splits the graph in at least q

connected components. Similarly, from βpGq one can determine if there is such
a set X whose deletion splits the graph in connected components of size at most
q.

Let P pX,Uq mean that U has one and only one vertex in each connected
component of GrXcs and QpX,Y q mean that Y is the vertex set of a con-
nected component of GrXcs. These properties are MS expressible. Then αpGq “
SppX,Uq.P pX,UqpGq and βpGq can be computed from SppX,Y q.QpX,Y q. Hence,
by Example 14(a), Propositions 15, 16 and Theorem 27, these two values are
computable by FPT-FA.

4.6 Undecidability and intractability facts.

Let R be an s-ary P-computable numerical predicate (integers being given in
binary notation). We denote by MS`R the extension of monadic second-order
logic with the atomic formulas Rp|X1|, ..., |Xs|q. We have seen such formulas in
Section (4.4.2). We wish to examine when the model-checking problem21 for
MS`R is FPT or XP. Actually we will only consider the case of words over finite
alphabets, so the question reduces to whether it is P-decidable. We first discuss
undecidability results. There is no implication between (un)decidability results
on the one hand and complexity results on the other, but decidability and FPT
results for terms and for graphs of bounded clique-width are proved with the
same tools. Undecidability results are actually easier to prove and they help to
foresee the difficulties regarding complexity. We let Eqpn,mq mean n “ m; this
binary relation defines a semi-linear set of pairs of integers. A unary predicate
R on N is identified with the corresponding set.

Proposition 31: One cannot decide if a given sentence of MS ` Eq or
MS ` R where R Ď N is not ultimately periodic is true in some word over a
fixed finite alphabet.

Proof : The case of MS ` Eq is proved in Proposition 7.60 of [16] and the
other one in [4]. ˝

We now consider the model-checking problem.

Definition 32: Separating sets of integers.

Let R Ď N, p, n P N such that n ą p. We say that R separates on r0, ns the
integers in r0, ps if, for every x, y P r0, ps:

21We are interested in the data-complexity of the model-checking problem for a language L.
For each fixed sentence in L that describes some property of interest, we consider an algorithm
whose input is a word or a term that may describe a graph.
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x ‰ y if and only if there exists z P N such that x ` y ` z P r0, ns
and,

either x` z P R and y ` z R R or y ` z P R and x` z R R.

We say that an infinite set R Ď N is separating if there exists n0 such that,
for every n ą n0, R separates on r0, ns the integers in r0, tlogpnqus. The sets
tn! | n P Nu, t2n | n P Nu and that of prime numbers are separating. An
ultimately periodic set of integers is not separating. The set D :“ tan | n P Nu
such that a0 “ 1, an`1 “ 2an`3 is not ultimately periodic and not separating
either. (To see this, observe that D does not separate an ` 1 and an ` 2 on
r0, an`1 ´ 1s.q

If R separates on r0, ns the integers in r0, ps, then, for any two disjoint subsets
X and Y of rns of cardinality at most p we have:

|X | “ |Y | if and only if:

rns |ù @Z.rZ X pX Y Y q “ H ùñ pRp|X Y Z|q ðñ Rp|Y Y Z|qqs.

This means that the equipotence of small sets can be expressed in MS`R.

Proposition 33: Let R be a separating subset of N. If P ‰ NP, the model-
checking problems for MS` Eq and MS`R are not P-decidable.

Proof : We first consider MS ` Eq. We use a method similar to that of
Counter-example 13. Let P be an instance of SAT in conjunctive normal form
whose variables are x1, ..., xn. Let wpP q be the word representing P with xi

written as x followed by the binary writing of i (with no leading 0). For example,
if P is px1_x2_ x3q^px3_ x4_ x5q then wpP q is the word px1_x10_ x11q^
px11_ x100_ x101q over the alphabet A :“ tp, q,_,^, , x, 0, 1u. The factors
of this word that belong to t0, 1u˚ have length at most 1` tlogpnqu. The word
wpP q is represented by the logical structure SpP q :“ xr|wpP q|s,ď, plabaqaPAy
such that labapiq holds if and only if wpP qris “ a.

We build a formula ϕpUq of MS ` Eq, written with ď and the unary re-
lations laba for a P A, such that P as above has a solution if and only if
SpP q |ù DU.ϕpUq. The set U defines a set of occurrences of x in the word wpP q
whose corresponding variable xi takes value True. We require that, either all
occurrences of a variable xi or none of them has value True. We express this
condition by a formula ϕ1pUq of MS ` Eq where Eqp|X |, |Y |q is only used for
sets X and Y of consecutive occurrences of 0 and 1’s. We sketch its construc-
tion. If i ă j, we denote by SpP qri, js the factor of SpP q from position i to
position j. We construct a formula θpi, j, i1, j1q expressing that SpP qri, js is a
prefix of SpP qri1, j1s: it says that for each u P ri, js there is u1 P ri1, j1s such
that u1 ´ i1 “ u ´ i and SpP qru1s “ SpP qrus. This formula uses Eq. Then, by
using θ, we construct ϕ1pUq saying that U is a set of occurrences of x and that,
for each u P U , if j is maximal such that SpP qru, js P xt0, 1u˚, if u1 is another
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occurrence of x such that SpP qru, js “ SpP qru1, j1s where j1 is maximal such
that SpP qru1, j1s P xt0, 1u˚, then u1 P U .

The formula ϕpUq is taken of the form ϕ1pUq ^ ϕ2pUq where ϕ2pUq is a
first-order formula expressing that the truth values of x1, ..., xn defined by U

satisfying ϕ1pUq form a solution of P .
If the sentence DU.ϕpUq could be checked in words w P A˚ in time polyp|w|q,

then each instance P of SAT could be checked in time polyp|wpP q|q and we
would have P “NP.

We now translate ϕ1pUq into a sentence ϕ3pUq of MS`R such that DU.pϕ3pUq
^ϕ2pUqq is equivalent to DU.ϕpUq in every structure SpP q. It is clear that 2n ă
|wpP q| as all variables x1, ..., xn occur in P . Hence, any sequence of 0 and 1’s
in wpP q has length bounded by 1 ` tlogpnqu “ tlogp2nqu ď tlogp|wpP q|qu. The
equality tests Eqp|X |, |Y |q used in ϕ1pUq can be expressed in terms of R that
we assume separating. Hence, the satisfiability of P is expressed in SpP q by
a sentence of MS ` R, and so, the model-checking problem for MS ` R is not
P-solvable in polynomial time either. ˝

Questions 34: (1) Can one replace in the previous proposition ”R is sep-
arating” by ”R is not ultimately periodic”? It might happen that the model-
checking problem for MS ` R where R is very sparse (like the above set D) is
P-decidable on words.

(2) Is the model-checking problem for MS ` Eq NP-decidable on words?
The same question can be raised for MS`R where R is a semi-linear subset of
N

k, k ě 2.

5 Implementation

The system AUTOGRAPH22, written in LISP (and presented in the conference
paper [14]) is intended for verifications of graph properties and computations of
functions on graphs. Its main parts are as follows.

(1) A library of basic fly-automata over F8 for the following properties and
functions:

(1.1) X Ď Y , X “ H, SglpXq, CardďppXq, Cardp,qpXq, PartitionpXq
and the function CardpXq (they concern arbitrary sets),

(1.2) edgpX,Y q and labapXq, the atomic formulas of MS logic over p-
graphs,

(1.3) some MS expressible graph properties: stability, being a clique,
LinkpX,Y q, PathpX,Y q, connectedness, existence of directed or undirected cy-
cles, degree at most d, etc. cf. Table 2 and [12] and finally,

(1.4) some graph properties and functions on graphs that are not MS
expressible: regularity, number of edges between two sets, maximum degree.

22See http://dept-info.labri.u-bordeaux.fr/˜idurand/autograph
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(2) A library of procedures that transform or compose fly-automata: these
functions implement the constructions of Propositions 10, 15, 16 and Theorems
17 and 27.

AUTOGRAPH includes no parser for the formulas ϕ expressing properties
and functions. The translation of these formulas into LISP programs that call
the basic FA and the composition procedures is easily done by hand because,
since we have FA for many basic graph properties, the formulas that specify
the problems are not too complicated. Some automata (in particular for cycles,
regularity and other degree computations) are defined so as to work correctly on
irredundant terms. A preprocessing can verify whether a term is irredundant,
and transform it into an equivalent irredundant one if it is not23. Whether input
terms are good or not may affect the computation time, but not the correctness
of the outputs.

By using FA, we could find24 that Petersen’s graph has 12960 4-colorings,
and verify the correctness of this result by using the chromatic polynomial. We
found also that McGee’s graph has 57024 acyclic 3-colorings in less than 30
minutes.

AUTOGRAPH has a method for enumerating (that is, for listing) the sets
SatX.P pXq, by using an existing FA A for P pXq. A specific enumeration pro-
gram is generated for each term (see [22]). Running it is also interesting for
accelerating the verification that DX.P pXq is true, because the computation
can stop as soon as the existence of some satisfying tuple X is confirmed. More
precisely, the nondeterministic automaton prpAq is not run deterministically (cf.
Definition 1(c)), but its potentially accepting runs are constructed ”one by one”.
In this way, we could check in 2 seconds that McGee’s graph is acyclically 3-
colorable. This technique works for DX.P pXq but not for @X.P pXq, #X.P pXq,
MSpX.P pXq etc... because these properties and functions are based on a com-
plete knowledge of SatX.P pXq.

Using terms with shared subterms.
Equal subterms of a ”large” term t can be fused and t can be replaced

by a directed acyclic graph (a dag). The construction from t of a dag where
any two equal subterms are shared can be done in linear time by using the
minimization algorithm of deterministic acyclic finite automata presented in
[39]. Deterministic FA can run on such dags in a straightforward manner. We
have tested that on 4-colorable graphs defined recursively by Gn`1 “ tpGn, Gnq
where t P T pF7, tx, yuq (a term with two variables x and y denoting p-graphs;
Gn has Op2nq vertices and edges). We checked that these graphs are 4-colorable
by using the term in T pF7q and the dag resulting from the recursive definition.
The computation times are in Table 4.

23Another type of preprocessing defined in [12] consists in annotating the given term.
24AUTOGRAPH is written in Common Lisp and run on a MacBook Pro laptop with pro-

cessor 2.53 GHz Intel Core Duo and a 4 GB memory.
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n term dag

6 11 mn 1 mn, 6 s
9 88 mn 1 mn, 32 s
20 4 mn
28 40 mn
30 2 h, 26 mn

Table 4: Computations using dags instead of terms.

This method raises a question: can one transform a term in T pFkq into an
equivalent one in T pFk1q for some k1 not much larger than k, whose associated
minimal dag (the one with a maximal sharing of subterms) has as few nodes as
possible?

6 Conclusion

We have given logic based methods for constructing FPT and XP graph algo-
rithms based on automata. Our constructions allow several types of optimiza-
tions: different logical expressions of a property can lead to different automata
having different observed computation times and direct constructions of FA are
sometimes better than the general ones resulting from Theorem 27. We also
have cases where FPT-FA are easier to implement and practically more efficient
than certain equivalent P-FA, and similarly for XP-FA and FPT-FA. Can one
identify general criteria for the possibility of such optimizations and improve-
ments?

Do we need optimal terms? Graphs are given by terms in T pF8q and no a
priori bound on the clique-width must be given since all FA are over F8. As
an input graph is given by a term t over Fk with k ě cwdpGq, one may ask
how important it is that k be close to cwdpGq. Every graph with n vertices
is denoted by a term in T pFnq where each vertex has a distinct label and no
relabelling is made. Such a term, if it is irredundant, has size Opn2. logpnqq.
Hence, as input to a P-FA, it yields a polynomial time computation. This is of
course not the case with an FPT- or XP-FA.

Edge quantifications. The logical representation of graphs used in this article
does not allow edge set quantifications in MS formulas. MS formulas written with
edge set quantifications (MS2 formulas in short) are more expressive than MS
formulas, and more functions based on them, such as #X.ϕpXq, can be defined.
An easy way to allow edge set quantifications is to replace a graph G by its
incidence graph IncpGq where edges are made into new vertices and adjacency
is replaced by incidence. The clique-width of IncpGq is at most 2.twdpGq ` 4
for G directed and at most twdpGq ` 3 for G undirected, where twdpGq is the
tree-width of G ([5]). MS formulas over IncpGq allow quantifications over sets
of edges of G and correspond to MS2 formulas. Hence, the constructions of
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FA presented in this article work for the expression of properties and functions
based on MS2 formulas and tree-width (but not clique-width) as parameter [10].
Other constructions based on a variant of tree-width are discussed in [9].

Acknowledgements: We thank C. Paul and the referees for their many
useful comments.
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Appendix

Monadic second-order logic

Representing graphs by logical structures.
We define a simple graph G as the relational structure xVG, edgGy with do-

main VG and a binary relation edgG such that px, yq P edgG if and only if
there is an edge from x to y (or between x and y if G is undirected). A p-
graph G whose type πpGq is included in N` is identified with the structure
xVG, edgG, plabaGqaPN`y where labaG is the set of a-ports of G. Since only
finitely many sets labaG are not empty, this structure can be encoded by a
finite word over a fixed finite alphabet. We only consider properties of (and
functions on) graphs rather than of (and on) p-graphs, but the formal setting
allows that. By considering a graph as a relational structure, we have a well-
defined notion of logically expressible graph property. However, in the present
article, we do not use this relational structure: we handle graphs through terms
in T pF8q (F8 is the signature of clique-width operations defined in Section
(1.2)) and we construct automata over F8 from MS formulas.

Monadic second-order formulas
The basic syntax of monadic second-order formulas (MS formulas in short)

uses set variablesX1, ..., Xn, ... but no first-order variables. Formulas are written
without universal quantifications and they can use set terms (cf. Section 1.3).
These constraints yield no loss of generality (see, e.g., Chapter 5 of [16]).

To express properties of p-graphs we use the atomic formulas Xi Ď Xj ,
Xi “ H, SglpXiq (meaning that Xi denotes a singleton set) and Cardp,qpXiq
(meaning that the cardinality of Xi is equal to p modulo q, with 0 ď p ă q and
q ě 2q25 where the variables denote sets of vertices. We also use the atomic
formulas edgpXi, Xjq meaning that Xi and Xj denote respectively txu and tyu
such that xÑG y and labapXiq meaning that Xj denotes a singleton consisting
of an a-port.

It is convenient to require that the free variables of every formula and its
subformulas of the form DXn.ϕ are among X1, ..., Xn´1. This syntactic con-
straint yields no loss of generality (see Chapter 6 of [16]) but it makes easier
the construction of automata. In examples, we use set variables X,Y , universal
quantifications, and other obvious notation to make formulas readable. A first-
order existential quantification is a construction of the form DXn.pSglpXnq ^
ϕpX1, ..., Xnqq, also written Dxn.ϕpX1, ..., Xn´1, txnuq for readability. All quan-
tifications of a first-order formula have this form. First-order order formulas may

25We do not distinguish monadic second-order formulas from counting monadic second-
order formulas, defined as those using Cardp,qpXiq, because all our results hold in the same
way for both types. See Chapter 5 of [16] for situations where the distinction matters.
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have free set variables and may be built with set terms. So, Dx2.ϕpX1, X
c
1´tx2uq

is a first-order formula if ϕ contains only first-order quantifications.
A graph property P pX1, ..., Xsq is MS expressible if there exists an MS

formula ϕpX1, ..., Xsq such that, for every p-graph G and for all sets of vertices
X1, ..., Xs of this graph, we have xVG, edgG, plabaGqaPN`y |ù ϕpX1, ..., Xsq if and
only if P pX1, ..., Xnq is true in G.

Good and irredundant terms

We prove a technical result about terms over F8, the signature of clique-width
operations. If t,t1 P T pF8q, then t « t1 means that these terms define isomorphic
p-graphs, πptq is the set of port labels of Gptq, maxπptq is the maximal label in
πptq, µptq is the set of port labels that occur in t and maxµptq is the maximal
one in µptq; we recall that port labels are positive integers.

Proposition 35: (1) The set of good and irredundant terms in T pF8q is
P-FA recognizable.

(2) There exists a polynomial-time algorithm that transforms every term in
T pF8q into an equivalent term that is good and irredundant.

Proof : (1) We have observed after Definition 7 that the set of good terms
is P-FA recognizable. By Proposition 8(2) of [12] the set of terms that are not
irredundant is accepted by a nondeterministic FA26 whose states on a term t are
pairs of port labels in µptq and nondeterminism degree is at most |µptq|2, hence
polyp}t}q. By determinizing it and exchanging accepting states and nonaccepting
ones, we get a P-FA A that recognizes the set of irredundant terms. By taking
the product of A with the FA recognizing good terms, we get a P-FA (by
Proposition 15) that recognizes the good and irredundant terms.

(2) Proposition 8 of [12] gives, for each integer k, a linear-time algorithm that
transforms a term t in T pFkq into an equivalent irredundant one t1 P T pFkq such
that |t1| “ |t| and }t1} ď }t} by deleting occurrences of operations that create
redundancies. This algorithm attaches to each position of t a set of pairs of port
labels from µptq. These sets can be encoded in size |µptq|2. logpkq ď polyp}t}q.
We obtain a polynomial-time algorithm taking as input a term in T pF8q.

We now consider an input term t that is irredundant and we transform it
into an equivalent one that is good and still irredundant. By induction on the
structure of t P T pFkq, we define:

a good term pt P T pFk1q such that πppt q “ rmaxπppt qs and k1 ď k,

and a bijection ht : πppt q Ñ πptq such that t « relabht
ppt q.

The inductive definition is shown in Table 5 where Condition (*) says the
following:

26This FA guesses a pair of occurrences of edge addition operations showing that the con-
sidered term is not irredundant.
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ht is a bijection: r|πptq|s Ñ πptq such that htpiq “ ht1piq for i P
rmaxπpt1qs; (clearly, |πptq| ě maxπpt1qq.

t pt ht Conditions

t ∅ Id πptq “ H (i.e., Gptq “ ∅)
a 1 1Ñ a

t1 ‘ t2 pt2 ht2 πpt1q “ H

t1 ‘ t2 pt1 ht1 πpt2q “ H

t1 ‘ t2 pt1 ‘ relabℓ´1˝ht2
ppt2 q ht πpt1q ‰ H, πpt2q ‰ H and (*)

ÝÝÑ
adda,bpt1q pt1 ht1 ta, bu Ę πpt1q
ÝÝÑ
adda,bpt1q

ÝÝÑ
add

h
´1
t1
paq,h´1

t1
pbqp

pt1 q ht1 ta, bu Ď πpt1q

relabhpt1q pt1 h ˝ ht1

Table 5: Inductive construction of pt P T pF8q and ht.

It is clear that pt and ht can be computed in polynomial time from t.

Claim 1 : pt P T pFk1q for some k1 ď k, πppt q “ rmaxπppt qs, ht is a bijection:πppt q Ñ
πptq and t « relabht

ppt q.

Proof : These facts are clear from the inductive construction and we have
k1 “ maxµppt q. ˝

Claim 2 : pt is irredundant.

Proof : Because t is assumed irredundant. ˝

Claim 3 : pt is good.

Proof : Let n be the number of vertices of Gptq, assumed to have at least
one edge. (The case of graphs without edges is easily treated separately). The
inductive construction shows that, for each subterm t1 of pt, each label in πpt1q
labels some vertex of Gpt1q, hence maxµppt q is at most the number of vertices of
Gppt q, equal to n.

Again by induction, we can see that ‘ has n´ 1 occurrences in pt (because pt
has no occurrence of ∅ and Gptq » Gpt1q), and that the symbols relabh have at
most 2n´ 1 occurrences (one can of course delete those of the form relabId).

The number of operations
ÝÝÑ
adda,b is at most pn ´ 1q.pk12 ´ k1q because pt is

irredundant by Claim 2. It follows that |pt | ď n`n´1`2n´1`pn´1q.pk12´k1q ď
pk1`1q2.n`1 as one checks by noting that k1 ě 2 because Gppt q has edges. Hence
pt is good. ˝
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