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Abstract

We present logically based methods for constructing XP and FPT

graph algorithms, parametrized by tree-width or clique-width. We will

use fly-automata introduced in a previous article. They make possible to

check properties that are not monadic second-order expressible because

their states may include counters, so that their sets of states may be in-

finite. We equip these automata with output functions, so that they can

compute values associated with terms or graphs. Rather than new al-

gorithmic results we present tools for constructing easily certain dynamic

programming algorithms by combining predefined automata for basic func-

tions and properties.

Keywords : monadic second-order logic, graph algorithm, fly-automaton,

FPT algorithm, XP algorithm, clique-width.

1 Introduction

We provide logic based methods for constructing FPT and XP dynamic pro-
gramming algorithms for terms and graphs, based on automata on terms. The
system AUTOGRAPH, currently under development, implements the presented
constructions.

Finite automata on terms that denote graphs of bounded tree-width or
clique-width can be used to check monadic second-order properties of the de-
noted graphs. However, these automata have in most cases so many states that
their transition tables cannot be built. In a previous article ([BCID]) we have
introduced automata called fly-automata whose states are described (but not
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listed) and whose transitions are computed on the fly (and not tabulated)1.
Fly-automata can have infinite sets of states. For example, a state can record,
among other things, the (unbounded) number of occurrences of a particular
symbol. We exploit this feature for constructing fly-automata that check prop-
erties that are not monadic second-order (MS) expressible. Furthermore, we
equip automata with output functions, that map accepting states to some ef-
fective domain D (e.g., the set of integers, or of pairs of integers, or the set of
words over a fixed alphabet). Hence, a fly-automaton A defines a mapping from
T (F ) (the set of terms over its signature F ) to D, and we construct automata
that yield polynomial-time algorithms for these mappings. The height ht(t) of
a term t and the number of occurrences of a given symbol in this term are com-
putable in this way. The uniformity of a term, i.e., the property that all leaves
of its syntactic tree are at the same depth, can be checked by a polynomial-time
fly-automaton. It cannot be by a finite automaton.

Our main interest is actually for the case where F is the signature F∞ of
graph operations upon which the definition of clique-width is based and for
fly-automata that define mappings from the graphs defined by terms in T (F∞)
to D. The graphs of clique-width at most k are those denoted by the terms
in T (Fk) where Fk is a finite subset of F∞. We will construct fly-automata
that yield FPT and XP algorithms (definitions are in Section 2.5) for clique-
width as parameter and that check graph properties that are not expressible in
monadic second-order logic. Since the clique-width cwd(G) of a simple graph G
is bounded in terms of its tree-width twd(G) (we have cwd(G) ≤ 22twd(G)+2+1,
[CouEng], Proposition 2.114), all our FPT and XP algorithms parameterized
by clique-width will be also FPT and XP respectively for tree-width.

As in [BCID], we will construct fly-automata for basic functions and proper-
ties, e.g., the degree of a vertex or the regularity of graph. Then, we will consider
more complex functions and properties written with these functions and prop-
erties (and the basic MS properties considered in [BCID]) and functional and
logical constructors. An example is the possibility of partitioning the vertex
set in two sets inducing regular subgraphs of the considered graph, expressed
by ∃X,Y.(Partition(X,Y ) ∧Reg[X ] ∧ Reg[Y ]). The atomic formula Reg[X ]
expresses that the induced subgraph G[X ] of G is regular, which is not MS ex-
pressible. We will combine basic fly-automata by means of products, direct and
inverse images as in [BCID] to obtain fly-automata for the considered functions
and properties. This method is extremely flexible because a slight change in the
defining formula is quickly reflected in the construction of a new automaton,
performed by the system AUTOGRAPH.

1Fly-automata are useful when the number of states is large compared to the number of
function symbols and the size of input terms. Symbolic automata [VeaBjo] are defined for the
case when the number of states is manageable but the set of function symbols is very large,
and possibly infinite. In these automata, states are listed but function symbols and transitions
are described by logical formulas..
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Here are some typical examples of properties and functions that we can
handle in this way:

(1) Is it possible to partition the vertex set in s components such that each
of them induces a regular subgraph? Or to cover the edges of a graph with those
of s cliques?

(2) Does there exist an equitable s-coloring ? Equitable means that the sizes
of any two color classes differ by at most 1 ([Fell]). We can express this property
by:

∃X1, . . . , Xs.(Partition(X1, . . . , Xs) ∧ St[X1] ∧ ... ∧ St[Xs]

∧|X1| = ... = |Xi−1| ≥ |Xi| = ... = |Xs| ≥ |Xi| − 1)

where St[X ] means that G[X ] is stable, i.e., has no edge.
(3) Assuming the graph s-colorable, what is the minimum size of the first

color class of an s-coloring?
(4) What is the minimum number of edges between X and Y for a partition

(X,Y ) of the vertex set such that G[X ] and G[Y ] are connected ?

More generally, let P (X1, ..., Xs) be a property of sets of vertices X1, ..., Xs

or of positions of a term; we will use X to denote (X1, ..., Xs) and t |= P (X)
to mean that X satisfies P in t (or in the graph G(t) defined by t); this writing
does not assume that P is written in any particular logical language. We are
interested, not only to check the validity of ∃X.P (X) in some term t, but also
to compute from it the following objects associated with t:

#X.P (X), defined as the number of assignments X such that t |=
P (X),

SpX.P (X), the spectrum of P (X), defined as the set of tuples of the
form (|X1|, . . . , |Xs|) such that t |= P (X),

MSpX.P (X), the multispectrum of P (X), defined as the multiset of
tuples (|X1|, . . . , |Xs|) such that t |= P (X),

SatX.P (X) as the set of assignments X such that t |= P (X).

We will say that #X.P (X), SpX.P (X), MSpX.P (X) and SatX.P (X) are
MS expressible functions on terms if P (X) is an MS property. Their values
are in the first three cases numbers or sets of tuples of numbers. The value of
SatX.P (X)(t) is a set of s-tuples of subsets of Pos(t). It can thus be described
by a finite word since the positions of any term are so (they can be described
by Dewey words, see Section 2.1), but this word may be of length 2s.|t|, hence,
not computable by a polynomial-time algorithm. In most cases, our automata
will give XP algorithms, and in some cases FPT algorithms.

Our main results
By continuing the work initiated in [BCID], we develop a novel vision of au-

tomata for the construction of model-checking algorithms that take finite terms
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as inputs or, in other words, a theory of automaton-based dynamic programing.
Here are the four main ideas and achievements.

First, a well-known fact: the state of a deterministic bottom-up automaton
collects, at each position u of an input term, some information about the sub-
term issued from u. This information should be of size as small as possible so
that the computation of a run be efficient. The best situation is when the set
of states is finite, but finiteness alone does not guarantee efficient algorithms.
This is well-known for monadic second-order definable sets of terms (over a finite
signature): the number of states of an automaton that implements a monadic
second-order formula has a number of states that cannot be bounded by an
elementary function (an iterated exponentiation of bounded depth) in the size
of the formula, see [FriGro, Rei]. The notion of fly-automaton permits to con-
struct usable algorithms based on finite automata whose transitions cannot be
compiled in manageable tables.

Second, as we do not insist on compiling transitions in tables, we have no
reason to insist on finiteness for the set of states. So we use fly-automata over
finite signatures, whose states are integers, or pairs of integers or some informa-
tion representable by a finite word over a fixed finite alphabet. These automata
yield polynomial-time dynamic programing algorithms if the computation of
each transition takes polynomial time in the size of the input term.

Third, fly-automata can take as input terms over countably infinite signa-
tures (encoded in effective ways). This extension is motivated by the use of
automata for checking properties of graphs defined by terms. In this article, we
use the terms with which clique-width is defined. As no finite set of operations
can generate all graphs, the use of an infinite signature is necessary2. By ana-
lyzing how these automata are constructed from logical descriptions and basic
automata, we can understand (in part) why some algorithms constructed from
automata are FPT whereas others are only XP.

Fourth, we go beyond monadic second-order logic in two ways. We adapt the
(classical) construction of finite automata from monadic second-order formulas
exposed in detail in Chapter 6 of [CouEng] and in [BCID] to properties of terms
and graphs that are not MS expressible (for example we can handle the regu-
larity of a graph) and we build automata that compute functions (for example,
the largest size of an induced subgraph that is regular). Such properties and
functions are defined by formulas using new atomic formulas, such as Reg[X ],
and new constructions, such as #X.P (X) or SpX.P (X), that can be seen as
generalized quantifications (they bind the variables of X and deliver more infor-
mation than ∃X.P (X)). From the usual case of MS logic, we keep the inductive
construction of an automaton based on the structure of the defining formula.

We generalize results from [ALS], [CouMos] and [CMR] that build algorithms
for properties of terms or of graphs of bounded tree-width or clique-width that
are of the form

2The corresponding constructed algorithms that are FPT (or XP) for clique-width are
immediately FPT (or XP) for tree-width.
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∃X1, . . . , Xs.(ϕ(X1, . . . , Xs) ∧R(|X1|, . . . , |Xs|))

where ϕ(X1, . . . , Xs) is an MS formula and R is an s-ary arithmetic relation
that can be decided in polynomial time can be checked in polynomial time.
However, we cannot allow atomic formulas of the form R(|X1|, . . . , |Xs|) (with
R as above) to occur everywhere in formulas (and not, as above, just below
external existential quantifiers). We discuss this issue in Section 5.3.

Summary of article : Section 2 reviews notation and definitions relative to
terms and graphs, and to computability. Section 3 recalls from [BCID] (and
extends) the definitions concerning fly-automata. Section 4 gives the main al-
gorithms that operate on fly-automata. Section 5 details some applications to
terms and graphs. (We also give ”direct constructions” of smaller automata
than those obtained by the general results). Section 6 gives an overview of the
organization of AUTOGRAPH and reports about experiments. Section 7 is a
conclusion. An appendix reviews definitions concerning monadic second-order
logic and establishes a technical lemma about terms that define graphs.

Short versions of the theoretical aspects and of the implementation are in the
proceedings, respectively, of CAI 2013 [BCID13] and of ELS 2013 [BCID13a].

2 Review of definitions

We assume that the reader is familiar with [BCID]. We review quickly definitions
and notation, but the reader will find more details and comments in [BCID].
We also give some new definitions. Monadic second-order logic on terms and
graphs is reviewed in the appendix.

2.1 General notation

We denote by N the set of natural numbers, by N+ the set of positive ones,
by [n,m] the interval {i | n ≤ i ≤ m} and by [n] the interval [1, n]. We denote
by w[i] the i-th element of a sequence or a word w. As usual, log(x) stands for
max{1, log(x)} and logarithms are in base 2.

The cardinality of a set A is denoted by |A|. An encoding of this set
may be larger. For example, a set of m integers in [n] can be encoded in size
O(m. log(n) + 1) by a word over a fixed finite alphabet. We denote by ‖A‖ the
size of such an encoding. If A is any set, then P(A), Pf (A), Pn(A), P≤n(A)
denote respectively its set of subsets, of finite subsets, of subsets of cardinality
n and of subsets of cardinality at most n.
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We denote by A−B the difference of two sets A,B. We denote it by Bc (to
mean complementation) if B ⊆ A and A is clear from the context. (We will use
the notation B for another purpose).

We denote by [A → B] the set of mappings (total functions) : A → B. If
C ⊆ A and f ∈ [A → B], we denote by f ↾ C the restriction of f to C. We
can consider that [C → C] is a subset of [A → A] by identifying h : C → C
with its extension h′ to A such that h′(a) := a if a ∈ A − C. However, no
such identification is needed if we formalize (unambiguously) h as the set of
pairs (a, h(a)) such that a ∈ C and h(a) 6= a, because in this case the set of
pairs corresponding to h′ is exactly the same. This observation yields a way to
implement h if C is finite and A is infinite.

We say that a mapping h : A → N is finite if the set h−1(N+) is finite. It
can be seen as a finite multiset over A. We denote by [A → N]f the set of finite
mappings h : A → N. Even if A is infinite, such a mapping can be seen (and
implemented) as the finite set of pairs (a, h(a)) such that h(a) 6= 0. If A ⊆ B
we can consider that [A → N]f is a subset of [B → N]f : the mapping h in
[A → N]f is identified with h′ in [B → N]f that extends it by taking h′(a) := 0
if a ∈ B − A. But the set of pairs (a, h(a)) such that a ∈ A and h(a) 6= 0 also
describes h′.

Let f ∈ [A → B] and X ⊆ A. We denote by {f(x) | x ∈ X} with boldface
braces, the multiset of elements f(x) of B and by {f(x) | x ∈ X} the corre-
sponding set. If B = N, then Σ{f(x) | x ∈ X} = Σx∈Xf(x). We use in a similar
way the notation ⊕{f(x) | x ∈ X} if ⊕ is an associative and commutative
binary operation on B.

We denote by ⊔ the union of two multisets. We denote by A1 ⊎ ... ⊎Ak the
union of sets A1, ..., Ak if they are pairwise disjoint (otherwise A1 ⊎ ... ⊎ Ak is
undefined).

Terms and their syntactic trees
A signature F is a finite or countable set of function symbols, each be-

ing given together with a natural number called its arity: we denote by ρ(f)
the arity of the symbol f and by ρ(F ) the maximal arity of a symbol of
F, provided its symbols have bounded arity. We denote by T (F ) the set of
finite terms over F and by Pos(t) the set of positions of a term t. Each
position is an occurrence of some symbol. Positions are defined as Dewey
words. For example, the 7 positions of the term f(g(a, b), g(b, c)) are denoted
by the Dewey words ε, 1, 11, 12, 2, 21, 22. For a term t = h(t1, t2, t3), we have
Pos(t) = {ε}∪1.Pos(t1)∪2.Pos(t2)∪3.Pos(t3) where . denotes concatenation.
(If function symbols have arity at most 9, we can omit the concatenation marks
in Dewey words, as done in the above example of f(g(a, b), g(b, c))). We de-
note by Sig(t) the finite subsignature of F consisting of the symbols that have
occurrences in t.

The syntactic tree of a term t is a rooted, labelled and ordered tree with
set of nodes Pos(t). Each node u is labelled by a symbol f and has an ordered
sequence of ρ(f) sons. The root (roott) is the first position (relative to some
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linear writing of t), and the occurrences of the nullary symbols are the leaves.
We denote by t/u the subterm of t issued from a node u and by Pos(t)/u the
set of positions of t below u or equal to it. In terms of Dewey words, we have
Pos(t)/u = u.Pos(t/u). Note that Pos(t)/u 6= Pos(t/u) unless u = ε i.e., is the
root. If X is a set of positions of t, then X/u denotes X ∩ (Pos(t)/u), hence is
the set of elements of X below or equal to u. The height ht(t) of a term t is 1
if t is a nullary symbol and 1 + max{ht(t1), ..., ht(tr)} if t = h(t1, ..., tr).

Let H be another signature (possibly H = F ), and h : H → F be an arity
preserving mapping, i.e., such that ρ(h(f)) = ρ(f) for every f ∈ H . For every
t ∈ T (H), we let h(t) ∈ T (F ) be the term obtained from t by replacing f by
h(f) at each of its occurrences. The mapping h on terms is called a relabelling.

We denote by |t| the number of positions of a term t. In order to discuss
algorithms taking terms as input, we must define the size of t. If F is finite, we
can take |t| as its size. If F is infinite, its symbols must be encoded by words of
variable length. We define the size ‖t‖ of t as the sum of lengths of the words
that encode its symbols3. In both cases, we denote the size of t by ‖t‖. We
have |Sig(t)| ≤ |t| < ‖t‖. We say that an algorithm takes time poly(‖t‖) if its
computation time is bounded by p(‖t‖) for some polynomial p that we need not
specify.

The set Pos(t) of all positions of t ∈ T (F ) can be encoded by a sequence of
length bounded by |t|.ht(t). log(r) ≤ ‖t‖2 where r = ρ(Sig(t)) is the maximal
arity of the symbols of t. (This sequence encodes the arity of the function
symbol occurring at each position, but not the symbol itself.)

A language is either a set of words or a set of terms.

2.2 Graphs and clique-width

Notation and definitions are as in the book [CouEng]. More details are given in
the appendix.

Graphs
All graphs are finite and simple (without parallel edges) and without loops.

A graph G is identified with the relational structure 〈VG, edgG〉 where edgG
is a binary relation representing the directed or undirected adjacency (edgG is
symmetric if G is undirected). If X ⊆ VG, we denote by G[X ] the induced
subgraph of G with vertex set X , i.e., G[X ] := 〈X, edgG ∩ (X ×X)〉. If E is a
set of edges, E ⊆ edgG, then G[E] := 〈VG, E〉.

In order to build graphs by means of graph operations, we use labels attached
to vertices. We let L be a fixed countable set of port labels. A p-graph (or graph
with ports) is a triple G = 〈VG, edgG, πG〉 where πG is a mapping: VG → L.

3If wx encodes a symbol x, then ‖f(g(a, b), g(b, c))‖ = |wf |+ 2.|wg|+ |wa|+ 2.|wb|+ |wc|.
The length of a LISP list implementing a term t is between ‖t‖ and 3 · ‖t‖. (We use LISP to
implement fly-automata, see Section 6.)
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So, πG(x) is the label of x and if πG(x) = a, we say that x is an a-port.
If X is a set of vertices, then πG(X) is the set of its port labels. The set
π(G) := πG(VG) is the type of G. A p-graph G is identified with the relational
structure 〈VG, edgG, (labaG)a∈L〉 where laba is a unary relation and labaG is the
set of a-ports of G (see the appendix for more details). Since we only consider
simple graphs, two graphs or p-graphs G and H are isomorphic if and only if
the corresponding

structures are isomorphic. In this article, we will always take port labels in
L := N+.

We denote by G ≈ G′ the fact that p-graphs G and G′ are isomorphic and
by G ≃ G′ that they are isomorphic up to port labels.

Operations on p-graphs
We let Fk be the following finite set of function symbols that define operations

on the p-graphs of type included in the set of port labels C := [k] :

- the binary symbol ⊕ denotes the union of two disjoint p-graphs
(i.e., G ⊕ H := 〈VG ∪ VH , edgG ∪ edgH , (labaG ∪ labaH)a∈C〉 with
VG ∩ VH = ∅),

- the unary symbol relabh denotes the relabelling that changes in the
argument p-graph every port label a into h(a) (where h is a mapping
from C to C defined as a subset4 of C × C, as explained in Section
2.1);

- the unary symbol
−−→
adda,b, for a 6= b, denotes the edge-addition that

adds an edge from every a-port x to every b-port y (unless there is
already an edge x → y, this operation is idempotent),

- the nullary symbol a, for a ∈ C, denotes an isolated a-port, and
the nullary symbol ∅ denotes the empty graph ∅.

The set {a | a ∈ C} is denoted by C. For constructing undirected graphs,
we use the operation adda,b where a < b (the set C is linearly ordered as it is of

the form [k]) as an abbreviation of
−−→
adda,b ◦

−−→
addb,a. For constructing undirected

graphs only, we use the operations adda,b instead of
−−→
adda,b, which yields the

signature F u
k .

Every operation of Fk (resp. F u
k ) is an operation of Fk′ (resp. F u

k′ ) if k < k′

(by our convention on mappings h in relabh). We let F∞ (resp. F u
∞) be the

union of the signatures Fk (resp. F u
k ). Hence, Fk (resp. F u

k ) is the restriction
of F∞ (resp. F u

∞) to the operations involving labels in [k].

Let t ∈ T (F∞). We say that a port label a occurs in t if either a,
−−→
adda,b,

−−→
addb,a or relabh such that h(a) 6= a or h(b) = a 6= b has an occurrence in t. We

4If k = 3, then relab{(1,2),(3,1)} = relabh where h(1) = 2, h(2) = 2, h(3) = 1. We denote
also relab{(a,b)} by relaba→b. Each operation relabh can be expressed as a composition of
operations relaba→b. See [CouEng] Proposition 2.118 for the proof.
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denote by µ(t) the set of port labels that occur in t and by maxµ(t) its maximal
element. We also denote by π(t) the set of port labels π(G(t)) and by maxπ(t)
its maximal element. Clearly, π(t) ⊆ µ(t).

Clique-width
Every term t in T (Fk) (or in T (F u

k )) denotes a p-graph, G(t) that we now
define formally. We let Pos0(t) be the set occurrences in t of the symbols
from C. For each u ∈ Pos(t), we define a p-graph G(t)/u, whose vertex set is
Pos0(t)/u, i.e., the set of leaves of t below u that are not occurrences of ∅. The
definition of G(t)/u is by bottom-up induction on u.

If u is an occurrence of ∅, then G(t)/u := ∅,

if u is an occurrence of a , then G(t)/u has the unique vertex u that
is a a-port,

if u is an occurrence of ⊕ with sons u1 and u2, then G(t)/u :=
G(t)/u1 ⊕G(t)/u2, (note that G(t)/u1 and G(t)/u2 are disjoint),

if u is an occurrence of relabh with son u1, thenG(t)/u := relabh(G(t)/u1),

if u is an occurrence of
−−→
adda,b with son u1, thenG(t)/u :=

−−→
adda,b(G(t)/u1),

if u is an occurrence of adda,b with son u1, thenG(t)/u := adda,b(G(t)/u1).

Finally, G(t) := G(t)/roott. Its vertex set is thus Pos0(t). Note the following
facts :

(1) up to port labels, G(t)/u is a subgraph of G(t) (a port label of a
vertex of G(t)/u can be modified by a relabelling occurring on the
path from u to the root of t);

(2) if u and w are incomparable under the ancestor relation, then
G(t)/u and G(t)/w are disjoint graphs.

If t ∈ T (Fk)∪ T (F u
k ), X ⊆ Pos0(t) and t′ is the term obtained by replacing,

for each u ∈ X , the symbol occurring there by ∅, then G(t′) is the induced
subgraph G(t)[Pos0(t)−X ] of G(t).

The clique-width of a graph G, denoted by cwd(G), is the least integer k
such that G ≃ G(t) for some t in T (Fk) (in T (F u

k ) if G is undirected). A term
t in T (Fk) (or in T (F u

k )) is optimal if k = cwd(G). Every graph G has clique-
width at most |VG|. Two terms t and t′ are equivalent, denoted by t ≃ t′, if
G(t) ≃ G(t′).

All definitions and results stated below for Fk and F∞ apply also to F u
k and

F u
∞. Let t ∈ T (Fk). Each of its symbols can be encoded by a word of length

O(k. log(k)) (only O(log(k)) for a,
−−→
adda,b). Hence, its size is O(k. log(k).|t|).

Clearly, |VG(t)| ≤ |t| < ‖t‖. The size ‖t‖ is not bounded by a function of |VG(t)|
because a graph can be denoted by arbitrary large terms (in particular because
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−−→
adda,b is idempotent). To avoid this, we define a term t ∈ T (F∞) as good if,
for some k, we have t ∈ T (Fk), k ≤ |VG(t)| and |t| ≤ (k + 1)2.|VG(t)| + 1.
These conditions do not imply that t is optimal. We denote by Tgood(F∞)
the set of good terms. In the appendix (Proposition 44), we give an algo-
rithm that transforms a term t ∈ T (Fk) into an equivalent good term in T (Fk′)
for some k′ ≤ k. (Its proof will construct a kind of normal form that jus-
tifies the bound (k + 1)2.|VG(t)| + 1 in the definition). For example the term
relab5→1(add1,9(add1,8(1⊕5⊕8))) is not good and can be replaced by the good
term relab2→1(add1,3(1⊕ 2⊕ 3)). This preprocessing takes time poly(‖t‖).

If t is good we have ‖t‖ = O(k. log(k).|t|) = O(k3. log(k).|VG(t)|). It follows
that a computation time is bounded by a polynomial in ‖t‖ if and only if it is by
a polynomial in maxµ(t) + |VG(t)|. In Section 2.5 below, we discuss complexity
issue about clique-width.

2.3 Encoding sets of positions of terms and sets of vertices

A property of terms in T (F ) can be seen as a subset of this set. We recall from
[BCID] that, similarly, a property P (X1, ..., Xs) of sets of positions X1, ..., Xs of
a term can be seen as a set of terms over a set of function symbols constructed
from F in a canonical way. We can thus handle these properties by automata.

Sets of positions of terms.
Let F be a signature and s be a positive integer. We let F (s) be the set

F × {0, 1}s made into the signature by letting ρ((f, w)) := ρ(f) (here w ∈
{0, 1}s is a sequence of Booleans considered as a word over {0, 1}). We let
prs : F (s) → F be the relabelling that deletes the second component of a
symbol (f, w). (We denote it by pr if s need not be specified.)

To every term t ∈ T (F (s)) corresponds the term prs(t) in T (F ) and the
s-tuple ν(t) = (X1, ..., Xs) of subsets of Pos(t) = Pos(prs(t)) such that u ∈ Xi

if and only if w[i] = 1 where the symbol at position u in t is (f, w). Conversely,
if t ∈ T (F ) and (X1, ..., Xs) is an s-tuple of sets of positions of t, then there is a
unique term t′ ∈ T (F (s)) such that prs(t

′) = t and ν(t′) = (X1, ..., Xs).We will
denote this term by t∗(X1, ..., Xs) or by t∗X where X abbreviates (X1, ..., Xs).

A property P (X1, ..., Xs) of sets of positions of terms over a signature F
is characterized by the language TP (X1,...,Xs) over F (s) defined as {t ∗X | t |=

P (X)}5. Such a property can also be considered as the property P of terms
t∗X in T (F (s)) such that t∗X |= P if and only if t |= P (X). Conversely, every
subset of T (F (s)) is TP (X) for some property P (X).

A key fact about the relabelling prs is that T∃X.P (X) = prs(TP (X)).

More generally (because every property is a Boolean-valued function) a func-
tion α whose arguments are t ∈ T (F ) and s-tuples X of positions of t, and
whose values are in a set D, corresponds to the function α : T (F (s)) → D such
that α(t ∗X) = α(t,X).

5Obviously, P (X) stands for P (X1, ...,Xs) and not for P ((X1, ...,Xs)).
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Sets of vertices.
The same technique applies to sets of vertices of graphs defined by terms

in T (F∞).We define F
(s)
∞ from F∞ by replacing each nullary symbol a by the

nullary symbols (a, w) for all w ∈ {0, 1}s. We define prs : F
(s)
∞ → F∞ as the

mapping that deletes the sequences w from these nullary symbols. It extends

into a relabelling prs : T (F
(s)
∞ ) → T (F∞). A term t in T (F

(s)
∞ ) defines thus

the graph G(prs(t)) and the s-tuple (X1, ..., Xs) such that Xi is the set of
vertices that are occurrences of nullary symbols (a, w) such that w[i] = 1. As
for sets of positions in terms, we use the notation t∗(X1, ..., Xs) or more shortly
t ∗X. Hence, a property P (X1, ..., Xs) of sets of vertices is characterized by

the language LP (X1,...,Xs) over F
(s)
∞ defined as {t ∗ X | G(t) |= P (X)}. Such

a property can also be considered as the property P of terms in T (F
(s)
∞ ) such

that t ∗X |= P if and only if G(t) |= P (X).
As for terms, the same holds for functions on graphs taking sets of vertices

as auxiliary arguments. For example, the function e(X1, X2) that we define as
the number of undirected edges between disjoint sets X1 and X2 (with value
⊥ meaning ”undefined” if X1 and X2 are not disjoint) can be handled as a

mapping e : T (F
u(2)
∞ ) → {⊥} ∪ N. (It will be used in Section 5.2.1).

Set terms and substitutions of variables.
The following definitions and facts apply to terms and to graphs. A set

term over a set {X1, ..., Xn} of set variables is a term S written with these
variables, the constant symbol ∅ for denoting the empty set and the operations
∩, ∪ and c for complementation. Hence, ∅c denotes the set of all positions of
the considered term or of all vertices of the considered graph. An example is
(X1∪Xc

3)∩(X2∪X5)
c. We now extend to functions Lemma 13 of [BCID] which

is formulated for the special case of properties. Let α(Y1, ..., Ym) be a function on
terms in T (F ) with set arguments Y1, ..., Ym and values in a set D. Let S1, ..., Sm

be set terms over {X1, ..., Xn}. We let β(X1, ..., Xn) := α(S1, ..., Sm). Hence
α : T (F (m)) → D and β : T (F (n)) → D. There exists a relabelling h: T (F (n)) →
T (F (m)) that replaces each symbol (f, w) by (f, w′) for some w′ ∈ {0, 1}m in
such a way that β = α ◦ h.

We give two examples. First, we let n := 4, S1 := X1 ∪Xc
3 and α be unary

(m = 1). Then β(X1, X2, X3, X4) defined as α(X1 ∪Xc
3) satisfies the equality

β = α ◦ h with h defined as follows, for all x, y ∈ {0, 1} and6 f ∈ F :

h((f, 1x0y)) = h((f, 1x1y)) = h((f, 0x0y)) = (f, 1) and
h((f, 0x1y)) = (f, 0),

i.e., h((f, x1x2x3x4)) = (f, x1 ∨ ¬x3). Hence h encodes the set term S1 in a
natural way. For another example, consider α(Y1, Y2, Y3) and β(X1) defined as
α(X1,∅, ∅c). Then we have β = α ◦ h with h such that :

h((f, 0)) = (f, 001) and h((f, 1)) = (f, 101), hence, h((f, x)) =
(f, x01) for all x ∈ {0, 1}.

6h is defined in the very same way for all f in F .
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This technique can also be used if the terms S1, ..., Sm are just variables, say
Xi1 , ..., Xim , hence for handling a substitution of variables.

First-order variables
If P (X,Y, Z) is a property, we will denote by P (X, y, Z) the property P (X,

{y}, Z) where y denotes an element of the considered domain. This is actu-
ally a derived notation. Our basic syntax uses only set variables. Accordingly,
∃y.P (X, y, Z) abbreviates ∃Y.(P (X,Y, Z)∧Sgl(Y )) where Sgl(Y ) means that
Y is singleton. If α is a ternary function, we let similarly α(X, y, Z) abbreviate
α(X, {y}, Z).

2.4 Effectively given sets

A set is effectively given if, either it is finite and the list of its elements is known,
or it is countable and its elements are bijectively encoded by words over {0, 1}
(or over another finite alphabet) that form a decidable set. Such elements can
be the symbols of a signature, the Boolean constants True, False, an integer,
a tuple of integers, or even a set of positions of a term t (a position is defined
as a Dewey sequence, cf. Section 2.2). Through the encodings, one can define
computable functions on effectively given sets. If D is effectively given, then so
are Ds and Pf (D).

We let B := {False, T rue} or {0, 1} with 0 for False. A property of terms
or graphs is a function from terms or graphs to B. The general definitions for
functions apply thus to properties.

In many cases, an effectively given set D has a special element ⊥ that can
stand for an undefined value, or be 0 if D = N, or the empty set if D = Pf (E).
Then, a mapping f : D′ → D is finite if the set of elements d of D′ such
that f(d) 6= ⊥ is finite. Such a mapping can be identified with the finite set
{(d, f(d)) | f(d) 6= ⊥}. Hence, if D′ is effectively given, the set [D′ → D]f of
finite mappings : D′ → D is effectively given.

We will consider terms over finite or countably infinite signatures F that
satisfy the following conditions (that we will not repeat in definitions and state-
ments):

(a) F is effectively given,
(b) its symbols have bounded arity (ρ(F ) denotes the maximal arity),
(c) the arity of a symbol can be computed in constant time.

To insure (c), we can begin the word encoding a symbol by its arity. It
follows that one can determine in linear time if a labelled tree is actually the
syntactic tree of a ”well-formed” term in T (F ). We will only use relabellings:
F → F ′ that are computable in linear time. Their extensions : T (F ) → T (F ′)
are also computable in linear time (by our definition of the size of a term in
Section 2.1).
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Functions from T (F (s)) to D are always total: the symbol ⊥ will stand for
an undefined value.

2.5 Parameterization

We give definitions relative to parameterized complexity. Let F be a signature.
A function h : T (F ) → N is P-bounded if there exists a polynomial p such
that h(t) ≤ p(‖t‖) for every term t in T (F ). It is FPT-bounded if, similarly,
h(t) ≤ f(Sig(t)).‖t‖a for some fixed function f and constant a. It is XP-bounded
if h(t) ≤ f(Sig(t)).‖t‖g(Sig(t)) for some fixed functions f and g. Since |t| <
‖t‖ ≤ |t| .ℓ(Sig(t)) for some function ℓ, ‖t‖ can be replaced by |t| in the last two
cases.

A function α : T (F ) → D is P-computable (resp. FPT-computable, resp.
XP-computable) if it has an algorithm whose computation time is P-bounded
(resp. FPT-bounded, resp. XP-bounded). Hence, we use Sig(t) as a parameter
in the sense of parameterized complexity (see the books [DF], [FG]). If F is finite,
the three notions are equivalent. If α is a property, we say that it is P-, FPT-
or XP-decidable.

We will consider graph algorithms that take as input terms t over F∞ that
define input graphs G(t). By constructing automata, we will obtain algorithms
that are polynomial-time, FPT or XP for Sig(t) as parameter. The size of the
input is ‖t‖. What do we get if the graph is given without any defining term
t, so that we must construct a term defining it? We get algorithms with same
parameterized time complexity for the following reasons.

First we observe that every graph with n vertices is defined by a (trivial)
term in T (Fn) where each vertex has a distinct label and no relabelling is made.
Such a term can be constructed in polynomial time in n so as to be good (in
the technical sense of Section 2.2) and irredundant, whence of size O(n2. log(n)).
Hence, if a function α on graphs whose input is given by a term is P-computable,
then it is also P-computable if the graph is given without any defining term.

The situation is more complicated for FPT- and XP-computability. The
problem of deciding if a graph has clique-width at most k is NP-complete (with
k part of the input, [Fell]). However, finding an optimal term that defines
the input graph is not essential. There is an algorithm that computes, for every
directed or undirected graph G, a term in T (Fh(cwd(G))) defining this graph; this
algorithm takes time g(cwd(G)).|VG|3 where g and h are fixed functions and can
produce a good (not necessarily optimal) term (see [CouEng], Proposition 6.8).
It follows that an FPT or XP graph algorithm taking as input a term in T (F∞)
yields an FPT or XP graph algorithm (for clique-width as parameter) taking a
graph as input.
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3 Fly-automata

3.1 Fly-automata : basic definitions

We review the main definitions of [BCID] and we extend them by equipping
automata with output functions. All automata are bottom-up (or frontier-to-
root) without ε-transition.

Definitions 1 : Fly-automata that recognize languages.
(a) Let F be a finite or infinite (effectively given) signature. A fly-automaton

over F (in short, a FA over F ) is a 4-tuple A = 〈F,QA, δA,AccA〉 such that
QA is a finite or infinite, effectively given set called the set of states, AccA is a
computable mapping QA → {True, False} so that Acc−1

A (True) is the (usual)
set of accepting states, and δA is a computable function such that for each tuple
(f, q1, . . . , qm) with q1, . . . , qm ∈ QA, f ∈ F , ρ(f) = m ≥ 0, δA(f, q1, . . . , qm)
is a finite set of states. The transitions are such that f [q1, . . . , qm] →A q (and
f →A q if f is nullary) if and only if q ∈ δA(f, q1, . . . , qm). We say that
f [q1, . . . , qm] →A q is a transition that yields q. We assume that each set
δA(f, q1, . . . , qm) is linearly ordered for some fixed (say lexicographic) linear
order on Z∗, where Z is the alphabet used to denote the states.

Each state is a word over a fixed alphabet and so has a size defined as the
length of that word. An integer can be a state (written in binary notation, see
Example 5 below).

We say that A is finite if F and QA are finite7. If furthermore, QA, its
accepting states and its transitions are listed in tables, it is called a table-
automaton.

(b) A run of a FA A on a term t ∈ T (F ) is a mapping r : Pos(t) → QA such
that:

if u is an occurrence of a function symbol f ∈ F and u1, ..., uρ(f) is
the sequence of sons of u, then f [r(u1), . . . , r(uρ(f))] →A r(u); (if
ρ(f) = 0, the condition reads f →A r(u)).

For a state q, we let L(A, q) be the set of terms t in T (F ) on which there is a
run r of A such that r(root t) = q. A run r on t is accepting if the state r(root t)
is accepting. We let L(A) :=

⋃
{L(A, q) | AccA(q) = True} ⊆ T (F ). It is the

language accepted (or recognized) by A. A state q is accessible if L(A, q) 6= ∅.
We denote by QA ↾ t the set of states that occur on the runs on t and on its
subterms, and by QA ↾ L the union of the sets QA ↾ t for t in L ⊆ T (F ).

A sink is a state s such that, for every transition f [q1, . . . , qm] →A q, we
have q = s if qi = s for some i. If F has at least one symbol of arity at least 2,

7Every MS definable set of terms over a finite signature F is recognizable by a finite
automaton. The case of an infinite signature is discussed in the appendix.

14



then an automaton can have at most one sink. A state named Error will be a
nonaccepting sink.

Unless A is finite, one cannot decide if a state is accessible. Hence, we cannot
perform on FA the classical trimming operation that removes the inaccessible
states, which raises no problem as we will see next.

(c) Deterministic automata. A FA A is deterministic if all sets δA(f, q1, . . . ,
qm) have cardinality 1. Hence, to simplify the terminology, deterministic will
mean deterministic and complete (cf. [BCID]; by adding a nonaccepting sink
to a (usual) deterministic automaton, one makes it complete while preserving
determinism). A deterministic FA A has, on each term t, a unique run denoted
by runA,t; we let also qA(t) := runA,t(roott). The mapping qA is computable
and the membership in L(A) of a term t is decidable.

Every fly-automaton A over F can be determinized as follows. For every
term t ∈ T (F ), we denote by run∗

A,t the mapping: Pos(t) → Pf (QA) that
associates with every position u the finite set of states of the form r(roott/u) for
some run r on the subterm t/u of t. If A is finite, then run∗

A,t = runB,t where B
is its (classical) determinized automaton, denoted by det(A), with set of states
included in Pf (QA). If A is an infinite fly-automaton, then we have the same
equality where B is a deterministic fly-automaton with set of states Pf(QA) that
we denote also by det(A). (See [BCID], Proposition 45(2)). In both cases, a run
of det(A) is called the determinized run ofA. The mapping run∗

A,t is computable
and the membership in L(A) of a term in T (F ) is decidable because t ∈ L(A)
if and only if the set run∗

A,t(roott) contains an accepting state. We define
ndegA(t), the nondeterminism degree of A on t, as the maximal cardinality of
run∗

A,t(u) for u in Pos(t). We have ndegA(t) ≤ |QA ↾ t|.

It is not decidable whether a FA A is deterministic. If it is, then det(A) is
not identical to A : its states are the singletons {q} such that q ∈ QA. Clearly,
A and det(A) have isomorphic runs and they recognize the same languages. In
practice, we know from its construction when a FA is deterministic.

Whether all states of a FA are accessible or not does not affect the mem-
bership algorithm: the inaccessible states will simply never appear in any run.
There is no need to try to remove them (which is actually impossible in general)
as this is the case for a table-automaton, to get small transition tables.

Definitions 2 : Fly-automata that compute functions.
A fly-automaton with output is a 4-tuple A = 〈F,QA, δA, OutA〉 as in Def-

inition 1 except that the mapping AccA is replaced by a total and computable
output function OutA: QA → D where D is an effectively given domain. If
Error ∈ QA, we also require that OutA(Error) = ⊥.

If A is deterministic, the function computed by A is Comp(A) : T (F ) → D
such that Comp(A)(t) := OutA(qA(t)). It can have value ⊥ on a state different
from Error.
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If A is not deterministic, we let B be det(A) equipped with the output
function OutB:Pf (QA) → Pf (D) such that OutB(R) := {OutA(q) | q ∈ R}.
Then, we define Comp(det(A)) as Comp(B) : T (F ) → Pf (D). In some cases,
we may equip det(A) with an output function f : Pf (QA) → D′ such that D′

is another effectively given domain, so that the corresponding function maps
T (F ) into D′. In this article, most FA with output will be deterministic.

Examples 3:
(a) The height ht(t) of a term t is obviously computable by a FA.

(b) Let F be a signature and r = ρ(F ) be the maximal arity of its operations.
Let f ∈ F . For every term t over F , we let Posf (t) be the set of positions of t
that are occurrences of f . The function Posf is computed by a FA Af that we
construct as follows: its states are the finite sets of words over [r]. These sets
are intended to denote sets of positions of terms in T (F ). The transitions are
defined as follows, for q1, ... ⊆ [r]∗ :

f [q1, ..., qs] → {ε} ∪ 1.q1 ∪ ... ∪ s.qs,

f ′[q1, ..., qs′ ] → 1.q1 ∪ ... ∪ s′.qs′ if f ′ 6= f .

This automaton is deterministic. At each position u of t, we have runAf ,t(u) =
Posf (t/u), hence, we have Comp(Af ) = Posf if we take the identity as output
function.

(c) For t ∈ T (F∞), the finite sets of port labels π(t) and µ(t) (cf. Section
2.2) can be computed by FA whose states on t are finite subsets of µ(t). Hence,
the set Tgood(F∞) is recognizable by a fly-automaton.

Definitions 4 : Subautomata; products and other transformations of au-
tomata .

(1) Subautomata. We say that a signature H is a subsignature of F , written
H ⊆ F , if every operation of H is one of F with the same arity. We say that a
fly-automaton B over H is a subautomaton of a fly-automaton A over F , which
we denote by B ⊆ A, if:

H ⊆ F , QB ⊆ QA,

δB is the restriction of δA to tuples (f, q1, . . . , qr) such that f ∈ H
and q1, . . . , qr ∈ QB,

and, either AccB = AccA ↾ QB or OutB = OutA ↾ QB.

These definitions imply that L(B) = L(A) ∩ T (H) in the first case and
Comp(B) = Comp(A) ↾ T (H) in the second. If A is fly-automaton over F and
H ⊆ F, we define A ↾ H := 〈H,QA, δA↾H ,OutA〉 where δA↾H is the restriction
of δA to tuples (f, q1, . . . , qr) such that f ∈ H . It is a subautomaton of A. Note
that some states of A ↾ H are not accessible, but we need not mind.
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The Weak Recognizability Theorem ([CouEng], Chapters 5 and 6) states
that, for every MS formula ϕ expressing a graph property, for every integer
k, one can construct a finite automaton Ak over Fk that recognizes the set of
terms t ∈ T (Fk) such that G(t) |= ϕ. In [BCID] (Section 7.3.1) we prove a bit
more: we construct a (single) fly-automaton A∞ on F∞ that recognizes the
terms t ∈ T (F∞) such that G(t) |= ϕ. The automata Ak are subautomata of
A∞.

(2) Products of fly-automata. Let A1, ...,Ak be FA over F and g be a com-
putable mapping from QA1 × ...×QAk

to B or to some effectively given domain.
We define A := A1 ×g ... ×g Ak as the FA with set of states QA1 × ... × QAk

,
transitions defined by:

δA(f, q1, . . . , qρ(f)) := {(p1, . . . , pρ(f)) | pi ∈ δAi
(f, q1[i], . . . , qρ(f)[i])

for each i}

and output function defined by:

OutA((p1, . . . , pk)) := g(p1, . . . , pk).

Depending on g, A recognizes a language or defines a function. This con-
struction will be used in different ways : see Propositions 10 and 15 and Theorem
17 below.

(3) Output composition. Let A define a mapping : T (F ) → D and g be
computable: D → D′ and such that g(⊥D) = ⊥D′ . We denote by g ◦ A the au-
tomaton obtained from A by replacing OutA by g◦OutA. If A is deterministic,
we have Comp(g ◦A) = g ◦Comp(A). Otherwise, we have Comp(det(g ◦A)) =
Comp(ĝ ◦det(A)) = ĝ ◦Comp(det(A)) where ĝ(D) := {g(d) | d ∈ D}. When A
is not deterministic, we may want to compute Comp(k ◦ det(A)) for mappings
k : Pf (D) → D′. Some examples are

k(D) := D − {⊥D} with D′ = Pf (D − {⊥D}),

k(D) := max(D) where D is linearly ordered, D′ = D ∪ {⊥},
(max(∅) = ⊥),

k(D) := Σ(D) where D ⊆ N, D′ = N.

(4) Image. Let h : T (H) → T (F ) be a relabelling having a computable
inverse, that is, such that h−1(f) ⊆ H is finite and computable for each f . If
L ⊆ T (H), then h(L) := {h(t) | t ∈ L}. If A is a fly-automaton over H , we let
h(A) be the fly-automaton over F (see [BCID], Proposition 45) obtained from
A by replacing each transition f [q1, · · · , qρ(f)] →A q by h(f)[q1, · · · , qρ(f)] → q.
We say that h(A) is the image of A under h. The FA h(A) is not deterministic
in general, even if A is. We have h(L(A, q)) = L(h(A), q) for every state q and, if
A defines a language, h(L(A)) = L(h(A)) (because h(A) has the same accepting
states as A). If A computes a function, then Comp(det(h(A)))(t) is equal to
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{Comp(A)(t′) | h(t′) = t} if A is deterministic, and to
⋃
{Comp(det(A))(t′) |

h(t′) = t} otherwise.

(5) Inverse image. Let h : T (H) → T (F ) be a computable relabelling. If
K ⊆ T (F ), we define h−1(K) as {t ∈ T (H) | h(t) ∈ K}. If A is a FA over F , we
let h−1(A) be the FA over H with transitions of the form f [q1, · · · , qρ(f)] → q
such that h(f)[q1, · · · , qρ(f)] →A q. We have L(h−1(A), q) = h−1(L(A, q)) for
every state q. If A defines a language, then L(h−1(A)) = h−1(L(A)). We call
h−1(A) the inverse image of A under h (cf. [BCID], Definition 17(h)). Note
that h−1(A) is deterministic if A is so. If A defines a function : T (F ) → D,
then Comp(h−1(A)) = Comp(A) ◦ h: T (H) → D.

Example 5 : The number of runs of a nondeterministic FA.
We now present a construction that we will generalize below (Example 23

and Definition 27). Let A be a nondeterministic FA over F without output.
For each t ∈ T (F ), we define #AccRun(t) as the number of accepting runs of
A on t. We define a deterministic FA B that computes #AccRun. We define
it from det(A) in such a way that, for each term t, if qdet(A)(t) = {q1, ..., qp},
then qB(t) = {(q1,m1), ..., (qp,mp)} where mi is the number of runs of A that
yield qi at the root of t. We can also consider such a state as the finite mapping
µ:QA → N such that µ(qi) = mi and µ(q) = 0 if q /∈ {q1, ..., qp} (cf. Section
2.1). As output function, we take OutB(µ) := Σ{µ(q) | AccA(q) = True}.
Some typical transitions are as follows, with states handled as finite mappings:

a → µ such that, for each q ∈ QA,

µ(q) = if a →A q then 1 else 0,

f [µ1, µ2] → µ such that, for each q ∈ QA,

µ(q) = Σ{µ1(q1).µ2(q2) | f [q1, q2] →A q}.

If A has nondeterminism degree d on a term t, then it has at most |t|d runs.
The size of a state of B on this term is thus O(d2. log(|t|)) (numbers of runs are
written in binary).

In this example, one can consider that a state q of A at a position u is
enriched with an attribute, say a(q, u), that records information about all the
runs of A on the subterm issued from u that yield state q at u. This attribute
is here the number of such runs. We get a nondeterministic FA A′ whose states
are pairs (q,m) in QA × N+. (Its nondeterminism is limited: for each q and at
each position u, the automaton A′ reaches a unique state of the form (q,m).)
The FA B is then obtained from det(A′).
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3.2 Polynomial-time fly-automata

We now classify deterministic FA according to their computation times. The
restriction to deterministic FA is not a real one because we will always consider
determinized runs of FA, hence implicitly only deterministic FA.

Definition 6 : Polynomial-time fly-automata and related notions
A deterministic fly-automaton over a signature F , possibly with output, is

a polynomial-time fly-automaton (a P-FA) if its computation time on any term
t ∈ T (F ) is P-bounded (cf. Section 2.5). It is an FPT-fly-automaton (an FPT-
FA in short) or an XP-fly-automaton (an XP-FA in short) if its computation
time is, respectively, FPT-bounded or XP-bounded. It is a linear FPT-FA if the
computation time is bounded by f(Sig(t)).‖t‖ (equivalently by f ′(Sig(t)). |t|)
for some fixed function f (or f ′). These three notions coincide if F is finite. A
deterministic FA A over F is an XP-FA if and only if A ↾ F ′ is a P-FA for each
finite subsignature F ′ of F .

Lemma 7 : Let A be a FA over a signature F.
(1) Let A be deterministic. It is a P-FA, resp. an FPT-FA, resp. an XP-FA

if and only if there are functions p1, p2, p3 such that, in the run of A on any
term t ∈ T (F ):

p1(‖t‖) bounds the time for firing a transition,

p2(‖t‖) bounds the size of a state,

p3(‖t‖) bounds the time for checking if a state is accepting or for
computing the output8,

and these functions are polynomials, resp. are FPT-bounded, resp. are
XP-bounded.

(2) If A is not deterministic, the fly-automaton det(A) is a P-FA, resp. an
FPT-FA, resp. an XP-FA if and only if there are functions p1, ..., p4 such that,
in the determinized run of A on any term t ∈ T (F ):

p1(‖t‖) bounds the time for firing the next transition9,

p2(‖t‖) and p3(‖t‖) are as in (1),

p4(‖t‖) bounds the nondeterminism degree of A on t,

and these functions are polynomials, resp. are FPT-bounded, resp. are
XP-bounded.

Proof : We prove (2) that yields easily (1).

8by using OutA; it bounds also the size of the output
9We recall from Definition 1 that the sets δA(f, q1, . . . , qm) are linearly ordered; firing the

next transition includes recognizing that there is no next transition.
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”Only if”. If det(A) is a P-FA with bounding polynomial p, then, one can
take pi = p for i = 1, ..., 4.

”If”. Let us conversely assume that A has bounding polynomials p1, ..., p4.
The states of det(A) on a term t of size n are sets of at most p4(n) sequences
of length at most p2(n), that we organize as trees with at most p4(n) branches
of length at most p2(n). Firing a transition of det(A) at an occurrence u in t
of a binary symbol f with sons u1 and u2 uses the following operations:

for all states q1 at u1 and q2 at u2, we compute in time bounded
by p4(n)

2.p1(n) the states of δA(f, q1, q2) and we insert them in the
already constructed tree intended to encode the state of det(A) at
u. (In this way we eliminate duplicates). Each insertion takes time
at most p2(n), hence the total time is bounded by p4(n)

2.(p1(n)+
p2(n)).

In time bounded by p3(n).p4(n) we can check if the state at the root is
accepting or compute the output. The case of symbols of different arity is
similar. Hence, if r is the maximal arity of a symbol in F , we can take the
polynomial

p(n) = n.(p1(n) + p2(n)).p4(n)
r + p3(n).p4(n)

to bound the global computation time.

The proof is similar for the two other types of bound. �

Remarks 8 : (1) For every MS formula ϕ(X1, ..., Xs) expressing a graph

property, one can construct an FPT-FA A∞ over F
(s)
∞ that recognizes the set

of terms t∗ (X1, ..., Xs) such that G(t) |= ϕ(X1, ..., Xs). The functions p1, p2, p3

of Lemma 7(1) depend only on the minimum k such that t ∈ T (F
(s)
k ). The

recognition time is thus f(k). |t| and even f ′(k).
∣∣VG(t)

∣∣ if t is a good term (cf.
the end of Section 2.2). The function f(k) may be a polynomial or hyper-
exponential function. (Concrete cases are discussed in [BCID], see Table 20.)

For each k, A∞ has a finite subautomaton Ak over F
(s)
k that recognizes the set

{t ∗ (X1, ..., Xs) ∈ T (F
(s)
k ) | G(t) |= ϕ(X1, ..., Xs)}. We have Ak ⊆ Ak′ if k < k′

([BCID], Section 7.3.1).
(2) For finding if a deterministic FA is a P-FA, or an FPT-FA or an XP-

FA, the main value to examine is the maximal size of a state bounded by p2,
because in most cases, computing the output or the state of a transition is
doable in polynomial time (with a small constant exponent) in the size of the
considered states. For a nondeterministic FA, we must also examine the degree
of nondeterminism bounded by p4.

(3) It is clear that the height of a term and the number of its positions are
P-FA computable (see Examples 3). So are, for t ∈ T (F∞), the sets of port
labels π(t) and µ(t) (by FAs whose states on t are finite subsets of µ(t)) and
the number of vertices of G(t) (it equals the number of occurrences of nullary
symbols a). The set of good terms is thus P-FA recognizable.

20



(4) The mapping SatX.P (X) (defined in the Introduction) is not P-FA com-
putable, and even not XP-FA computable in general for the obvious reason that
its output is not always of polynomial size (take P (X) always true)10.

Proposition 9 : Let F be a signature. Every P-computable (resp. FPT-
computable or XP-computable) function α on T (F ) is computable by a P-FA
(resp. by an FPT-FA or an XP-FA).

Proof: Consider the deterministic FA A over F with set of states T (F )
that associates with each position u of the input term t the state t/u, (i.e., the
subterm of t issued from u). The state at the root is t itself, and is obtained in
linear time. We take α as output function. Then A is a P-FA (resp. an FPT-FA
or an XP-FA). �

Hence, our three notions of FA may look uninteresting. Actually, we will be
interested by giving effective constructions of P-FA, FPT-FA and XP-FA from
logical expressions of functions and properties (possibly not MS expressible but
are decidable in polynomial time on graphs of bounded tree-width or clique-
width). Our interest is in the uniformity and flexibility of constructions.

When we say that a function is P-FA computable, we mean of course that
it is computable by a P-FA but, also that we have constructed this automaton
or that we know how to construct it by an algorithm. The same remark applies
for FPT-FA and XP-FA computability. All our existence proofs are effective.

3.3 Transformations and compositions of automata

In view of building algorithms by combining previously constructed automata,
we define and analyze several operations on automata.

Proposition 10 : Let A1, ...,Ar be P-FA that compute functions α1, ..., αr :
T (F ) → D. There exists a P-FA A that computes the function α : T (F ) → Dr

such that α(t) = (α1(t), ..., αr(t)). If A1, ...,Ar are FPT-FA or XP-FA, then A
is of same type.

Proof : The product automaton A = A1 ×g ...×g Ar where g(q1, ..., qr) :=
(OutA1(q1), ..., OutAr

(qr)) is a FA (cf. Definition 4(2)) that computes α. The
computation time of A on a term is the sum of the computation times of
A1, ...,Ar on this term. The claimed results follow.�

Next we consider operations defined in Definition 4 that transform single
automata.

10Unless SatX.P (X) is encoded in a particular compact way; here we take it is a straight
list of sets.
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Proposition 11 : Let A be a P-FA that computes α : T (F ) → D.
(1) If g is a P-computable function D → D, then, there is a P-FA over F

that computes g ◦ α.
(2) Let h : F ′ → F be a relabeling. There exists a P-FA over F ′ that

computes the mapping α ◦ h : T (F ′) → D.
The same implications hold for FPT-FA and XP-FA.

Proof : (1) The FA g ◦ A defined from A (output composition) by replac-
ing OutA by g ◦ OutA computes g ◦ α. Recall that the size of an output is
polynomially bounded.

(2) Immediate by the inverse image construction. Recall that h is com-
putable in linear time (cf. Section 2.4).

Each class P-FA, FPT-FA and XP-FA is preserved in both cases. �

Proposition 12 : Let h : F → F ′ be a relabeling with a computable
inverse. Let A be a P-FA (resp. an FPT-FA, resp. an XP-FA) that computes
α : T (F ) → D. The fly-automaton det(h(A)) over F ′ is a P-FA (resp. an
FPT-FA, resp. an XP-FA) if and only if the nondeterminism degree of h(A) is
P-bounded (resp. FPT-bounded, resp. XP-bounded) in the size of terms over
F ′.

Proof : Let A be a P-FA. That h(A) is a FA is proved in Proposition 45
of [BCID]. Then det(h(A)) is a P-FA by Lemma 7(2) and the definitions. The
same lemma yields the cases of FPT-FA and XP-FA. �

In the sufficient conditions, the bounds on ndegh(A)(t) can be replaced by

bounds on
∣∣QA ↾ h−1(t)

∣∣ (the number of states of A used on an input term t′

such that h(t′) = t, see Definition 1(b)) that are frequently easier to check.

Proposition 9 and the following one show that P6=NP implies that there
is no alternative image construction for FA that preserves the polynomial-time
property. (A related counter-example not depending on the hypothesis P6=NP

will be given below, see Counter-example 18).

Proposition 13 : Assume that P6=NP. There exists finite signatures F, F ′,
a relabeling h : F ′ → F and a set L ⊆ T (F ′) that is decidable in polynomial
time whereas h(L) is not. There is a P-FA property P (X) on terms in T (F )
such that ∃X.P (X) is not P-FA decidable.

Proof : In order to use the NP-complete satisfiability problem (SAT), we let
X be the infinite set of propositional variables x0, ..., xn, .. and T = T ({∨,∧,¬}∪
X). We introduce a unary function symbol f and a nullary one a, in order to
encode xi by f i(a). A term t in T is thus encoded by a term t̃ in T (F ) where

F = {∨,∧,¬, f, a}. The set T̃ of terms t̃ is a regular subset of T (F ).
To each occurrence u of a variable xi in t ∈ T corresponds an occurrence ũ of

a in t̃. Consider a term t in T given with an assignment ν : X → {True, False}.
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We denote by ν(t) the corresponding Boolean value of t. We let b be a new
nullary symbol, F ′ = {∨,∧,¬, f, a, b} and h : F ′ → F that maps b to a and is
the identity everywhere else.

We let t̃ν ∈ T (F ′) be obtained from t̃ by replacing a by b at each occurrence
ũ such that u is an occurrence of a variable xi whose value under ν is False.
Hence, t̃ν encodes t and ν. We let M be the set of terms of the form t̃ν . This
set is decidable in polynomial time, but it is not regular. Finally, we let L
be the set of terms t̃ν such that ν(t) = True. This set is also P-decidable.
Then, a satisfiability problem given by a term t has a solution if and only if
t̃ ∈ h(L). Hence, unless P=NP, the set h(L) is not P-decidable.

For proving the second assertion, we let P (X) be the property of a term s
over F and a set X ⊆ Pos(s) that :

s = t̃ for some t in T ,

X ⊆ Posa(s) (Posa(s) is the set of occurrences of a),

if s′ is obtained from s by replacing by a by b at each of its occur-
rences in X , then s′ ∈ L.

Then, P (X) is P-decidable (for given set X) hence, by Proposition 9, P-FA
decidable. Since ∃X.P (X) is not P-decidable, it is not P-FA decidable, again
by Proposition 9. �

Two basic P-FA

Examples 14 : Cardinality and identity.
(a) We consider the function Card that associates with a set X of positions

of a term in some set T (F ) its cardinality |X |. Hence, Card : T (F (1)) → N.
It is computed by a FA whose states are the natural numbers. On a term
with n positions, the maximum value of a state is n, hence has size log(n)
(numbers are written in binary notation). The output function is the identity.
The transitions are obvious to describe. The resulting automaton is a P-FA,
denoted by ACard(X).

The computation time is O(n. log(n)). (It is O(n) if we admit that the
addition of two numbers at most n can be done in constant time). (We will use
it in Sections 5.2.4 and 5.2.6).

From ACard(X) one can construct, for each integer p, a P-FA ACard(X)≤p to
check that X has at most p elements. However, the automata ACard(X)≤p can
be handled as instanciations of a unique P-FA that takes as input a term t, a
set of positions X of this term and, as auxiliary input, an integer p. This idea
is used in a natural way in the system AUTOGRAPH (see Section 6) but we
do not modify the formal definitions so as to allows FA to depend on auxiliary
parameters like integers.

(b) Next, we consider the function Id that associates with a setX of positions
of a term t ∈ T (F ) this set itself. Positions in terms are defined as Dewey words
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(cf. Section 2.1). The construction of a FA denoted by AId(X) for the function
Id is straightforward (cf. Example 3(b)). Its states are sets of positions of the
input term, hence have size O(‖ t ‖2) (cf. Section 2.1). The automaton AId(X)

is a P-FA. It may look trivial, but it will useful for the proof of Corollary 19 or
when combined with others, by mean of Proposition 15 (see Section 5.1.1 for an
example).

4 Fly-automata for logically defined functions

and properties

We now examine if and when the transformations of automata representing cer-
tain logical constructions preserve the classes P-FA, FPT-FA and XP-FA. From
Proposition 13, we know that this is not the case for existential set quantifica-
tions. We also examine in the same perspective the logic based functions defined
in the Introduction.

Two functions (or properties) α and β, possibly with set arguments, are of
same type if the domains of α and β are the same, that is, are both T (F ) or
both T (F (s)) for some F and s.

Proposition 15 : (1) If α1, ..., αr are P-FA computable functions of same
type and g is a P-computable function (or relation) of appropriate type, the
function (or the property) g ◦ (α1, ..., αr) is P-FA computable (or decidable).

(2) If α1, α2 and P are P-FA computable functions of same type and P is
Boolean-valued, then the function if P then α1 else α2 is P-FA computable.

(3) If P and Q are P-FA decidable properties of same type, then, so are
¬P , P ∨Q and P ∧Q.

(4) The same three properties hold with FPT-FA and XP-FA.

Proof : Straightforward consequences of Propositions 10 and 11(1). For
P ∨Q and P ∧Q in Case (3), we use the product AP ×g AQ with two different
functions g. For P1∧ ...∧Pr, we denote the corresponding automaton by AP ×∧

...×∧ APr
and similarly for P1 ∨ .. ∨ Pr . �

We denote by α ↾ P ∧ ... ∧ Q the function if P ∧ ... ∧ Q then α else ⊥:
it is the restriction of α to its arguments that satisfy P ∧ ... ∧Q (and could be
written (...(α ↾ P ) ↾ ...) ↾ Q).

We now consider substitutions of set terms and variables (cf. Section 2.3).

Proposition 16 : Let α(Y1, ..., Ym) denote a P-FA function on terms in
T (F ) with set arguments Y1, ..., Ym. Let S1, ..., Sm be set terms over {X1, ..., Xn}.
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The function β(X1, ..., Xn) := α(S1, ..., Sm) is P-FA computable. The same
holds with FPT-FA and XP-FA.

Proof : We recall from Section 2.3 that β = α ◦ h where h is a relabelling :
T (F (n)) → T (F (m)) that modifies only the Boolean part of each symbol. If A
is a P-FA that computes α, then B := h−1(A) is a P-FA by Proposition 11(2)
that computes β. The same proof works for FPT-FA and XP-FA. �

In Proposition 15, we combine functions and properties of same type. With
the previous proposition we can extend this proposition to properties and func-
tions that are not of same type. For example if we need P (X1, X2)∧Q(X1, X2, X3),
we redefine P (X1, X2) into P ′(X1, X2, X3) that is true if and only if P (X1, X2)
is, independently of X3. Proposition 16 shows how to transform an automaton
for P (X1, X2) into one for P ′(X1, X2, X3). Then P (X1, X2) ∧Q(X1, X2, X3) is
equivalent to P ′(X1, X2, X3)∧Q(X1, X2, X3) and we can apply Proposition 15.

4.1 First-order constructions

We now consider the more delicate case of existential quantifications. We define
one more construction11 : if α(X) is a function (relative to a term t), we define
SetValX.α(X) as the set of values α(X) 6= ⊥ for all relevant tuples X. We
recall that ∃x1, ..., xs.P (x1, ..., xs) (also written ∃x.P (x)) abbreviates

∃X1, ..., Xs.(P (X1, ..., Xs) ∧ Sgl(X1) ∧ ... ∧ Sgl(Xs))

and similarly, that SetVal(x1, ..., xs).α(x1, ..., xs) (also written SetValx.α(x))
stands for

SetVal(X1, ..., Xs).(α(X1, ..., Xs) ↾ Sgl(X1) ∧ ... ∧ Sgl(Xs)).

Theorem 17 : (1) If P (X) is a P-FA decidable property, then the properties
∃x.P (x) and ∀x.P (x) are P-FA decidable.

(2) If α(X) is a P-FA computable function, then the function SetValx.α(x)
is P-FA computable.

(3) The same implications hold for the classes FPT-FA and XP-FA.

Proof : (1) and (3). We let A be a deterministic FA over F (s) that decides
P (X).We let Bi be the deterministic FA over F (s) for Sgl(Xi) with states 0,1
and ErrorBi

such that :

11The notation ∃X1, ...,Xs.P (X1, ...,Xs) abbreviates ∃X1∃X2...∃Xs.P (X1, ...,Xs) but
SetVal(X1, ...,Xs).α(X1, ...,Xs) is not expressible as an iterated application of the construc-
tion SetValXi.β.
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runBi,t∗X
(u) = 0 if Xi/u = ∅,

runBi,t∗X
(u) = 1 if |Xi/u| = 1 and

runBi,t∗X
(u) = ErrorBi

if |Xi/u| ≥ 2.

The deterministic FA A×g B1 ×g ...×g Bs decides property P (X1, ..., Xs) ∧
Sgl(X1)∧...∧Sgl(Xs): its set of states is QA×QB1×...×QBs

and g is defined so
that the set of accepting states is Acc−1

A (True)×{1}×...×{1}.We build a smaller
deterministic FA C with set of states {ErrorC} ∪ ((QA − {ErrorA})× {0, 1}s)
by merging into a unique error state ErrorC all tuples of QA ×QB1 × ...×QBs

,
one component of which is an error state and same set of accepting states.

The nondeterministic automaton prs(C) decides the property ∃x.P (x). Its
states at a position u in a term t ∈ T (F ) are ErrorC and the tuples of the form

(runA,t∗(X1,...,Xs)(u), |X1/u|, ..., |Xs/u|)

such that |X1/u|, ..., |Xs/u| ≤ 1.

Since A is deterministic, there are at most 1+ (|t|+1)s different such states
and the nondeterminism degree of prs(C) is bounded by the polynomial p(n) =
1 + (n+ 1)s that does not depend on Sig(t). Hence det(prs(C)) is a P-FA, an
FPT-FA or an XP-FA by Lemma 7 if A is so.

Property ∀x.P (x) can be written ¬∃x.¬P (x). The results follow since, by
by Proposition 15(3,4) the classes of P-FA, FPT-FA and XP-FA that check
properties are closed under the transformation for negation.

(2) and (3). We now apply the same construction to a FA A over F (s) that
computes α(X). As output function for C, we take:

OutC((q, 1, ..., 1)) = OutA(q), for q ∈ QA,

OutC(p) = ⊥, for all other states p of C.

By the definitions, Comp(det(prs(C))) is equal to

SetVal(X1, ..., Xs).(α(X1, ..., Xs) ↾ Sgl(X1)∧...∧Sgl(Xs)) = SetValx.α(x)

hence, is P-FA, or FPT-FA or XP-FA computable by Lemma 7, depending
on A as above. �

The construction of this proof is generic in that it applies to any deter-
ministic FA A over F (s), even that is not of type XP. The hypotheses on the
type, P, FPT or XP, of A are only used to determine the type of the resulting
automaton.

In Theorem 17, we only handle first-order quantifications. Proposition 13
has shown that we cannot replace them by arbitrary set quantifications. We
now give a counter-example that does not use any complexity hypothesis.
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Counter-example 18 : We consider terms over F = {f, g, a} where f is
binary, g is unary and a is nullary. For every position u of t ∈ T (F ), we let
s(u) = |Pos(t)/u|. For a set X of positions of t, we define m(X) as {s(u) | u ∈
X}, the multiset of numbers s(u) for u ∈ X .

We let P (X) mean that X is not empty, its elements are first sons of occur-
rences of f , and the multiset m(X) contains exactly two copies of each of its
elements.

There is a deterministic FA A over F (1) that decides P (X). The state
runA,t∗X(u) is Error if X/u contains a position different from u that is not the
first son of an occurrence of f or if m(X/u) contains at least 3 copies of some
integer. Otherwise, runA,t∗X(u) = (ε,m(X/u)) with ε = 0 if u /∈ X and ε = 1
if u ∈ X . States can thus be encoded by words of length O(|t|. log(|t|)) and A
is a P-FA. The accepting states are (0,m) where m is not empty and contains
exactly two copies of each of its elements12.

Consider now the nondeterministic FA pr1(A) where pr1: F (1) → F . It
decides the property ∃X.P (X). The second components of any state belonging
to run∗

pr(A),t(u) are the multisets m(X/u) that do not contain 3 copies of a
same integer and that are associated with a set X containing only first sons of
occurrences of f and . The maximum cardinality of the set run∗

pr(A),t(u) is the

nondeterminism degree of pr(A) on t. We now prove that it is not polynomially
bounded in |t|, hence in the size of t.

For each p, we let t = f(a, f(ga, f(gga, f(ggga, ..., f(gpa, a))...))) with p+1
occurrences of f . Hence, |t| = 3 + 2p + p(p + 1)/2. The set run∗

pr(A),t(roott)

contains the pairs (0,m) for all subsets m of [p+1]. Hence, the nondeterminism
degree of pr(A) is not polynomially bounded in the size of the input term, and
pr(A) is not a P-FA.

For a comparison with Proposition 13, note that we can easily replace A
by a P-FA that decides ∃X.P (X) without using pr(A) as an intermediate step.
This counter-example only proves that the image construction for FA that cor-
responds to existential set quantifications does not preserve the polynomial-time
property. �

We define Sat(x1, ..., xs).P (x1, ..., xs) as

{(u1, ..., us) | P ({u1}, ..., {us}) = True}.

This set is in bijection with

Sat(X1, ..., Xs).(P (X1, ..., Xs) ∧ Sgl(X1) ∧ ... ∧ Sgl(Xs))

that is equal to

12It is easy to see that this automaton is actually minimal, in the sense that runA,t∗X(u)=

runA,t∗X(u′) if and only if, for every context c in Ctxt(F (1)), c[t/u] is accepted if and only
if c[t/u′] is accepted (see [BCID] for contexts). Intuitively, the information conveyed by A is
not redundant. It is exactly what is needed.
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{({u1}, ..., {us}) | (u1, ..., us) ∈ Sat(x1, ..., xs).P (x1, ..., xs)}.

We recall from the introduction that Satx.P (x)(t) is the set of assignments
x such that t |= P (x) and that #x.P (x)(t) is the number of such assignments.
Furthermore, SetValx.α(x)(t) is the set of values of a function α for all tuples
x in t such that this value is not ⊥ (standing, typically, for an undefined value).

Corollary 19 : If P (X) is a P-FA decidable property, then the functions
Satx.P (x) and #x.P (x) are P-FA computable. The same implication holds
with FPT-FA and XP-FA.

Proof : We observe that Satx.P (x) = SetValx.α(x) where:

α(x) := if P (x) then x else ⊥.

The result follows then from Propositions 15(2), Theorem 17 and a variant
of AId(X) of Example 14(b). However, we can give a direct construction. We
modify as follows the one done for proving Theorem 17. We replace each Bi by
B′
i such that :

runB′

i,t∗X
(u) = ∅ if Xi/u = ∅,

runB′

i,t∗X
(u) = {w} if Xi/u = {u.w} (recall that positions are

Dewey words) and

runB′

i,t∗X
(u) = ErrorB′

i
if |Xi/u| ≥ 2.

Then, we make the product A×B′
1× ...×B′

s into a deterministic automaton
C′ with set of states {ErrorC′} ∪ ((QA − {ErrorA})×P≤1([ρ(F )]∗)s) similarly
as in the proof of Theorem 17. The deterministic automaton C”, defined as
det(pr(C′)) equipped with the output function such that for Z ⊆ QC′ = Qpr(C′):

OutC”(Z) = {(x1, ..., xs) | (q, {x1}, ..., {xs}) ∈ Z,AccA(q) = True}, (1)

defines Satx.P (x). The states of pr(C′) at a position u of t are ErrorC′ and
tuples (runA,t∗(X1,...,Xs)(u), X1, ..., Xs) such that |X1|, ..., |Xs| ≤ 1 and X1 ∪ ...
∪Xs ⊆ [r]∗. Since A is deterministic, there are at most 1+(|t|+1)s different such
states at each position u. The nondeterminism degree of det(pr(C′)) is bounded
as in the proof of Theorem 17. The conclusions follow from Lemma 7.

Since the value #x.P (x) on a term t is computable in linear time from that
of Satx.P (x), we get the corresponding assertions (by using Proposition 11(1)).
However, there is a more direct construction, that does not use Satx.P (x) as
an intermediate step. It consists in counting the number of accepting runs of
pr(C′), which we did in Example 5. �

28



Remarks : (1) From SetValx.α(x), we can obtain in polynomial time the
maximum or the minimum value of α({x1}, ..., {xs}) if the range of α is linearly
ordered and two values can be compared in polynomial time. The corresponding
functions are thus P-FA (or FPT-FA or XP-FA) computable.

(2) The results of Theorem 17 and Corollary 19 remain valid if each condition
Sgl(Xi) is replaced by Card(Xi) = ci or Card(Xi) ≤ ci for fixed integers
ci (see Section 5.2.3 for an example). In particular, we can compute (letting
X = (X1, ..., Xs)) :

#X.(P (X) ∧ Card(X1) ≤ c1 ∧ ... ∧Card(Xs) ≤ cs).

The exponents in the bounding polynomial become larger, but they still
depend only on the numbers c1, ..., cs. (The polynomial p(n) = 1 + (n + 1)s in
the proof of Theorem 17(1) is replaced by 1 + (n + 1)c1+...+cs . By Counter-
example 18, this fact does not hold with Card(Xi) ≥ ci : just take ci = 0.

Furthermore, by Example 14(a), there is a generic construction that takes
as input an arbitrary FA over F (s) (without output), that is AP (X) for some

property P (X) and produces a FA that checks

P (X) ∧ Card(X1) ≤ c1 ∧ ... ∧ Card(Xs) ≤ cs

by taking as input a term t, a tuple X1, ..., Xs of positions of t and a sequence
of numbers c1, ..., cs. It yields a construction that takes as input A as above and
a sequence c1, ..., cs, and produces a FA that computes

#X.(P (X) ∧ Card(X1) ≤ c1 ∧ ... ∧Card(Xs) ≤ cs)(t).

4.2 Monadic Second-order constructions

Although Theorem 17 does not extend to arbitrary existential set quantifica-
tions, we can get some results for them and more generally, for the compu-
tation of multispectra and all derived functions, e.g., #X.P (X), SpX.P (X),
MinCardX.P (X) (defined in the introduction) and yet others.

4.2.1 Inductive computation of sets of satisfying tuples

Let F be an effectively given signature, X = (X1, ..., Xs) and P (X) be a prop-
erty of terms in T (F ) with s set arguments. Let A be a deterministic FA over
F (s) that recognizes TP (X) (cf. Section 2.3). Our aim is to check (efficiently)

the property ∃X.P (X) and to compute the functions #X.P (X), SpX.P (X),
MSpX.P (X), MinCardX.P (X), etc. by FA constructed fromA in uniform ways.
All these properties and functions can be computed from SatX.P (X). Although
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this set cannot in general be computed efficiently, we first consider its computa-
tion by a FA. From this automaton, we will derive FA for the other functions of
interest. Every FA over F (s) without output decides a property P (X) of terms
in T (F ) with s set arguments. Our constructions apply thus to ”arbitrary” FA,
but they are more understandable if we think of the corresponding property of
terms.

Definitions 20 : We let F, s, P (X),A be as above and r = ρ(F ). We insist
that A is deterministic.

(a) Let t ∈ T (F (s)). For each state q in QA and position u of t, we let
Z(q, u) be the set of s-tuples X ∈ P(Pos(t/u))s such that qA((t/u) ∗X) = q.
This set is finite. Since A is deterministic, we have:

Z(q, u)∩Z(q′, u) = ∅ if q 6= q′ (2)

and clearly,

SatX.P (X)(t) = ⊎{Z(q, roott) | q is accepting} (3)

(we recall that ⊎ denotes the union of pairwise disjoint sets).

(b) If E and E′ are disjoint sets, Z ⊆ P(E)s and Z ′ ⊆ P(E′)s we define:

Z ⊛ Z ′ := {(X1 ∪ Y1, . . . , Xs ∪ Ys) | (X1, . . . , Xs) ∈ Z,

(Y1, . . . , Ys) ∈ Z ′}.

This operation is associative in the following sense: if E, E′ and E” are
pairwise disjoint, Z ⊆ P(E)s, Z ′ ⊆ P(E′)s and Z” ⊆ P(E”)s then Z ⊛ (Z ′ ⊛

Z”) = (Z ⊛ Z ′)⊛ Z”.

(c) If u ∈ E and w ∈ {0, 1}s, we define :

uw := (U1, ..., Us) where Ui := {u} if w[i] = 1 and Ui := ∅

if w[i] = 0.

(d) If Z ∈ P([r]∗)s and i ∈ [r], we let i.Z be obtained by replacing in Z
each word u ∈ [r]∗ by i.u. This notion will be used for tuples of sets of Dewey
words. Let t = f(t1, t2) and Z be an s-tuple of sets of positions of t1, formally
defined as an s-tuple of sets of Dewey words. Considered as an s-tuple of sets
of positions of t, it is then formally defined as 1.Z.

Definition 21: A deterministic FA over F that computes SatX.P (X).
We let A := AP (X) be as in Definitions 20. The sets Z(q, u) can be computed

bottom-up as follows.
If u is an occurrence of a nullary symbol a, then:
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Z(q, u) = {εw | w ∈ {0, 1}s, (a, w) →A q}. (4)

If u is an occurrence of a binary symbol f with sons u1 and u2 :

Z(q, u) = ⊎{{εw}⊛ 1.Z(q1, u1)⊛ 2.Z(q2, u2) | w ∈ {0, 1}s,

and (f, w)[q1, q2] →A q}. (5)

The inclusion ⊇ is clear. We prove the other one and the disjointness of
union: consider a tuple in Z(q, u); it can be expressed in a unique way as {εw}⊛
1.{(X1, . . . , Xs)} ⊛ 2.{(Y1, . . . , Ys)} for some w ∈ {0, 1}s and sets X1, . . . , Ys

such that X1 ∪ . . . ∪ Xs ⊆ Pos(t/u1) and Y1 ∪ . . . ∪ Ys ⊆ Pos(t/u2). Since
A is deterministic, (X1, . . . , Xs) ∈ Z(q1, u1) and (Y1, . . . , Ys) ∈ Z(q2, u2) for
unique states q1, q2 and we have (f, w)[q1, q2] →A q. Hence, the considered
tuple belongs to a unique component in the right handside of (5).

There are similar equalities for the operations of other arities.

For terms defining graphs, the Boolean sequences w are only attached to the
nullary symbols a that denote vertices. Hence, in (5) the term {εw} is absent
and we have f [q1, q2] →A q instead of (f, w)[q1, q2] →A q. In the special case
of (4) where u is an occurrence of the nullary symbol ∅ that denotes the empty
graph we have :

Z(q, u) =if ∅ →A q then {(∅, ..., ∅)} else ∅. (4′)

We obtain a deterministic FA ASat over F that computes SatX.P (X). Its
state at position u in a term t ∈ T (F ) is the function σ with domain QA that
maps each state q to Z(q, u). Each set Z(q, u) is finite and can be encoded by a
word over a fixed finite alphabet. Each such function σ can be seen and, more
precisely implemented, as the set {(q, σ(q)) | σ(q) 6= ∅} that is finite by (2).
Hence, the set of states of ASat is effectively given. To be precise, we define
QASat as the set of mappings σ : QA → Pf (Pf ([r]

∗)s) such that σ(q)∩σ(q′) = ∅
if q 6= q′ and σ(q) 6= ∅ for finitely many states q only. (Not all these states are
accessible.) Equalities (4) and (5) define its transitions. By equality (3), the
output function can be taken as :

OutASat(σ) := ⊎{σ(q) | q is accepting}. (6)

The notation ASat
P (X)

for ASat will be used to recall the considered property

P (X). The transformation of A into ASat is the same for all deterministic FA
over F (s). To summarize, we have:

Proposition 22 : Comp(ASat
P (X)

) = SatX.P (X).

The construction of ASat
P (X)

is similar to that of Example 5. Given a deter-

ministic FA A over F (s) that checks P (X), we consider the nondeterministic
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FA prs(A) over F , and we let B := det(prs(A)). We equip each qi in a state
{q1, ..., qp} of B at position u with an attribute. Here the attribute is the set
Z(qi, u) that records the different ways qi can be reached at u in a run of prs(A).
The states of ASat

P (X)
are sets of the form {(q, Z(q, u)) | Z(q, u) 6= ∅, q ∈ QA}.

(We have Z(q, u) = ∅ if q is not reachable at u for any choice of X).
The automaton ASat

P (X)
is of little practical use because its states are in

general ”too large” (but this was not the case in the proof of Corollary 19).
However, if we wish to compute some value γ(SatX.P (X)(t)) for t ∈ T (F )
rather than SatX.P (X)(t) itself, and if the mapping γ has some good ”homo-
morphic” properties, then we may be able to replace ASat

P (X)
by a ”smaller”

automaton that computes more efficiently γ(SatX.P (X)(t)). To introduce the
general construction, we show a concrete example.

Example 23: The number of satisfying assignments.
We define an automaton for computing #X.P (X), the cardinality of SatX.P (X).

We replaceASat
P (X)

by a simpler automaton B by using the following observations.

For every term t ∈ T (F ) we have, using (3):

#X.P (X)(t) = |SatX.P (X)(t)| = Σ{|Z(q, roott)| | q is accepting}, (7)
(Σ{... | ...} denotes a summation over a multiset) because (clearly):

|Z ⊎ Z ′| = |Z|+ |Z ′|. (8)

If u is an occurrence of a nullary symbol a, we have:
|Z(q, u)| = |{w | w ∈ {0, 1}s, (a, w) →A q}|. (9)

If u is an occurrence of a binary symbol f with sons u1 and u2, we have:

|Z(q, u)| = Σ{|Z(q1, u1)|.|Z(q2, u2)| | w ∈ {0, 1}s,

and (f, w)[q1, q2] →A q}, (10)

because (clearly) :

|Z ⊛ Z ′| = |Z|.|Z ′|. (11)

Hence we transform ASat
P (X)

into B by replacing each component of a state of

the form Z(q, u) by its cardinality. We obtain a deterministic automaton whose
states are finite mappings ν: QA → N equivalently, the finite sets {(q, ν(q)) |
ν(q) 6= 0}. Its transitions on symbols of positive arity are defined by Equality
(10) because of the ”homomorphic properties” (8) and (11). Its output function
is defined by:

OutB(ν) := Σ{ν(q) | q is accepting}. (12)
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Clearly, Comp(B) = #X.P (X). �

This construction is that of Example 5 applied to the nondeterministic au-
tomaton pr(AP (X)). For generalizing it, we introduce homomorphisms of au-
tomata.

Definitions 24: Homomorphisms of deterministic fly-automata.

Let A and B be two deterministic FA over F with outputs taking values in
sets D and E . A homomorphism13: A → B is a pair of computable mappings
(h, h′) such that h : QA → QB, h

′ : D → E and the following hold:

(i) for every f ∈ F and q1, ..., qρ(f), q ∈ QA,

if f [q1, ..., qρ(f)] →A q, then f [h(q1), ..., h(qρ(f))] →B h(q),

(ii) OutB ◦ h = h′ ◦OutA.

These conditions imply that, for every t ∈ T (F ), every position u of t,

(iii) runB,t(u) = h(runA,t(u)) and

(iv) Comp(B) = h′ ◦ Comp(A). �

In practice, given A and h′ such that h′ ◦ Comp(A) is to be computed,
the effort consists in finding h and B satisfying the above conditions and such
that B uses, on each term, fewer and smaller states than A so as to be more
efficient. We now generalize the construction of Example 23 to mappings γ,
called aggregate functions in the context of databases ([AVH]).

Definitions 25: Aggregate homomorphisms.
Let F be an effectively given signature with symbols of maximum arity r =

ρ(F ) and s be a positive integer. An aggregate function is a computable mapping
γ : Pf (Pf ([r]

∗)s) → E (hence, E is effectively given; the set Pf (Pf ([r]
∗)s)

is effectively given, cf. Section 2.4). We let ⊥E := γ(∅). It is an aggregate
homomorphism if there exist computable binary operations ⊎γ and⊛γ on E such
that ⊎γ is associative and commutative and, for every Z and Z ′ in Pf(Pf ([r]

∗)s),
we have:

(a.1) γ(Z ⊎ Z ′) = γ(Z) ⊎γ γ(Z ′) if Z and Z ′ are disjoint,

(a.2) γ(Z ⊛ Z ′) = γ(Z) ⊛γ γ(Z ′) if Z ⊆ Pf (E)s, Z ′ ⊆ Pf (E
′)s and

E ∩ E′ = ∅,

(a.3) γ(i.Z) = γ(Z) if Z ⊆ Pf ([r]
∗)s and i ∈ [r], (cf. Definitions

19(d) for i.Z).

13A deterministic FA over F is an F -algebra (see Section 3.4 of [CouEng]) equipped with
an output function. The first component of a homomorphism of automata is a homomorphism
of the corresponding algebras.
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Condition (a.3) is met by cardinality functions, for example, γ(Z) := |Z| or
γ(Z) defined as the maximal cardinality of |X1| + ... + |Xs| for (X1, ..., Xs) ∈
Z.With these definitions and notation we have:

Proposition 26 : If γ is an aggregate homomorphism and AP (X) is a deter-

ministic FA, there exists a deterministic FA Aγ

P (X)
such that Comp(Aγ

P (X)
) =

γ ◦ Comp(ASat
P (X)

) = γ ◦ SatX.P (X).

Proof: We let A = AP (X), A
Sat = ASat

P (X)
and γ be an aggregate homomor-

phism : Pf (Pf ([r]
∗)s) → E . We construct as follows a deterministic FA over F

denoted by Aγ :

(b.1) Its set of states is [QA → E ]f , the set mappings σ:QA → E , such
that σ(q) 6= ⊥E for finitely many states q; each such mapping can be
seen as (and implemented by) the finite set {(q, σ(q)) | σ(q) 6= ⊥E},
hence the set of states is effectively given;

(b.2) Its transition for a nullary symbol a is a → σ, with σ such that,
for each state q,

σ(q) := γ({εw | w ∈ {0, 1}s, (a, w) →A q})

= ⊎γ{γ({εw}) | w ∈ {0, 1}s, (a, w) →A q},

(b.3) Its transition for a binary symbol f is f [σ1, σ2] → σ such that
for every state q,

σ(q) := ⊎γ{γ({εw})⊛γ σ1(q1)⊛
γ σ2(q2) |

w ∈ {0, 1}s, (f, w)[q1, q2] →A q},

(b.4) Its output function is :

OutAγ

P (X)
(σ) := ⊎γ{σ(q) | q is accepting}.

The transitions for symbols of other arities are defined similarly.

We claim that the pair (h, γ) such that h(σ) = γ ◦ σ is a homomorphism :
ASat → Aγ . Here, the set E of Definition 24 is Pf (Pf ([r]

∗)s) and this fact will
give the result by (iv). We now check conditions (i) and (ii) of this definition.

Condition (i). We first consider the case of a →ASat σ. Then, for each state
q of A we have :

σ(q) = {εw | w ∈ {0, 1}s, (a, w) →A q} (cf. (4)),

and thus a →Aγ γ ◦ σ by (b.2).
Let f be a binary symbol and f [σ1, σ2] →ASat σ. We must prove that

f [γ ◦ σ1, γ ◦ σ2] →Aγ γ ◦ σ.

Let q be a state of A. We have by (5) :
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σ(q) = ⊎{{εw}⊛ 1.σ1(q1)⊛ 2.σ1(q2) | w ∈ {0, 1}s,

and (f, w)[q1, q2] →A q},

hence:

γ(σ(q)) = ⊎γ{γ({εw})⊛γ γ(1.σ1(q1))⊛
γ γ(2.σ1(q2)) | w ∈ {0, 1}s,

and (f, w)[q1, q2] →A q}.

Since γ(1.σ1(q1)) = γ(σ1(q1)) and γ(2.σ2(q2)) = γ(σ2(q2)) by (a.3), we get:

(γ ◦σ)(q) = ⊎γ{γ({εw})⊛γ (γ ◦σ1)(q1)⊛
γ (γ ◦σ2)(q2) | w ∈ {0, 1}s,

and (f, w)[q1, q2] →A q}.

which, by (b.3), shows that f [γ ◦ σ1, γ ◦ σ2] →Aγ γ ◦ σ.

Condition (ii). We must prove that OutAγ ◦ h = γ ◦ OutASat . Let σ be a
state of ASat. By (6):

OutASat(σ) = ⊎{σ(q) | q is accepting}, hence,

γ(OutASat(σ)) = ⊎γ{γ(σ(q)) | q is accepting} = OutAγ (γ ◦ σ),

which proves the desired fact. �

We denote Aγ by Aγ

P (X)
for indicating the considered property although the

transformations of A into ASat and into Aγ apply in uniform ways to arbitrary
FA over F (s).

4.2.2 Application to multispectra and other functions

Our aim is now to apply Proposition 26 to the computation of MSpX.P (X),
SpX.P (X), MinCardX.P (X) etc. In each case, we define an appropriate aggre-
gate homomorphism.

Definitions 27 : Some aggregate homomorphisms.

We let F, r, s, P (X),A be as in Definition 20. We define several aggregate
homomorphisms γ: Pf (Pf ([r]

∗)s) → E for appropriate sets E . We recall that
⊥ = γ(∅).

(a) For checking t |= ∃X.P (X). It is clear that t |= ∃X.P (X) if and only
if SatX.P (X)(t) is not empty. We take E := {True, False} and γ such that
γ(Z) := if Z = ∅ then False else True. Hence ⊥E = False. We take ⊛γ := ∨
and ⊎γ := ∨ and we have an aggregate homomorphism. The automaton Aγ is
isomorphic to det(prs(A)). This case shows how the known construction fits in
the present setting.
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(b) For computing #X.P (X)(t). We have discussed this case in Example
23. The general method applies with E := N, γ(Z) := |Z|, ⊛γ := · and ⊎γ := +.
Here, ⊥E = 0. We will denote by A# the automaton Aγ .

(c) For computing MSpX.P (X)(t). We let E := [Ns → N]f and γ(Z) be
such that γ(Z)(n) (for n ∈ Ns) is the number of tuples (X1, ..., Xs) in Z such
that (|X1|, ..., |Xs|) = n. Hence, MSpX.P (X)(t) = γ(SatX.P (X)(t)).

If µ and µ′ belong to [Ns → N]f , we define µ + µ′ and µ ∗ µ′ in [Ns → N]f
by:

(µ+ µ′)(n1, ..., ns) := µ(n1, ..., ns) + µ′(n1, ..., ns), and

(µ ∗ µ′)(n1, ..., ns) :=

Σ{µ(p1, ..., ps).µ
′(n1 − p1, ..., ns − ps) | 0 ≤ pi ≤ ni}.

We take ⊎γ := + and ⊛γ := ∗. Here, ⊥E is 0, the constant mapping with
value 0. The verification that γ is homomorphic is routine. (In particular, if Z ⊆
Pf (E)s and Z ′ ⊆ Pf (E

′)s with E ∩E′ = ∅, we have γ(Z ⊛Z ′) = γ(Z) ∗ γ(Z ′).)
We will denote by AMSp the automaton Aγ .

(d) For computing SpX.P (X)(t). We let E := [Ns → {0, 1}]f and γ(Z) be
such that γ(Z)(n) = 1 if some tuple (X1, ..., Xs) in Z is such that (|X1|, ..., |Xs|) =
n and, otherwise, γ(Z)(n) = 0. Hence, n ∈ SpX.P (X)(t) if and only if
γ(SatX.P (X)(t))(n) = 1. Then γ is homomorphic if we let the operations ⊎γ

and ⊛γ as in the previous case but defined with min instead of · and max instead
of +. We will denote by ASp the automaton Aγ .

(e) For computing MinCardX.P (X)(t) and MaxCardX.P (X)(t). Here
s = 1. For computing MinCardX.P (X)(t), we let E := N ∪ {⊥E}. We define
γ(Z) := ⊥E if Z = ∅, and, otherwise, γ(Z) := min{|X | | X ∈ Z}. Then γ
is homomorphic if we let ⊎γ := min (with min{⊥E , n} = n) and ⊛γ := +
(with ⊥E + n = ⊥E). The case of MaxCardX.P (X) is similar. We will denote
by AMinCard and AMaxCard the obtained automata.

The reader will easily define an aggregate homomorphism for computing the
number of sets X of minimal or maximal cardinality that satisfy P (X). So the
above list can be extended.�

Remark 28 : In each case (a)-(e) the structure 〈E ,⊎γ ,⊛γ , γ(∅), γ((∅, ..., ∅))〉
is a semi-ring and some of these semi-rings are related by semi-ring homomor-
phisms; the corresponding automata Aγ are also related by homomorphisms,
but we do not develop this formal aspect.

The system AUTOGRAPH implements separately the transformations of A
into A#, AMSp, ASp, AMSp, AMinCard and AMaxCard. But the proof of Propo-
sition 26 could be made into a ”meta-transformation” of A into Aγ that would
take a suitable representation of 〈E ,⊎γ ,⊛γ , γ(∅), γ((∅, ..., ∅))〉 as input.�
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The construction of Proposition 26 used for the different aggregate homomor-
phisms of Definitions 27 (or rather their associated operations ⊛γ and ⊎γ) yields
FA for computing #X.P (X)(t), MSpX.P (X), SpX.P (X), MinCardX.P (X)
and MaxCardX.P (X). Next, we consider conditions ensuring that these au-
tomata are P-FA, FPT-FA or XP-FA. We recall that if the signature F is finite,
the notions of P-FA, FPT-FA and XP-FA coincide. Our main application will
be to the infinite signature F∞ that generates all graphs.

We let F, r, s, P (X) be as before, pr = prs be the projection F (s) → F that
deletes Booleans (cf. Section 2.3) and α(X) be a function on terms that takes s
set arguments. The constructionsASat and Aγ of Definitions 21 and Proposition
26 are modifications of that of det(prs(A)). Lemma 7 shows the importance of
the nondeterminism degree for analyzing the computation time of determinized
automata.

Theorem 29 : (1) Let P (X) be decided by a P-FAA over F (s) such that the
mapping ndegpr(A) is P-bounded. Then, the properties ∃X.P (X) and ∀X.P (X)

are P-FA decidable and the functions MSpX.P (X), SpX.P (X), #X.P (X),
MinCardX.P (X) and MaxCardX.P (X) are P-FA computable.

(2) If α(X) is computed by a P-FA such that ndegpr(A) is P-bounded, then

the function SetValX.α(X) is P-FA computable.
(3) These implications hold if we replace P- by FPT- or by XP-.

Since we have ndegpr(A)(t) ≤ |QA ↾ pr−1(t)| (cf. Proposition 12), we can
replace in these statements, the P-, FPT- or XP-boundings of ndegpr(A) by the
corresponding ones for the mapping t 7−→ |QA ↾ pr−1(t)|.

Proof : (1) The result follows from Lemma 7 for property ∃X.P (X) because
this property can be checked by the determinized automaton det(pr(A)). The
case of ∀X.P (X) is proved as in Theorem 17.

Next we consider the deterministic FA Aγ that computes MSpX.P (X),
where γ is as in Definition 27(c). At position u in a term t, the state of Aγ is
the set {(q, γ(Z(q, u))) | Z(q, u) 6= ∅} of cardinality is bounded by ndegpr(A)(t).
Each component γ(Z(q, u)) is a function ν:Ns→ N. Let n = |t|. This function
is finite: it maps [0, n]s to [0, 2s.n] and has value 0 outside of [0, n]s. It can be
encoded by a word of length at most (n+1)s. log(2s.n) = O(ns+1). (The values
of ν are written in binary). Hence the size of state is O(ndegpr(A)(t).‖t‖

s+1).
We must bound the time for computing the transitions and the output.
If µ, µ′are mappings : [0, n]s → [0, 2s.n] then, computing µ + µ′ takes time

bounded by (n+1)s. log(2s.n) = O(ns+1) and, similarly, computing µ ∗µ′ takes
time O(n2s+1).

We let p1(‖t‖) bound the time for firing a transition of A (cf. Lemma 7). By
(b.2) of Proposition 26, computing the transition of Aγ at a nullary symbol of
t takes time 2s.p1(‖t‖).
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By (b.3), computing the transition of Aγ at a symbol of t of arity r1 needs
at most 2s.ndegpr(A)(t)

r1 operations + and ∗ on mappings : [0, n]s → [0, 2s.n],
hence a computation time bounded by 2s.ndegpr(A)(t)

r2 .p1(‖t‖).O(n2s+1) where
r2 is the maximal arity of a symbol in t. If ndegpr(A)(t) is P-bounded, then the
bound on the computation time of a transition is of same type.

Similarly, for computing the output (by (b.4) of Definition 25), we need at
most ndegpr(A)(t) checks that a state is accepting, with cost at most p3(‖t‖) for
each (cf. Lemma 7) and the same number of additions. This gives a computation
time bounded by ndegpr(A)(t).(p3(‖t‖) +O(ns+1)). Again, if ndegpr(A)(t) is P-
bounded, then the bound on the computation time of a transition is of same
type.

We get the announced result for MSpX.P (X). For SpX.P (X), #X.P (X),
MinCardX.P (X) and MaxCardX.P (X) we use the other aggregate functions of
Definition 27. Each of them is a simplification of the one for MSpX.P (X). The
size of γ(Z(q, u)) is smaller, and so are the computation times of the transitions
and the output. Hence, the above argument applies as well.

(2) We now consider SetValX.α(X) where α(X) is computed by a deter-
ministic FA A. For each term t and assignment X of sets of positions of t,
α(t,X) = OutA(qA(t ∗ X))). Hence, SetValX.α(X)(t) is the set of values
OutA(q) for q ∈ qdet(pr(A))(t). (Note that SetValX.α(X)(t) is not computed

from SatX.[α(X) 6= ⊥](t) that could be much too large.) Hence, the time taken
to compute SetValX.α(X)(t) is that for computing the set qdet(pr(A))(t) of car-
dinality at most ndegpr(A)(t) plus that, bounded by ndegpr(A)(t).p3(‖t‖), for
computing the final output. Hence, we conclude as in the cases considered in
(1).

(3) The proofs are similar if p1, p2, p3 and ndegpr(A) are FPT- or XP-bounded.
�

Remarks 30 : (a) Even if F is finite, we cannot omit in Theorem 29 the hy-
pothesis that pr(A) has a nondeterminism degree bounded in some way because
the validity of ∃X.P (X) can be determined in polynomial time from either
MSpX.P (X), SpX.P (X), #X.P (X), MinCardX.P (X) or MaxCardX.P (X).
Otherwise, by the proof of Proposition 13, we would get P=NP.

(b) Let F = F∞. Every MS expressible graph property P (X) is decided

by a FA A over F (s) that has, for each k, a finite subautomaton over F
(s)
k (cf.

Remarks 8(1)). Hence, A is an FPT-FA, ndegpr(A) is FPT-bounded and all
functions of Theorem 29(1) are computable by FPT-FA. �

Theorem 29 suggests the following questions.

Questions 31 : Can one ”upgrade” the FA used to prove this theorem into
FA of same type (P, FPT or XP) so as determine the following tuples:
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(a) when we know that t |= ∃X.P (X), we want an s-tuple witnessing this
fact (without constructing the full set SatX.P (X)(t));

(b) we want an s-tuple X with given s-tuple of cardinalities belonging to
SpX.P (X)(t), that satisfies P (X) in t;

(c) we want a set X of minimum or maximum cardinality satisfying P (X)
in the case where t |= ∃X.P (X).

We answer these questions informally, that is, without developing more the
formal framework. The transformation of ASat into Aγ defined in Proposition
26 and used with the evaluations of Definition 27 consists in replacing in every
state {(q, Z(q, u)) | Z(q, u) 6= ∅} of ASat each component Z(q, u) by a simpler
object γ(Z(q, u)). We answer Questions 31 by using the same idea, although
the mappings γ will not be aggregate homomorphisms because condition (a.3)
of Definition 25 will not hold. Here are the solutions.

(a) For selecting a tuple in SatX.P (X)(t), we replace Z(q, u) by one of its
elements. That is, we let γ(Z(q, u)) = {X} for some X ∈ Z(q, u). For having
a deterministic FA, such a mapping γ can choose the smallest tuple relative to
some lexicographic order whenever a choice must be made. For transitions on
symbols of positive arity, we use Z⊛γZ ′ defined as Z⊛Z ′ (that contains at most
one element if Z and Z ′ do so) and Z⊎γZ ′ that chooses (in a deterministic way)
some element of Z∪Z ′. Each position in t ∈ T (F ) is a word over [r] of length at
most ht(t). Hence, the size of a state is bounded by ndegpr(A)(t).s.ht(t). log(r),
and computing the transitions and the output is polynomial in the size of states.

(b) For getting X having a given s-tuple of cardinalities (that necessarily
must belong to SpX.P (X)(t)), we let γ(Z(q, u)) be a subset Z(q, u) such that:

if (X1, ..., Xs) ∈ Z(q, u), there is in γ(Z(q, u)) a unique tuple (Y1, ..., Ys)
such that (|Y1|, ..., |Ys|) = (|X1|, ..., |Xs|).

The size of a state on a term with n positions is at most
ndegpr(A)(t).(n+1)s.s.ht(t). log(r). For computing transitions, we use Z ⊛γ

Z ′ := Clean(Z⊛Z ′) and Z ⊎γ Z ′ := Clean(Z∪Z ′), where Clean(Z) eliminates
tuples from a set of tuples Z so as to meet the above condition (with Z in place
of Z(q, u)). Computing the transitions and the output is polynomial in the size
of states. Note that we obtain more than required: we get a ”rich” version of
SpX.P (X)(t) where each tuple of number is replaced by a corresponding tuple
of sets of positions.

(c) Here we have s = 1 and we want a set X of minimum cardinality satis-
fying P (X). Then Z(q, u) is a set of sets and not a set of tuples of sets. We let
γ(Z(q, u)) be some element of minimal cardinality in γ(Z(q, u)). Then Z ⊎γ Z ′

selects a set of minimal cardinality in Z ∪ Z ′, and Z ⊛γ Z ′ does the same in
Z ⊛Z ′. The latter is correct because Min(Z⊛Z ′) = Min(Z)⊛Min(Z ′) where
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Min(Z) is the set of sets in Z of minimal cardinality and Z and Z ′ are sets of
subsets of disjoint sets.

In all cases, we obtain a FA of same type (P, FPT or XP) as the one A for
P (X), whose nondeterminism degree of pr(A) is bounded as in Theorem 29,
actually in terms of the number of states of A on a term.

Counter-example 32

We might hope that Theorem 29(1) and the corresponding statements for
FPT-FA and XP-FA extends to formulas that mix existential and universal
quantifiers over the variables in X. This not the case. More precisely, the fol-
lowing assertion is false:

(A) : Let F be a finite signature and P (X1, ..., Xs) be a prop-
erty of terms over F decided by a P-FA A over F (s) such that
prs(A) has a polynomially bounded nondeterminism degree. Let
h : F (s) → F (s−1) be the relabelling that deletes the last Boolean.
The automaton h(A×∧ASgl(Xs)) decides Q(X1, ..., Xs−1) defined as
∃Xs.(P (X1, ..., Xs) ∧ Sgl(Xs)) and has the same property, that is,
prs−1(det(h(A×∧ASgl(Xs)))) has a polynomially bounded nondeter-
minism degree.

Note that ∃Xs in (A) is a first-order quantification. For disproving (A), we
can modify slightly the construction of Proposition 13 and construct a property
P (X1, ..., X5) of terms over a finite signature F that is decided by a P-FA A
over F (5), such that pr5(A) has a polynomially bounded nondeterminism degree
but the property Q defined as :

∃X1∀x2, x3, x4∃x5.P (X1, {x2}, {x3}, {x4}, {x5})

is not P-decidable (unless P = NP). If (A) would be true, then the deter-
ministic FA B over F (1) derived from A that decides, for each given X1, the
validity of

∀x2, x3, x4∃x5.P (X1, {x2}, {x3}, {x4}, {x5})

would be such that pr1(B) has a polynomially bounded nondeterminism
degree. Then Q would be P-decidable.

4.3 Summary of results

The following table summarizes the preservation results of this section : we
mean by this that the classes of functions and properties that are P-FA, FPT-
FA or XP-FA computable (or decidable) are preserved under constructions of
three types: composition, FO constructions and MS constructions.
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Construction Conditions and proofs

Composition g ◦ (α1, ..., αr), if P then α1else α2, g is P-computable, [Prop.15]
¬P , P ∨Q, P ∧Q, α ↾ P, [Proposition 15 and Thm. 17]
α(S1, ..., Sm), P (S1, ..., Sm). S1, ..., Sm: set terms, [Thm. 17]

FO const. ∃x.P (x), ∀x.P (x), SetValx.α(x), [Theorem 17]
Satx.P (x), #x.P (x). [Corollary 19]

MS const. ∃X.P (X), ∀X.P (X), SetValX.α(X), P or α is defined by P-FA A
#X.P (X),MSpX.P (X), such that ndegpr(A)

SpX.P (X), MinCardX.P (X), is P-, FPT- or XP-bounded,
MaxCardX.P (X). [Theorem 29]

Table 1 : Preservation results from Section 4.

5 Application to terms and graphs of bounded

clique-width

We now work out examples about terms and graphs. In particular, we specify
FA for some basic functions on terms and graphs. The constructions will also use
the FA defined in Section 5 of [BCID] for several MS definable graph properties.
Monadic second-order (MS) logic is reviewed in the appendix.

5.1 Properties of terms and functions on terms

In this section, we only consider finite signatures F , for which we recall that the
notions of P-FA, FPT-FA and XP-FA are trivially identical.

Example 33 : The prefix order. For every term t ∈ T (F ), the prefix order
on Pos(t) is the unique strict linear order < such that, for every u ∈ Pos(t) with
sequence of sons u1, ..., ur, r > 0, we have {u} < Pos(t)/u1 < ... < Pos(t)/ur.
(For nonempty sets X,Y , X < Y means that x < y for every x ∈ X and
y ∈ Y .) The property X1 < X2 is MS expressible, hence, it is decided by
a finite automaton. However, we can construct a deterministic automaton A
with five states without using the general theorem and the logical expression
of X1 < X2. The states are 0, 1, 2, 3 and Error (they do not depend on the
signature F , and this construction actually works for infinite signatures, with
the same states) and their meaning is defined by:

0 : X1 = X2 = ∅, (i.e., qA(t ∗ (X1, X2)) = 0 if and only if X1 =
X2 = ∅),

1 : X1 = ∅, X2 6= ∅,

2 : X2 = ∅, X1 6= ∅,
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3 : X1 6= ∅, X2 6= ∅, X1 < X2; it is the unique accepting state,

Error : the other cases (in particular, X1 ∩X2 6= ∅).

The transitions are easy to write and we get a finite automaton.

For a term t denoting a graph G, the restriction of this order to leaves is a
linear order on the vertices of G. This order depends on t, and not only on G. It
is useful in some cases as an auxiliary tool for expressing properties or functions
of G that are order-invariant, i.e., that are not affected by a change of order.
See Section 5.2.1 for an example.

Properties and functions on subterms.
If X is a set of positions of a term t, we define lca(X) as the least common

ancestor of all positions in X , with lca(∅) = ⊥.
For a function α(X1, · · · , Xs), we define β(X1, · · · , Xs, Xs+1) as the function

such that, in a term t:

β(X1, · · · , Xs, Xs+1) is α(X1/lca(Xs+1), · · · , Xs/lca(Xs+1)) computed
in the subterm t/lca(Xs+1) if Xs+1 6= ∅,

β(X1, · · · , Xs, Xs+1) = ⊥ if Xs+1 = ∅.

We denote this function β by α↓. (This definition is applicable to the case
where α is a property.) The transformation of α into α↓ is a kind of relativiza-
tion. Another one will be considered in Proposition 39.

Proposition 34 : From a P-FA A computing a function α:T (F (s)) → D,

we can construct a P-FA B that computes the function α↓:T (F (s+1)) → D.

Proof : We give the construction for s = 0. For the general case, it suffices
to replace F by F (s). We define B with set of states QA ∪ (QA × QA) and
transitions such that, for every term t ∈ T (F ) and X ⊆ Pos(t), we have :

qB(t ∗X) = qA(t) ∈ QA if X = ∅,

qB(t ∗X) = (qA(t), qA(t/lca(X))) ∈ QA ×QA otherwise;

the output function is defined by OutB((q, p)) := OutA(p)

and OutB(q) := ⊥ for all p, q ∈ QA.

The following table only shows the transitions for a nullary symbol a and
a binary one f . The similar transitions for all other symbols are easy to write.
(Since α↓ takes as argument a set of positions, all symbols are equipped with
Booleans.) The FA B is also a P-FA. �
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Transition of B Condition

[a, 0] → q
[a, 1] → (q, q) a →A q
[f, 0](q1, q2) → q
[f, 0]((q1, p), q2) → (q, p) f(q1, q2) →A q
[f, 0](q1, (q2, p)) → (q, p)
[f, 0]((q1, p1), (q2, p2)) → (q, q)
[f, 1](q1, q2) → (q, q)
[f, 1]((q1, p), q2) → (q, q) f(q1, q2) →A q
[f, 1](q1, (q2, p)) → (q, q)
[f, 1]((q1, p1), (q2, p2)) → (q, q)

Table 2: Automaton B for α↓.

Remark: The reader will easily modify this automaton into a smaller one
for the function α⇂ := α↓ ↾ Sgl(Xs+1), i.e., such that :

α⇂(t,X1, · · · , Xs, Xs+1) = α(t/u,X1/u, · · · , Xs/u) if Xs+1 = {u}
for some u,

α⇂(t,X1, · · · , Xs, Xs+1) = ⊥ otherwise.

5.1.1 Uniform terms

First, we observe that the height of a term t can be computed by an obvious P-FA
Aht whose states are positive integers (the state at u is ht(t/u) where ht(a) = 1
for a nullary symbol a). A term t is uniform (this is denoted by Unif(t)) if
and only if any two leaves of its syntactic tree are at the same distance to the
root. This is equivalent to the condition that, for every position u with sons u′

and u”, the subterms t/u′ and t/u” have same height. The automaton Aht can
thus be modified into a P-FA AUnif that decides uniformity, with set of states
is N+ ∪ {Error}, such that:

qAUnif
(t) = ht(t) if t is uniform

qAUnif
(t) = Error if t is not uniform.

This automaton can be combined with others to yield more complicated
functions. Let us for example consider the set W (t) of triples (u, |t/u|, ht(t/u))
such that t/u is a maximal uniform subterm (that is, u is closest to the root
such that t/u is uniform).

To detail this example, we define for a term t :

W := SetValu.α(u) where

α(u) := (α1(u), α2(u), α3(u)) ↾ MaxUnif(u),

MaxUnif(u) expresses that t/u is a maximal uniform subterm of
t,
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α1(u) := u,

α2(u) := |t/u|,

α3(u) := ht(t/u).

Our objective is to apply Proposition 15 and Theorem 17(2). The three
functions α1, α2, α3 are P-FA computable and MaxUnif(u) is MaxUnif({u})
where MaxUnif(U) is defined by:

Unif↓(U) ∧ Sgl(U) ∧ ¬∃W (Sgl(W ) ∧ son(W,U) ∧ Unif↓(W )).

Properties Unif↓(U) and Unif↓(W ) are P-FA decidable by Proposition 34
applied to AUnif . So are Sgl(W )∧son(W,U) (see the appendix for son and MS
logic on terms), ¬∃W (Sgl(W )∧ son(W,U)∧Unif↓(W )) by Propositions 15,16
and Theorem 17, and finally MaxUnif(U), again by Proposition 15. Hence, α
is P-FA computable by Proposition 15, and W is also by Theorem 17(2).

5.1.2 An extension of monadic second-order logic

We generalize this example by defining an extension of MS logic where we can
express P-FA functions and properties that are not MS expressible.

Definition 35 : An extension of MS logic on terms.
Given a finite signature F , we consider properties and functions constructed

in the following way:
(a) We use free set variables X1, ..., Xs (that will not be quantified), first-

order variables, y1, ..., ym and set terms over X1, ..., Xs, Y1, ..., Ym (the variables
Y1, ..., Ym will always be restricted by conditions Sgl(Y1), ..., Sgl(Ym) and will
correspond to y1, ..., ym, cf. the end of Section 2.3).

(b) As basic properties, we use Unif and all properties P expressible by
MS formulas (that can use other bound variables than X1, ..., Xs, Y1, ... Ym).
These properties depend on F . As basic functions, we use ht, Card and Id.

(c) We construct properties from already constructed properties P,Q, ... and
from functions α, β, α1, ..., αr, ... by the following compositions:

P ∧Q,P ∨Q,¬P,

R ◦ (α1, ..., αr) where R is an r-ary P-decidable relation on D,

P ↓ and P (S1, ..., Sp) where S1, ..., Sp are set terms overX1, ..., Xs, Y1, ..., Ym,

∃y.P (y) where y is a tuple of variables among y1, ..., ym.

(d) Similarly, we construct functions in the following ways:
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g ◦ (α1, ..., αr) where g is P-computable : D → Dr,

α↓ and α(S1, ..., Sp) where S1, ..., Sp are set terms overX1, ..., Xs, Y1, ..., Ym,

SetValy.α(y),#y.P (y) and Saty.P (y) where y is a tuple of variables
among y1, ..., ym.

We assume that we have for R in (c) and g in (d) a polynomial-time algo-
rithm. We denote by PF(F ) the set of all these formulas.

Remarks : (1) Our description has some redundancy: for example, the truth
value of ∃y.P (y) can be expressed as g ◦ #y.P (y) where g(0) := False and
g(n) := True for n > 0, so that g is P-computable.

(2) A generalized quantification of the form ”there exist at least p elements
y satisfying P (y)” can be expressed by #y.P (y) ≥ p, hence, is also of the form
g ◦#y.P (y) for a P-computable function g.

(3) The use of set terms permits to use P (X ∪ {y}) where y is bound. For
example, we can write:

Unif↓(X) ∧ ∀Y.(Sgl(Y ) ∧X ∩ Y = ∅ =⇒ ¬Unif↓(X ∪ Y )).

Theorem 36 : Let F be a finite signature. Every property (or function)
defined by a formula of PF(F ) is decidable (or computable) by a P-FA over
F or F (s). Such an automaton can be constructed from automata for the basic
properties and functions.

Proof : Straightforward by induction on the structure of a formula describ-
ing the considered property or function by the results of Section 4.1, that are
based on uniform construction schemes.�

The language PF(F ) does not exhaust the possibilities of extension of MS
logic that yield P-FA computable properties and functions. We can for example
introduce a relativized height ht(t,X) for t ∈ T (F ) and X ⊆ Pos(t), defined as
the maximal number of elements of X on a branch of the syntactic tree of t.
A P-FA is straightforward to construct for this function, that does not seem to
be expressible by a formula of PF(F ). However, there are strong limitations to
such extensions (see Section 5.3).

5.2 Properties of graphs and functions on graphs

Graphs are always given by terms over F∞ or F u
∞, and moreover, by good terms

for having nicer time bounds (cf. Section 2.2 and the appendix for the corre-
sponding preprocessing). Table 3 reviews constructions of P-FA from [BCID]. In
this table, Partition(X1, ..., Xs) means that (X1, ..., Xs) is a partition of the ver-
tex set, St that the considered graph has no edge (i.e., is stable), Link(X1, X2)

45



that it has edges from X1 to X2, Path(X1, X2) that X1 consists of two vertices
linked by a path with vertices inX2, Clique that the graph is a clique, Conn that
it is connected, Cycle that it has an undirected cycle and DirCycle a directed
cycle. Finally, edg(X1, X2) is equivalent to Link(X1, X2) ∧ Sgl(X1) ∧ Sgl(X2).

Property Size of a state

Sgl, Partition, X1 ⊆ X2, X1 = ∅ independent of k
edg(X1, X2) O(log(k))
St, Link(X1, X2) O(k)
Path(X1, X2), DirCycle, Clique O(k2)

Conn,Cycle O(log(k) ·min{n, k.2O(k)})

Table 3: Sizes of states for some basic properties.

From the definitions of the automata for Conn and Cycle ([BCID], Sections
6 and 5.2.7), we get the immediate upper bound O(log(k).k.2O(k)) for the size of
a state. However, a careful inspection also yields the upper bound O(log(k).n).
Hence, contrary to the first impression, the automata for connectedness and
existence of undirected cycles are actually P-FA. All others are clearly P-FA
(computing the transitions involves no complicated calculations).

We now review how Theorem 29 applies to a graph property P (X) that is
MS expressible. (If P (X) is an MS expressible property of graphs, it can be
translated into an MS expressible property on terms that define graphs, hence,

Theorem 29 is applicable). There exists in this case an FPT-FAA over F
(s)
∞ that

decides P (X), and the nondeterminism degree of pr(A) is FPT-bounded, with a
bound that depends only on the smallest integer k such that the considered term
is in T (Fk). It follows from Theorem 29(1) that the properties ∃X.P (X) and ∀X.P (X)
are decidable by FPT-FA (this fact is actually well-known) and that the func-
tions MSpX.P (X), SpX.P (X), #X.P (X), MinCardX.P (X) and MaxCardX.P (X)
are computable by FPT-FA. We will consider properties and functions that are
not MS expressible (cf. the introduction for the notion of an MS expressible
function), but to which we can apply the logic based constructions of Section 4.

It is not hard to build a P-FA G over F∞, that checks if a term is good. It
follows that if we have constructed a FA A that works with a time bound of
type P, FPT or XP on good terms, then the FA A×∧ G rejects the terms that
are not good and works as A on the good ones. Its type of time bound on all
terms is of same type as that of A. A polynomial-time transformation of a term
into an equivalent good one is described in the appendix (Proposition 44). We
now recall from [BCID] another condition on terms that is checkable by a P-FA
and can be assumed thanks to a polynomial time preprocessing.

Definition 37 : Irredundant term.
A term t ∈ T (F∞) is irredundant if, for each of its subterms of the form

−−→
adda,b(t

′) (or adda,b(t
′)), there is in G(t′) no edge from an a-port to a b-port

(or between an a-port and a b-port). This means that each such operation
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−−→
adda,b or adda,b creates exactly m.m′ edges where m is the number of a-ports
of G(t′) and m′ is that of b-ports. We may have no a-port or no b-port in

G(t′): the operation
−−→
adda,b (or adda,b) is then useless, but the considered term

t may still be irredundant according to the definition. It follows in particular
that irredundancy is preserved by the replacement of subterms by the nullary
symbol ∅ that denotes the empty graph. Many automata will be constructed
below so as to run on irredundant terms.

We will prove in Proposition 44 (in the appendix) that every term t in T (F∞)
can be transformed in polynomial time into an equivalent good and irredundant
term. Hence, we can build automata A intended to work correctly on good
irredundant terms and and that may give possibly erroneous outputs on the
others. Furthermore, we can build a P-FA GI that checks if the input term is
good and irredundant (see the appendix). So the FA A×∧ GI gives the correct
outputs on good irredundant terms and reject the others. This automaton has
the same type (P, FPT or XP) as A.

We now extend to functions Lemma 15 of [BCID] that concerns only the
relativization of properties.

Definition 39 : Relativization. For a function α(X1, · · · , Xs) with (vertex)
set arguments in a graphG, we define β(X1, · · · , Xs, Y ) as α(X1∩Y, · · · , Xs∩Y )
computed in the induced subgraph G[Y ]. Hence, it is defined if and only if
α(X1 ∩ Y, · · · , Xs ∩ Y ) is defined in G[Y ]. We have in particular (with the
notation of [BCID]) Def(β)(X1, · · · , Xs, Y ) = Def(α)(X1, · · · , Xs)[Y ] (in G).

We denote this function β by α[Y ]. If α is a property P and s = 0, we use
the standard notation P [Y ] instead of P [Y ].

It is now convenient to take Y = Xs+1. We define h as the mapping:

F
(s+1)
∞ → F

(s)
∞ such that, for every c ∈ C and w ∈ {0, 1}s, we have h((c, w0)) :=

∅ and h((c, w1)) := (c, w). With these hypotheses and notation, we have
β = α ◦ h.

Proposition 39 : If α(X1, · · · , Xs) is a function (or a property) that can
be computed (or decided) by a P-FA or an FPT-FA or an XP-FA, then the same
holds for α[Xs+1](X1, · · · , Xs).

Proof : Let α(X1, · · · , Xs) be computed (or decided) by a FA A. Then
α[Xs+1](X1, · · · , Xs) is computed (or decided) by h−1(A) where h is defined in
Definition 39. The result follows from Proposition 11(2).�

Remark : This relativization does not apply to terms because if S is the
logical structure representing a term and X is a set of positions of t, then S[X ]
does not always represent a term. Proposition 34 deals with a related notion
for terms.

47



5.2.1 Counting subgraphs

Let H be a connected undirected graph. An induced subgraph of an undirected
graph G is H-induced if it is isomorphic to H . A triangle is thus a K3-induced
subgraph. Our objectives are to use FA to count and to enumerate theH-induced
subgraphs of a given graph. The property of a set X ⊆ VG that G[X ] ≃ H is MS
expressible. Hence, automata that compute the functions #X.”G[X ] ≃ H” and
SatX.”G[X ] ≃ H” will give us the desired algorithms. The property G[X ] ≃ H
implies that X has fixed cardinality |VH |. Hence, we can apply Corollary 19
(with the remark at the end of Section 4.1). However, a direct construction
yields smaller automata. We do it on the example where H is House, i.e., the
graph K5 with vertices 1, 2, 3, 4, 5 minus the four edges 1 − 4, 1 − 5, 3 − 4 and
2− 5.

A FA automaton over F u
k with O(k2) states for edg(X,Y ) can be constructed

(see [BCID], Section 5.1.2). We let P (X), with X = (X1, X2, X3, X4, X5), stand
for:

edg(X1, X2) ∧ edg(X1, X3) ∧ edg(X2, X3) ∧ edg(X2, X4) ∧ edg(X4, X5)∧
edg(X3, X5)∧¬edg(X1, X4)∧¬edg(X1, X5)∧¬edg(X3, X4)∧¬edg(X2, X5).

From Propositions 15 and 16, we get for P (X) an automaton that uses

O(k20) states on terms in T (F
u(5)
k ), but a direct construction yields a P-FA

with 27 · (k + 1)5 + 1 states on these terms (2m · (k + 1)n + 1 states for a graph
H with n vertices and m edges). By Corollary 19, we get from it automata that
compute #X.P (X) and SatX.P (X). However, the number of House-induced
subgraphs of G(t) is only the half of #X.P (X) because the graph House has
two automorphisms (including the identity). This means that the automaton
that computes #X.P (X) does some useless computations. We can avoid this
drawback by replacing P (X) by P (X) ∧ X2 < X3. See Section 5.1 for a very
simple FA that computes <. (The construction of Example 33 can easily be
adapted to the present case where X2 and X3 are singletons containing only
leaves.) The role of this condition is to select a single 5-tuple for each House-
induced graph.

Note that the linear order < we use depend on the term t, and not only on
the graph G(t). However, the value #X.P (X) is the same for all terms t. It is
defined by means of an order but this definition is order-invariant. (See [Cou96]
on this notion and [EKS] for its applications to model-checking.)

The same improvement applies for the enumeration problem in order to avoid
duplications in the enumeration of House-induced subgraphs.

Even without using the linear order, Theorem 17 and Corollary 19 yield
P-FA that compute the functions #X.”G[X ] ≃ H” and SatX.”G[X ] ≃ H” for
each fixed graph H .

Remark : We might also wish to determine the maximal number of pairwise
vertex-disjoint H-induced subgraphs. We can do that with edge set quantifi-
cations. Let EH(X) mean that X is the set of edges of the union of a set of
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vertex-disjoint H-induced subgraphs. This number is thus MaxCardX.EH(X).
But this expression uses edge set quantification, which does not yield appropri-
ate automata over F∞ and FPT algorithms for graphs of bounded clique-width.
It works for graphs of bounded tree-width. The reader will find in [CouEng]
Section 6.3.5 and in [Cou12] methods for adapting the present constructions to
edge set quantifications and graphs of bounded tree-width.

By adapting a construction of [GHO], we can build an XP-FA that checks if
a directed graph is Hamiltonian, although this property is not MS-expressible.
However, this property is MS2-expressible, i.e., expressible in the extension of
MS logic allowing edge set quantifications (see the appendix). It is perhaps
possible to perform a similar construction for computing MaxCardX.EH(X)
for graphs of bounded clique-width.

5.2.2 Edge counting and degree

For a p-graph G and X ⊆ VG, we denote by λX the mapping that gives, for
each label a the number of a-ports in X . If X = VG, we denote it by λG.

We denote by Λ[C, n] the set of mappings λ : C → [0, n] such that Σi∈Cλ(i) ≤
n. If C has k elements, this set has cardinality

(
n+k
k

)
(by an easy bijective proof),

hence its cardinality is between ((n+ k)/k)k and (n+ 1)k, and so is Θ(nk) for
fixed k. We will bound it by (n+ 1)k.

Counting the edges of induced subgraphs

Let X be a set of vertices of a directed graph G. (All graphs are loop-free).
We let e(X) be the number of edges of G[X ]. For computing this number, we

define a deterministic FA Ak over F
(1)
k , intended to run on irredundant terms

written with labels in C := [k]. Its set of states is N × [C → N] and we want
that :

qAk
(t ∗X) = (e(X), λX).

The transitions are easy to write. We only give the example of:

−−→
adda,b[(m,λ)] → (m+ λ(a).λ(b), λ).

This transition is correct with respect to the above requirement because t
is assumed irredundant. The result e(X) is the first component of the state
reached at the root of t ∗X .14.

On a term that denotes a graph with n vertices, each state belongs to the
set [0, n(n − 1)]×Λ(C, n) of cardinality less than (n + 1)k+2, hence, has size
O(k. log(n)) (the integers m and the values of λ are written in binary notation).

14We can alternatively construct an automaton over Fk that computes the number of edges
of G(t) and derive Ak from it by using Proposition 42(1) (with s = 0).

49



Transitions and outputs can be computed in time O(k. log(n)). Hence, Ak is
a P-FA. As explained in Section 2.1, it is convenient to represent a function
λ : C → N by the set {(a, λ(a)) | λ(a) 6= 0}. This formalization implies that
Ak is a subautomaton of Ak′ if k < k′. Hence, the union of the automata Ak is

a FA A∞ over F
(1)
∞ . This FA is a P-FA on good irredundant terms t because

k < ‖t‖ for them. By observations made in Definition 37, we get a P-FA that
rejects the terms that are not good and irredundant15.

Note that the value e(X) is not the cardinality of some set Y satisfying an
MS formula ϕ(X,Y ) because we do not allow edge set quantifications, and this
description needs that Y denotes a set of edges. A similar observation holds for
e(X1, X2) considered next.

Counting the edges between disjoint sets of vertices
We first consider directed graphs. We generalize the notion of outdegree of a

vertex by defining e(X1, X2) as the number of edges from X1 to X2 if X1 and
X2 are disjoint sets of vertices and as ⊥ otherwise. Hence e({x}, VG − {x}) is

the outdegree of x in G. We define a deterministic FA Bk over F
(2)
k , intended

to run on irredundant terms written with labels in C := [k]. Its set of states is
(N× [C → N]× [C → N]) ∪ {Error} and we want that :

qBk
(t ∗ (X1, X2)) = Error if X1 ∩X2 6= ∅, and

qBk
(t ∗ (X1, X2)) = (e(X1, X2), λX1 , λX2) otherwise.

The transitions are easy to write. We only give the example of:

−−→
adda,b[(m,λ1, λ2)] → (m+ λ1(a).λ2(b), λ1, λ2),

which is correct with respect to the above requirement because t is assumed
irredundant.

On a term that denotes a graph with n vertices, each state belongs to the set
([0, (n− 1)2]×Λ(C, n)×Λ(C, n)) ∪ {Error} of cardinality less than (n+1)2k+2

hence, has size O(k. log(n)) (the integers m and the values of λ1 and λ2 are
written in binary notation). Transitions and outputs can be computed in time
O(k. log(n)). Hence, Bk is a P-FA. As for Ak above, the union of the automata

Bk is a P-FA B∞ over F
(2)
∞ , constructed for good and irredundant terms.

The function e(X,Xc) ↾ Sgl(X) gives the outdegree of a single vertex (the
unique element of X). A P-FA with smaller states (but still of size O(k. log(n)))
can be built for it. For an undirected graph, we define e(X1, X2) as the number
of edges between X1 and X2 if X1 and X2 are disjoint and ⊥ otherwise. The
construction is similar with:

adda,b[(m,λ1, λ2)] → (m+ λ1(a).λ2(b) + λ1(b).λ2(a), λ1, λ2),

15It is not hard to see that a term t in T (F (s)) is good (resp. irredundant) if and only if
prs(t) is.
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again for irredundant terms.

Maximum directed cut
For a directed graph G, we want to compute the maximal number of edges

from a subset X of VG to its complement, hence the maximal value of e(X,Xc).
This problem is considered in [LKM] and [GHO]. The P-FA for e(X,Xc) uses less
than (n+1)2k+2 states on a term in T (Fk) denoting a graph G with n vertices.
By Lemma 7 and Theorem 29, we get an algorithm that computes the set
{e(X,Xc) | X ⊆ VG} in time O(n4k+a) for some constant a. The article [GHO]

gives an algorithm taking time O(n4.2r(G)+b) where r(G) is the bi-rankwidth of
the considered graph G. We recall that r(G)/2 ≤ cwd(G) ≤ 2.2r(G) ([KanRao]).
Hence, our method gives an algorithm of comparable time complexity.

Maximum degree
As we are discussing degrees, we observe that the Fk-automata of [BCID],

Section 5.2.6 that check if an undirected graphG has maximal degreeMaxDeg(G)
at most some fixed number d can be made into a P-FA AMaxDeg that computes
the function MaxDeg. Its states are pairs (α, λ) ∈ [C → N] × [C → N] such
that qAMaxDeg

(t) = (αG(t), λG(t)) where, for a ∈ C, αG(t)(a) is the maximal
degree of an a-port. The size of a state on a term t ∈ T (Fk) is bounded by
2k · log(|VG(t)|).

5.2.3 Regularity of a graph

The regularity of an undirected graph is not MS expressible: to prove that, we
observe that the complete bipartite graph Kn,m is regular if and only if n = m
and we apply the arguments of Proposition 5.13 of [CouEng].

That a graph is not regular can be expressed by a FA constructed from the
formula ∃X,Y.(P (X,Y ) ∧ Sgl(X) ∧ Sgl(Y )) where P (X,Y ) is the property
e(X,Xc) 6= e(Y, Y c). By the previous construction, Propositions 15, 16 and
Corollary 34, this property is P-FA decidable, and we can apply Proposition
11(1) to get a P-FA for checking that a graph is not regular, hence a P-FA that
checks regularity. However, we can construct directly a simpler P-FA without
using an intermediate nondeterministic automaton.

Let G be defined by an irredundant term t. Here is the key fact: if in G(t/u)
two a-ports x and y have degrees d and d′ these vertices have in G degrees d+ e
and d′ + e for some e, because every edge added between x and a b-port z by
operations outside of t/u (i.e., in the context of u in t) is also added between y
and z. Since t is irredundant, such edges do not exist already in G(t/u) and so,
the degrees of x and y are increased by the same value e by these operations. If
the degrees are different in G(t/u), so are they in G. We recall that π(G) is the
set of port labels of the vertices of G and λG(a) is the number of its a-ports.
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The notation is as in Section 5.2.2. The set of states of AReg,k is defined
as ([C → (N ∪ {⊥})]× [C → N]) ∪ {Error} and we want that, for every term
t ∈ T (Fk):

qAReg,k
(t) = Error if two a-ports of G(t) is have different degrees,

qAReg,k
(t) = (degG(t), λG(t)) where, for every a in π(G(t)), degG(t)(a)

is the common degree of all a-ports of G(t) (and is ⊥ if there is no
a-port).

In the run on a term t such that G(t) has n vertices, less than (n+1)2k states
occur and these states have size O(k. log(n)). In the transition table (Table 4),
we let (∂, λ) denote a state that is not Error. Hence, if (∂, λ) is accessible,
then we have ∂(a) = ⊥ if and only if λ(a) = 0. We denote respectively by 0 and
⊥ the constant mappings with values 0 and ⊥. We take max{⊥, n} = n (for
the transitions on ⊕). It is clear that the transitions can be computed in time
O(k. log(n)). Hence, we have a P-FA AReg,k, as in Section 5.2.2.

Transitions Conditions

∅ → (⊥, ∅)
a → (∂, λ) ∂(x) = if x = a then 0 else ⊥,

λ(x) = if x = a then 1 else 0.
adda,b[(∂, λ)] → (∂′, λ) If λ(a) = 0 or λ(b) = 0 then ∂′ = ∂

else ∂′(a) = ∂(a) + λ(b),
∂′(b) = ∂(b) + λ(a) and
∂′(x) = ∂(x) for x /∈ {a, b}.

relaba→b[(∂, λ)] → Error ∂(a) 6= ∂(b), ∂(a) 6= ⊥ and ∂(b) 6= ⊥.
relaba→b[(∂, λ)] → (∂, λ′) The previous case does not apply,

λ′(a) = 0, λ′(b) = λ(b) + λ(a)
and λ′(x) = λ(x) for x /∈ {a, b}.

⊕[(∂1, λ1), (∂2, λ2)] → Error ∂1(a) 6= ∂2(a) for some a
such that ∂1(a) 6= ⊥, ∂2(a) 6= ⊥.

⊕[(∂1, λ1), (∂2, λ2)] → (∂, π) The previous case does not apply,
∂(x) = max{∂1(a), ∂2(a)}
and λ(x) = λ1(x) + λ2(x) for all x.

Table 4 Transitions of AReg

By taking the union of the automata AReg,k, we get a P-FA AReg . From
it, we get by Proposition 39 a P-FA AReg[X]. The nondeterminism degree of

pr(AReg[X]) is bounded by O(n2k) where the exponent depends on the bound
k on clique-width.

The property ∃X.(Card≤p(X) ∧ Reg[Xc]) expressing that the considered
graph becomes regular if we remove at most p vertices is P-FA decidable by
Corollary 34 (and the remark at the end of Section 4.1).
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The function MaxCardX.Reg[X ] that defines the maximal cardinality of a
regular induced subgraph of the considered graph is thus XP-FA computable
(by Theorem 29). So is the property that the graph can be partioned into two
regular subgraphs, expressed by ∃X.(Reg[X ] ∧ Reg[Xc]) (the proof uses the
same propositions). We get a time complexity O(n8k+a) for some constant a,
similar to the case of maximum directed cut.

5.2.4 Graph partition problems

Many partition problems consist in finding an s-tuple (X1, ..., Xs) satisfying :

Partition(X1, ..., Xs) ∧ P1(X1) ∧ ... ∧ Ps(Xs),

where, P1, ..., Ps are properties of sets of vertices that can be MS expressible
or defined by a FA. We may also wish to count the number of such partitions,
or to find one that minimizes or maximizes the cardinality of X1 or the number
Int(X1, ..., Xs) := e(X1) + ...+ e(Xs) of internal edges of (X1, ..., Xs), i.e., the
number of edges in some of the induced subgraphs G[X1], ..., G[Xs]. We have
discussed above the partitioning of a graph into two regular induced subgraphs.
Vertex coloring problems are of this type with Pi(Xi) being stability for each
i, (i.e., the induced subgraphs have no edge) and a fixed number s of allowed
colors.

By Theorem 29, if the properties Pi(Xi) are MS expressible, then the corre-
sponding partition problem expressed by

∃X1, ..., Xs.Partition(X1, ..., Xs) ∧ P1(X1) ∧ ... ∧ Ps(Xs),

is decidable by an FPT-FA. If they are decidable by an FPT-FA or an XP-FA,
then it is decidable by an FPT-FA or an XP-FA, provided the conditions of The-
orem 29 on degree of nondeterminism are satisfied. Proposition 13 shows that
these conditions cannot be avoided. A particular case is the partition into pla-
nar subgraphs, i.e., each Pi(Xi) is the MS expressible property that the induced
subgraph G[Xi] is planar. However, the implementation of the corresponding
automaton seems rather hard. Let us go back to coloring problems.

Variations on vertex coloring
We let Col(X1, ..., Xs) abbreviate the MS property Partition(X1, ..., Xs) ∧

P1(X1) ∧ ... ∧ Ps(Xs) where each Pi(Xi) expresses the stability of G[Xi] (i.e.,
G[Xi] has no edge). The function #(X1, ..., Xs).Col(X1, ..., Xs) counts the num-
ber of s-colorings of the given graph G. (This number is χG(s) where χG is the
chromatic polynomial of G. See Section 6 for a use of this fact.) It is thus FPT-
FA computable. Another number of possible interest is, if G is s-colorable:

MinCardX.(∃X1, ..., Xs−1.Col(X,X1, ..., Xs−1))
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which is 0 if G is (s− 1)-colorable. Otherwise, it indicates how close G is to
be (s−1)-colorable. By Theorem 29, this number is computable by an FPT-FA.

There are other definitions of approximate s-colorings. One of them is the
notion of (s, d)-defective coloring, expressed by the MS sentence:

∃X1, ..., Xs.(Partition(X1, ..., Xs)∧Deg≤d[X1]∧ ... ∧Deg≤d[Xs]).

For fixed s, we consider the problem of determining the smallest d for which
this property holds. This number is at most ⌈n/s⌉ for a graph with n vertices.

We recall from [BCID] that the propertyDeg≤d[X ] meaning that each vertex
of X has degree at most d in G[X ] is decided by an FPT-FA whose number of

states on a term in T (F
u(1)
k ) is O(d2k). It follows that the existence of an (s, d)-

defective coloring can be checked, for a graph with n vertices, in time O(n ·
d4s.k+a) for some constant a. By checking the existence of an (s, d)-defective
coloring for successive values of d starting from 1, one can find the minimal value

of d in time O(n4s.k+a+1) hence O(n8s.2rwd(G)+a+1) which is similar to the time

bound O(n4s.2rwd(G)+b) given in [GHO] (because for every undirected graph G,
we have cwd(G) ≤ 2rwd(G)+1 − 1).

Another possibility is to define

MD(X1, ..., Xs) := (MaxDeg[X1], ..., MaxDeg[Xs])

and to compute the set:

SetVal(X1, ..., Xs).MD(X1, ..., Xs) ↾ Partition(X1, ..., Xs),

from which the existence of an (s, d)-defective coloring can easily be deter-
mined. Since the automaton for MaxDeg uses O(n2k) states for a graph with
n vertices defined by a term in T (Fk), we get for MD(X1, ..., Xs) the bound
O(n2k.s) and, by Lemma 7 and Theorem 29, the bound O(n4s.k+c) for some
constant c, which is the same as above.

Graph partition problems with numerical constraints
Some partition problems consist in finding an s-tuple (X1, ..., Xs) satisfying:

Partition(X1, ..., Xs) ∧ P1(X1) ∧ ... ∧ Ps(Xs) ∧R(|X1|, ..., |Xs|),

where, P1, ..., Ps are properties of sets and R is a P-computable arithmetic
condition. An example is the notion of equitable s-coloring : Pi(Xi) is stability
for each i and condition R(|X1|, ..., |Xs|) expresses that any two numbers |Xi|
and |Xj | differ by at most 1. The existence of an equitable 3-coloring is not
trivial : it holds for the cycles but not for the graphs Kn,n for large n. The
existence of an equitable s-coloring is W[1]-hard for the parameter defined as s
plus the tree-width ([Fell]), hence presumably not FPT for this parameter. Our
constructions yield, for each integer s, an FPT-FA for checking the existence
of an equitable s-coloring for clique-width as parameter. We obtain the answer
from :
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Sp(X1, ..., Xs).(Partition(X1, ..., Xs) ∧ P1(X1) ∧ ... ∧ Ps(Xs))

that is computable by an FPT-FA.

Optimization problems.
We may want to minimize the number Int(X1, ..., Xs) over certain partitions

(X1, ..., Xs) of the vertex set. This number is 0 for some partition if and only if
the considered graph is s-colorable.

Let us examine the minimization over the partitions that satisfy P1(X1) ∧
... ∧Ps(Xs)∧R(|X1|, ..., |Xs|) where R is a P-computable arithmetic condition.
We compute the set S(P1, ..., Ps) of (s+1)-tuples (|X1|, ..., |Xs|, Int(X1, ..., Xs))
such that X1, ..., Xs satisfy Partition(X1, ..., Xs)∧ P1(X1)∧ ... ∧ Ps(Xs), and
from it, to select the minimal value of Int(X1, ..., Xs) such that R(|X1|, ..., |Xs|)
holds. For a graph with n vertices, the number of such tuples is bounded by
(n+ 1)s(n(n − 1)/2 + 1), hence it is not hopeless to compute it by an FPT or
XP algorithm. We sketch the construction of a FA doing that.

By an easy modification of the P-FA that computes e(X) (cf. Section 5.2.2),
we can construct one for Int(X1, ..., Xs) that uses less than (n+ 1)s.k+2 states
(for a graph with n vertices defined by a term in T (Fk)). The P-FA computing
(|X1|, ..., |Xs|) uses at most (n+ 1)s states. Let A1, ...,As be FA that compute
respectively P1(X1), ..., Ps(Xs). Assume that the nondeterminism degrees of
prs(A1), ..., prs(As) are respectively bounded by b1(n, k), ..., bs(n, k). The non-
determinism degree of prs(A) such that A is constructed from AInt,A1, ...,As

by the methods of Section 4 is thus bounded by nO(k.s).b1(n, k) · ... · bs(n, k).
Hence, S(P1, ..., Ps) is XP-FA computable if b1(n, k), ..., bs(n, k) are XP-bounded,
and we get nothing better if b1(n, k), ..., bs(n, k) are FPT- or P-bounded, because
of the bound by nO(k.s) for prs(AInt).

Remarks : In general, the minimum value of a weight w(X1, ..., Xs) over all
tuples (X1, ..., Xs) satisfying some condition necessitates to compute the set of
all possible values w(X1, ..., Xs) and to select the minimal one. In some cases,
this minimal value can be computed inductively. This is the case, to take an
easy example, if w(X1, ..., Xs) is 1 · |X1| + 2 · |X2| + ... + s · |Xs| because then,
if X = (X1, ..., Xs) and Y = (Y1, ..., Ys) are tuples of subsets of two disjoint
sets, we have w(X1 ∪ Y1, ..., Xs ∪ Ys) = w(X) + w(Y ). It follows that the
minimum value of w(X1, ..., Xs) can be computed as MinCardX.P (X), by an
easy modification of Definition 27(e).

5.2.5 Connected components

The empty graph is defined as connected and a connected component as nonempty.
We have discussed in detail connectedness, denoted by Conn, in [BCID], and
we come back to this important graph property. We show that the general
constructions (cf. Theorem 29) can be improved in some cases. We consider
undirected graphs.
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Number and sizes of connected components.
We denote by κ(G) the number of connected components of a graph G, by

κ(G, p) the number of those with p vertices, byMinComp(G) (resp.MaxComp(G))
the minimum (resp. maximum) number of vertices of a connected component of
G. We will compute these values by FA.

The MS formula CC(X) defined as Conn[X ] ∧ X 6= ∅ ∧ ¬Link(X,Xc) ex-
presses that X is the vertex set of a connected component. Hence, κ(G) =
#X.CC(X)(G), κ(G, p) = MSpX.CC(X)(G)(p), MinComp(G)=

MinCardX.CC(X)(G) and MaxComp(G)=MaxCardX.CC(X). These val-
ues can be computed by FPT-FA constructed by using Propositions 15, 16 and
Theorem 29 in the following way: we let A decide Link(X,Xc); the nondeter-
minism degree of pr1(A) on a term t ∈ T (F u

k ) is bounded by 22k. The cor-

responding bound for the automaton that decides Conn[X ] is 22
k

(cf. [BCID],
Section 6). Then, we can use the above mentioned results. However, we can
construct a more efficient (smaller) FA by a direct construction that modifies
the FA AConn of [BCID] for connectedness.

First we consider the computation of κ(G) = #X.CC(X)(G) for G not
empty. The formula ¬Link(X,Xc) expresses that X is a (possibly empty) the
vertex set of a union of connected components. Hence, #X.¬Link(X,Xc)(G) =
2κ(G). The construction of the FA computing #X.¬Link(X,Xc)(G) is clearly
easier than that for #X.CC(X)(G). This FA allows even to check if G is
connected (this property is equivalent to #X.¬Link(X,Xc)(G) = 2). However,
it is an FPT-FA, whereas we noted above that the automaton AConn of [BCID]
that checks connectedness is a P-FA.

We can alternatively construct ”directly” a deterministic FA Aκ to compute
κ(G). Its states are sets of pairs (L,m) such that L ⊆ C := [k] and m is an
integer. For every term t in T (F u

k ) we want that:

qAκ
(t) = {(L,m) | L ⊆ C, m is the number of connected components

of G(t) type L}.

The transitions are easy to write; the output function is then defined by:

OutAκ
(q) := Σ{|L| ·m | (L,m) ∈ q}.

If G(t) has n vertices, the size of a state on t is O(n · log(k)) and so, Aκ is
a P-FA.

We now explain why this automaton is better than the one constructed by
using Theorem 29. We recall that the states of AConn are such that :

qAConn
(t) = (L,L) with L ⊆ C, if G(t) is not connected and all its

connected components have type L,
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otherwise,

qAConn
(t) is the set of types (nonempty subsets of C) of the con-

nected components of G(t).

The graph G(t) is connected if and only if the state at the root is the empty
set or {L} for some nonempty set L. It is clear that AConn is a homomorphic
image of Aκ. Note that AConn yields more information than just the connect-
edness of G(t): it computes also the set of types of the connected components.
By Propositions 15 and 16, we get for property CC(X) an automaton ACC(X)

such that, for every t and X :

qACC(X)
(t ∗ X) is Error if there is an edge between X and its

complement;

otherwise, X is a union of connected components of G(t), and

qACC(X)
(t ∗X) records the set of types, let us call it σ(X), of these

connected components.

We simplify for clarity: the state qACC(X)
(t ∗X) contains more than the set

σ(X). This is why we write that ”it records ...” and not ”it is σ(X)”. Then,
let A′

κ be constructed from ACC(X) by Theorem 29 (or Example 5) so as to
compute κ(G(t)). For each term t, the state qA′

κ
(t) records, for each set σ of sets

of labels, the number of sets X such that σ(X) = σ. This is more than needed:
the state qAκ

(t) records only information about the connected components of
G(t), not about all unions of connected components. If for example G(t) is the
graph:

a− b a− b b− c c− d

then qAκ
(t) = {(ab, 2), (bc, 1), (cd, 1)} whereas qA′

κ
(t) records {(ab, 3), (bc, 1),

(abc, 3), (cd, 1), (bcd, 1), (abcd, 6)}.

Some tests
We have tested these automata on a connected graph G = adda,b(H) of

clique-width 3 with 17 vertices such that H has 8 connected components, each
with 2 or 3 vertices. The quickest automaton on a term defining G is Aκ (taking
0.0012 s), followed by AConn (0.0014 s) and A#X.¬Link(X,Xc) (0.33 s) whereas
A#X.CC(X) takes 39 s. It is interesting to note that the use of unbounded
integers in Aκ makes the computation quicker than by AConn although AConn

is finite on terms in T (F3).

Counting components by their size.
We now consider the computation of MSpX.CC(X)(G). First we observe

that for each integer p, MSpX.CC(X)(G)(p) is computable from the values
MSpX.¬Link(X,Xc)(G)(p′) for p′ ≤ p. (We made above a similar observation
for the computation of κ(G) from #X.¬Link(X,Xc)(G)). However, as in this
previous case, we can construct a P-FA B derived from AConn (and generalizing
the previous Aκ) such that, for every term t ∈ T (F u

∞):

57



its state qB(t) is the set of triples (L, p,m) such that L is a nonempty
set of port labels, m, p ∈ N+ and m is the number of connected
component of G(t) of type L having p vertices.

If t ∈ T (F u
k ) and G(t) has n vertices, then n = Σ(L,p,m)∈q

B
(t)m.p. Hence,

qB(t) can be described by a word of length O(n. log(k)) (even if numbers are
written in unary; the factor log(k) corresponds to the coding of labels). Here
are the transitions :

∅ → ∅,
a → {({a}, 1, 1)},
⊕[q, q′] → q” where q” is the set obtained by replacing iteratively in the mul-

tiset q⊔q′ (defined as the multiset union of two sets) any pair {(L, p,m), (L, p,m′)}
by the unique triple (L, p,m+m′),

relabh[q] → q′: For each set L, we let h(L) be the set obtained from L by
replacing a by h(a); then q′ is the set of triples (L′, p,m′) such that :

L′ := h(L) for some (L, p,m) ∈ q,

m′ := Σ{m | L′ = h(L) and (L, p,m) ∈ q}.

Finally, we describe the transitions adda,b[q] → q′. There are two cases.
Case 1 : a or b is not present in q or they are both present in q but in a

unique triple of the form (L, p, 1) (with a, b ∈ L). Then q′ := q.
Case 2 : Case 1 does not apply. We let:

q” be the set of triples in q that contain neither a nor b,

L′ := ∪{L | (L, p,m) ∈ q − q”} and

p′ := Σ{p ·m | (L, p,m) ∈ q − q”},

and finally q′ := q” ∪ {(L′, p′, 1)}.

We illustrate this case with an example:

q = {({a}, 2, 1), ({a}, 1, 4), ({a, b, c}, 4, 1), ({b, d}, 3, 2), ({c, d}, 3, 4)},

q′ = {({a, b, c, d}, 16, 1), ({c, d}, 3, 4)},

where 16 is obtained as 2 · 1 + 1 · 4 + 4 · 1 + 3 · 2 because the connected
components of types {a}, {a, b, c} and {b, d} get fused into a unique one (of type
{a, b, c, d}).

For computing MSpX.CC(X) we take the output function:

OutB(q) := µ such that, µ(p) := Σ{m | (L, p,m) ∈ q} for p ∈ N+.
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It is clear that the transitions and the output function can be computed in
time poly(‖ t ‖). Hence, B is a P-FA. From MSpX.CC(X)(G) we get κ(G, p)
for each p.

Tools for separation problems.
For dealing with separation problems, it is useful to compare the cardinality

of a set of vertices X to the number of connected components of G − X (:=
G[VG−X ]) and to the maximal cardinality of a connected component of G−X .
For this purpose, we define for a graph G:

α(G) = {(|X |, κ(G[Xc])) | X ⊆ VG},

β(G) = {(|X |,MaxCardCC(G[Xc])) | X ⊆ VG},

where MaxCardCC(G[Xc]) is the maximal cardinality of a connected com-
ponent of G[Xc]. From α(G), one can determine, for given integers p and q, if
there exists a set X of cardinality at most p whose deletion splits the graph
in at least q connected components. Similarly, from β(G) one can determine if
there is such a set X whose deletion splits the graph in connected components
of size at most q.

Let P (X,U) mean that U has one and only one vertex in each connected
component of G[Xc] and Q(X,Y ) mean that Y is the vertex set of a connected
component of G[Xc]. These properties are MS expressible. Then α(G) is noth-
ing but Sp(X,U).P (X,U) computed in G, and β(G) can be obtained from
Sp(X,Y ).Q(X,Y ). Hence, by Example 14(a), Propositions 15, 16 and Theorem
29, these two values are computable by FPT-FA.

5.3 Undecidability and intractability facts.

Let R be a family of P-computable numerical predicates (integers are given in
binary notation) and let MS+R denote the extension of monadic second-order
logic with the additional atomic formulas R(|X1|, ..., |Xs|) for R in R. (We write
MS+R for MS+{R}).We have seen such formulas in Section 5.2.4. We wish to
examine when the model-checking problem for MS+R is FPT or XP. Actually
we will mainly consider the case of words over finite alphabets, so the question
reduces to whether it is polynomial-time solvable.

We first discuss undecidability results. There is no implication between
(un)decidability results on the one hand and complexity results on the other,
but decidability and FPT results for terms and graphs of bounded clique-width
are proved with the same tools. Undecidability results are actually easier to
prove and they help to foresee the difficulties regarding complexity.

We let Eq(n,m) mean n = m; this binary relation defines a semi-linear set
of pairs of integers.
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Proposition 40 : The satisfiability problem for MS+Eq and MS+R where
R is a unary predicate that is not ultimately periodic is not decidable over finite
words.

That is, one cannot decide if a given sentence of MS + Eq or MS + R is
satisfied by some word over a fixed finite alphabet.

Proof : The case of MS+Eq is proved in Proposition 7.60 of [CouEng] and
the other one in [Bes].�

We now consider the model-checking problem.

Definition 41 : Separating sets of integers.

Let R ⊆ N, p, n ∈ N such that n > p. We say that R separates on [0, n] the
integers in [0, p] if, for every x, y ∈ [0, p]:

x 6= y if and only if there exists z ∈ N such that x + y + z ∈ [0, n]
and,

either x+ z ∈ R and y + z /∈ R or y + z ∈ R and x+ z /∈ R.

We say that an infinite set R ⊆ N is separating if there exists n0 such that,
for every n > n0, R separates on [0, n] the integers in [0, ⌊log(n)⌋]. The sets
{n! | n ∈ N}, {2n | n ∈ N} and that of prime numbers are separating. An
ultimately periodic set of integers is not separating. The set D := {an | n ∈ N}
such that a0 = 1, an+1 = 2an+3 is not ultimately periodic and not separating
either. (To see this, observe that D does not separate an + 1 and an + 2 on
[0, an+1 − 1].)

The notion of separation will be used as follows: if R separates on [0, n] the
integers in [0, p], then for any two disjoint subsets X and Y of [n], if |X |, |Y | ≤ p,
then:

|X | = |Y | if and only if:

[n] |= ∀Z.[Z ∩ (X ∪ Y ) = ∅ =⇒ (R(|X ∪ Z|) ⇐⇒ R(|Y ∪ Z|))].

This means that the equipotence of small sets can be expressed in MS +R.

Proposition 42: Let R be a unary predicate that defines a separating
subset of N. If P 6= NP, the model-checking problem for MS+Eq and MS+R
are not P-solvable.

Proof : We first consider the case of MS + Eq. We use a method similar to
that of Proposition 13. We denote by P any satisfiability problem expressed
in conjunctive normal form with variables x1, ..., xn, all occurring in P . We let
w(P ) be the word representing P with xi written as x followed by the binary
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writing of i (with no leading 0). For example, if P is (x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨
¬x4 ∨ ¬x5) then w(P ) is the word (x1 ∨ x10 ∨ ¬x11) ∧ (x11 ∨ ¬x100 ∨ ¬x101)
over the alphabet A := {(, ),∨,∧,¬, x, 0, 1}.The factors of this word belonging
to {0, 1}∗ have length at most 1 + ⌊log(n)⌋. The word w(P ) is represented by
the logical structure

S(P ) := 〈[|w(P )|],≤, (laba)a∈A〉 such that laba(i) holds if and only if i is an
occurrence of a in w(P ).

There exists a formula ϕ(U) of MS + Eq, written with ≤ and the unary
relations laba for a ∈ A, such that an arbitrary satisfiability problem P as
above has a solution if and only if S(P ) |= ∃U.ϕ(U). The set U defines a set
of occurrences of x in w(P ) whose corresponding variable xi has value True,
and we require that, either all occurrences of any variable xi or none of them
has value True. This condition is expressed by a formula ϕ1(U) of MS + Eq
where Eq(|X |, |Y |) is only used for sets X and Y of consecutive occurrences of
0 and 1’s. The formula ϕ(U) is then taken of the form ϕ1(U) ∧ ϕ2(U) where
ϕ2(U) is a first-order formula expressing that the truth values defined by a set
U satisfying ϕ1(U) form a solution of P .

If the sentence ∃U.ϕ(U) could be checked in words w ∈ A∗ in time poly(|w|),
then every satisfiability problem P could be checked in time poly(|w(P )|) and
we would have P = NP.

We now translate ϕ1(U) into a sentence ϕ3(U) of MS+R such that ∃U.(ϕ3(U)
∧ϕ2(U)) is equivalent to ∃U.ϕ(U) in every structure S(P ). It is clear that 2n <
|w(P )| as all variables x1, ..., xn occurring in P . Hence, any sequence of 0 and
1’s in w(P ) has length bounded by 1 + ⌊log(n)⌋ = ⌊log(2n)⌋ ≤ ⌊log(|w(P )|)⌋.
The equality tests Eq(|X |, |Y |) of ϕ1(U) can be expressed in terms of R (that we
assume separating) and except perhaps for finitely many problems P . Hence,
the satisfiability of P is expressed in S(P ) by a sentence in MS + R, and so,
the model-checking problem for MS + R is not P-solvable in polynomial time
either. �

Questions 43 : (1) Can one replace in the previous proposition ”R is
separating” by ”R is not ultimately periodic”? It might happen that the model-
checking problem for MS + R where R is very sparse (like the above set D) is
P-decidable on words.

(2) Let R be P-decidable. Is the model-checking problem for MS + R is
NP-decidable on words? The same question can be raised for MS + Eq, or
more generally, for MS + R if R is a semi-linear subset of Nk, k ≥ 2.

6 Implementation

AUTOGRAPH
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The system AUTOGRAPH, written in LISP (and presented in the con-
ference paper [BCID13a]) is intended for verifications of graph properties and
computations of functions on graphs. Its main parts are as follows.

(1) A library of basic fly-automata over F∞ :
for properties of sets : X ⊆ Y ,X = ∅, Sgl(X), Card≤p(X), Cardp,q(X),

Partition(X1, ..., Xs) and the function Card(X),
for the atomic formulas of MS logic over p-graphs : edg(X,Y ) and

laba(X),
for some important MS graph properties (cf. [BCID]) : stability, be-

ing a clique, Link(X,Y ), Path(X,Y ), connectedness, existence of directed or
undirected cycles, degree at most d,

for some graph properties that are not MS expressible : regularity,
for functions on graphs : number of edges between two sets, maximum

degree.
(2) A library of procedures that transform or compose fly-automata: these

functions implement Propositions 10, 15, 16 and 39, and Theorems 17 and 29.

There is no parser for the formulas expressing properties and functions. The
translation of these formulas into LISP programs that call the basic FA and the
composition procedures is easily done by hand.

Some automata (in particular for cycles, regularity and other degree com-
putations) are defined so as to work correctly on irredundant terms. A pre-
processing can verify whether a term is irredundant, and transform it into an
equivalent irredundant one if it is not. Whether input terms are good or not
may affect the computation time, but not the correctness of the outputs.

Experiments
In [BCID], we have reported some experimental results concerning Petersen’s

and McGee’s (classic) graphs. Using FA that count the number of satisfying
assignments, we obtained that Petersen’s graph has 12960 4-colorings. (This
value can be verified as it is also given by the chromatic polynomial). We found
also that McGee’s graph has 57024 acyclic 3-colorings in less than 6 hours. (See
[BCID] for definitions and details.)

Enumeration
AUTOGRAPH includes a method for enumerating (i.e., listing, not just

counting) the sets SatX.P (X), by using an existing FA A for P (X). A specific
enumeration program is generated for each term (see [Dur]). Running it is also
interesting for accelerating in some cases the verification that ∃X.P (X) is true,
because the computation can stop as soon as the existence of some satisfying
tuple X is confirmed. More precisely, the nondeterministic automaton pr(A)
is not run deterministically (cf. Definition 1(c)), but its potentially accepting
runs are constructed by enumeration. This technique works for ∃X.P (X) but
not for ∀X.P (X), #X.P (X), MSpX.P (X) etc... because these properties and
functions are somehow based on a complete knowledge of SatX.P (X).
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Using terms with shared subterms

Equal subterms of a ”large” term t can be fused and t can be replaced
by a directed acyclic graph (a dag). The construction from t of a dag where
any two equal subterms are shared can be done in linear time by using the
minimization algorithm of deterministic acyclic finite automata presented in
[Rev]. Deterministic FA can run on such dags in a straightforward manner. We
have tested that on 4-colorable graphs defined recursively by Gn+1 = t(Gn, Gn)
where t ∈ T (F7, {x, y}) (a term with two variables x and y denoting p-graphs;
Gn has 10.2n − 6 vertices and 27.2n − 23 edges). We checked that these graphs
are 4-colorable by using the term in T (F7) and the dag resulting from the
recursive definition. The computation times are as follows:

n term dag

6 11 mn 1 mn, 6 s
9 88 mn 1 mn, 32 s
20 4 mn
28 40 mn
30 2 h, 26 mn

Do we need optimal terms?

Graphs are given by terms in T (F∞) and no a priori bound on the clique-
width must be given since all FA are over F∞. As an input graph is given by
a term t over Fk with k ≥ cwd(G), one may ask how important it is that k is
close to cwd(G). Every graph with n vertices is denoted by a term in T (Fn)
where each vertex has a distinct label and no relabelling is made. Such a term,
if it is irredundant, has size O(n2. log(n)). Hence, as input to a P-FA, it yields
a polynomial time computation. This not the case with an FPT- or XP-FA.

7 Conclusion

We have given logic based methods for constructing FPT and XP graph algo-
rithms based on automata. Our constructions allow several types of optimiza-
tions:

- different logical expressions of a property can lead to different au-
tomata having different observed computation times,

- direct constructions of FA are sometimes better than the general
ones resulting from Theorem 29.
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We have noticed these latter facts in Sections 5.2.3 and 5.2.5. Can one
identify general criteria for the possibility of such optimizations? In the same
direction, we have cases where FPT-FA are easier to implement and practically
more efficient than certain equivalent P-FA and similarly for XP-FA and FPT-
FA. When does this hold?

About dags. Here is a question related to the possibility of using dags :

How can one transform a term in T (Fk) into an equivalent one in
T (Fk), or in T (Fk′) for some k′ not much larger than k, whose as-
sociated minimal dag (the one with a maximal sharing of subterms)
has as few nodes as possible?

Edge quantifications. The logical representation of graphs used in this article
does not allow edge set quantifications in MS formulas. MS formulas written
with edge set quantifications are more expressive, and more functions based
on them, such as #X.ϕ(X), can be defined. An easy way to allow edge set
quantifications is to replace a graph G by its incidence graph I(G) (consisting
of vertices, edges and the associated incidence relation). The tree-width of I(G)
is, up to 1, that of G, hence the clique-width of I(G) is bounded in terms of the
tree-width of G. MS formulas over I(G) allow thus quantifications over sets of
edges of G (details are in [CouEng]). So the constructions of FA presented in
this article work for edge set quantifications (in the expression of properties and
functions) and tree-width (but not clique-width) as parameter. However, more
directed constructions based on terms representing tree-decompositions would
be useful, due to the importance of tree-width. This issue is discussed [Cou12].

Acknowledgements : We thank C. Paul for useful comments.
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9 Appendix

9.1 Monadic second-order logic

Representing terms by logical structures.
We let F be a signature that can be countably infinite, with symbols of

maximal arity r ∈ N (cf. Section 2.4)). If t ∈ T (F ), we define S(t) as the
relational structure 〈Pos(t), sont, (bri t)i∈[r], (labf t)f∈F 〉 where sont(x, y) holds
if and only if y is a son of x, bri t(x) holds if and only if x is the i-th son of its
father, and labf t(x) holds if and only if x is an occurrence of f . This structure
has an infinite number of components if F is infinite, but only finitely many of
them are nonempty sets or relations. (Only Pos(t), sont, bri t for i ∈ [ρ(Sig(t))]
and labf t for f ∈ ρ(Sig(t)) are not empty). Hence, S(t) can be encoded by a
finite word over a fixed finite alphabet and one can decide if S(t) |= ϕ(X) for
given ϕ(X) and t ∗X ∈ T (F (s)).

Consider now a property P (X) expressed by a monadic second-order formula
ϕ(X) written with the (finitely many) relation symbols son, bri, and labf for
f ∈ Sig(ϕ) where Sig(ϕ) is the set of symbols of F that occur in ϕ (in relational
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symbols labf). Let L be the set of terms t∗X ∈ T (F (s)) such that S(t) |= ϕ(X).
This set is recursive and a fly-automaton recognizing it can be constructed by
induction on the structure of ϕ, see [BCID], Section 7.3. Since for every finite
H ⊆ F , the number of states occurring in its runs on a term t ∈ T (H) is finite,
it is a linear FPT-FA (cf. Definition 6(b)).

Let H be any subset of F . Two terms t, t′ ∈ T (F (s)) are H-equivalent, writ-
ten t ∼H t′, if Pos(t) = Pos(t′) and every u in Pos(t), is either an occurrence
in t of (f, w) ∈ H × {0, 1}s and an occurrence in t′ of the same symbol, or
is an occurrence in t of (f, w) ∈ (F − H) × {0, 1}s and an occurrence in t′ of
(f ′, w) such that f ′ is not in H and has the same arity as f . If t, t′ ∈ T (F ) and
t ∼Sig(ϕ) t

′, then, for every s-tuple X of subsets of Pos(t)(= Pos(t′)):

S(t) |= ϕ(X) if and only if S(t′) |= ϕ(X).

This is clear because labf has no occurrence in ϕ if f is not in H , hence, ϕ
cannot make any difference between f /∈ H and any symbol not in H of same
arity. (The same holds if ϕ(X) is a second-order formula). So, the set of terms
t∗X ∈ T (F (s)) such that S(t) |= ϕ(X) is saturated for the equivalence ≃Sig(ϕ) .

It is the closure under ∼Sig(ϕ) of a regular subset of T (F (s)).

Representing graphs by logical structures.
We have defined a simple graph G as the relational structure 〈VG, edgG〉

with domain VG and a binary relation edgG such that (x, y) ∈ edgG if and
only if there is an edge from x to y (or between x and y if G is undirected).
A p-graph G whose type π(G) is included in N is identified with the structure
〈VG, edgG, (labaG)a∈N〉 where labaG is the set of a-ports of G. Since only finitely
many sets labaG are not empty, this structure can be encoded by a finite word
over a fixed finite alphabet, as S(t) discussed above.

We will mainly consider properties of (and functions on) graphs, and not
of (and on) p-graphs (but the formal setting would allow that). However, as
we have seen in [BCID] and in Section 5.2, port labels are important for the
construction of FA that check properties of (and compute functions on) graphs.
For checking a property of G(t), we use an automaton whose states encode
information about the p-graphs G(t)/u for all positions u of t. This information
depends on π(G(t)/u), and a major concern is its size, because a large size
implies that a long time is necessary for computing transitions.

Monadic second-order formulas
The basic syntax of monadic second-order formulas (MS formulas in short)

uses set variablesX1, ..., Xn, ... but no first-order variables. Formulas are written
without universal quantifications and they can use set terms (cf. Section 2.3).
These constraints yield no loss of generality (see, e.g., Chapter 5 of [CouEng]).
To express properties of terms, we use the atomic formulas
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son(Xi, Xj) meaning that Xi and Xj denote singleton sets {x} and
{y} such that y is a son of x,

bri(Xj) meaning that Xj denotes {x} such that x is the i-th son of
its father,

labf(Xj) meaning that Xj denotes {x} such that x is an occurrence
of f .

The other atomic formulas are Xi ⊆ Xj , Xi = ∅, Sgl(Xi) (meaning that Xi

denotes a singleton set) and Cardp,q(Xi) (meaning that the cardinality of Xi is
equal to p modulo q, with 0 ≤ p < q and q ≥ 2).16

In order to express properties of a p-graph G, we use the atomic formulas
Xi ⊆ Xj , Xi = ∅, Sgl(Xi), Cardp,q(Xi) as for terms together with :

edg(Xi, Xj) meaning that Xi and Xj denote respectively {x} and
{y} such that x →G y and

laba(Xi) meaning that Xj denotes {x} such that x is an a-port.

Furthermore, it is convenient to require that the free variables of every for-
mula of the form ∃Xn.ϕ are among X1, ..., Xn−1. (Every subformula of a well-
written formula must satisfy this condition). This syntactic constraint yields
no loss of generality (see Chapter 6 of [CouEng] for details) but it makes easier
the construction of automata. In examples, we use set variables X,Y , universal
quantifications, and other obvious notation to make formulas readable. A first-
order existential quantification is a construction of the form ∃Xn.(Sgl(Xn) ∧
ϕ(X1, ..., Xn)), also written ∃xn.ϕ(X1, ..., Xn−1, {xn}) for readability. All quan-
tifications of a first-order formula have this form. First-order order formulas may
have free set variables and may be built with set terms. So, ∃x2.ϕ(X1, X

c
1−{x2})

is a first-order formula if ϕ contains only first-order quantifications.

(c) A graph property P (X1, ..., Xn) is a MS (resp. FO) property if there
exists a MS (resp. FO) formula ϕ(X1, ..., Xn) such that, for every p-graph G
and for all sets of vertices X1, ..., Xn of this graph, we have:

〈VG, edgG, (labaG)a∈N〉 |= ϕ(X1, ..., Xn)

if and only if P (X1, ..., Xn) is true in G.

16We will not distinguish monadic second-order formulas from counting monadic second-
order formulas, defined as those using Cardp,q(Xi), because all our results will hold in the
same way for both types. See Chapter 5 of [CouEng] for situations where the distinction
matters.
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9.2 Good and irredundant terms

We prove a technical result about terms in T (F∞). We recall that F∞ is the
signature of clique-width operations (cf. Section 2.2 for detailed definitions).

Proposition 44 : (1) The set of good and irredundant terms in T (F∞) is
P-FA recognizable.

(2) There exists a polynomial-time algorithm that transforms every term in
T (F∞) into an equivalent term that is good and irredundant.

We recall that for two terms t and t′, t ≈ t′ means that they define isomorphic
p-graphs. For t in T (F∞), π(t) is the set of port labels of G(t), maxπ(t) is the
maximal label in π(t), µ(t) is the set of port labels that occur in t and maxµ(t)
is the maximal one in µ(t) (we recall that port labels are positive integers).

Proof : (1) We have already observed after Definition 7 that the set of good
terms is P-FA recognizable. By Proposition 8(2) of [BCID] the set of terms that
are not irredundant can be recognized by a nondeterministic FA whose states
on a term t are pairs of port labels in µ(t) and nondeterminism degree is at most
|µ(t)|2, hence poly(‖t‖). By determinizing it and taking the complement, we get
a P-FA A that recognizes the set of irredundant terms. By taking the product
of A with the one recognizing good terms, we get a P-FA (by Proposition 15)
that recognizes the good and irredundant terms.

(2) Proposition 8 of [BCID] gives, for each integer k, a linear-time algorithm
that transforms a term t in T (Fk) into an equivalent irredundant one t′ such that
|t′| = |t| and ‖t′‖ ≤ ‖t‖. This algorithm attaches to each position of t a set of
pairs of port labels from µ(t). These sets can be encoded in size |µ(t)|2. log(k) ≤
poly(‖t‖) and we obtain a unique polynomial-time algorithm taking as input a
term in T (F∞).

We can assume that the input term t is irredundant and we transform it
into an equivalent one that is good and still irredundant. By induction on the
structure of t ∈ T (Fk),we will define:

a good term t̂ ∈ T (Fk′) for some k′ ≤ k such that π(t̂ ) = [max π(t̂ )]

and a bijection ht : π(t̂ ) → π(t) such that t ≈ relabht
(t̂ ).

The inductive definition is shown in Table 5. Condition (1) states that ℓ is
a bijection : [|π(t)|] → π(t) such that ℓ(i) = ht1(i) for i ∈ [max π(t1)]; (clearly,
|π(t)| ≥ max π(t1)).
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t t̂ ht Conditions

t ∅ Id π(t) = ∅ (i.e., G(t) = ∅)
a 1 1 → a

t1 ⊕ t2 t̂2 ht2 π(t1) = ∅

t1 ⊕ t2 t̂1 ht1 π(t2) = ∅

t1 ⊕ t2 t̂1 ⊕ relabℓ−1◦ht2
(t̂2 ) ℓ π(t1) 6= ∅, π(t2) 6= ∅ and (1)

−−→
adda,b(t1) t̂1 ht1 {a, b} * π(t1)
−−→
adda,b(t1)

−−→
addh−1

t1
(a),h−1

t1
(b)(t̂1 ) ht1 {a, b} ⊆ π(t1)

relabh(t1) t̂1 h ◦ ht1

Table 5 : Inductive construction of t̂ ∈ T (Fk′) and ht.

It is clear that t̂ and ht can be computed in polynomial time from t.

Claim 1 : t̂ ∈ T (Fk′) for some k′ ≤ k, π(t̂ ) = [max π(t̂ )], ht is a bijection
: π(t̂ ) → π(t) and t ≈ relabht

(t̂ ).

Proof : These facts are clear from the inductive construction and we have
k′ = maxµ(t̂ ). �

Claim 2 : t̂ is irredundant.

Proof : Because t is assumed irredundant. �

Claim 3 : t̂ is good.

Proof : Let n be the number vertices of G(t), assumed to have at least
one edge. (The case of graphs without edges is easily treated separately). The
inductive construction shows that, for each subterm t′ of t̂, each label π(t′)
labels some vertex of G(t′), hence maxµ(t̂ ) is at most the number of vertices of
G(t̂ ), equal to n.

Again by induction, we can see that ⊕ has n− 1 occurrences in t̂ (because t̂
has no occurrence of ∅ and G(t) ≃ G(t′)), and that the symbols relabh have at
most 2n− 1 occurrences (one can of course delete those of the form relabId).

The number of operations
−−−→
adda,b is at most (n − 1) · (k′2 − k′) because t̂ is

irredundant by Claim 2. It follows that |t̂ | ≤ n+n−1+2n−1+(n−1)·(k′2−k′) ≤
(k′+1)2.n+1 as one checks easily (noting that k′ ≥ 2 because G(t̂ ) has edges).
Hence t̂ is good. �
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