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NEW UNIFORM AND ASYMPTOTIC UPPER BOUNDS ON
THE TENSOR RANK OF MULTIPLICATION IN

EXTENSIONS OF FINITE FIELDS

JULIA PIELTANT AND HUGUES RANDRIAM

Abstract. We obtain new uniform upper bounds for the (non neces-
sarily symmetric) tensor rank of the multiplication in the extensions of
the finite fields Fq for any prime or prime power q ≥ 2; moreover these
uniform bounds lead to new asymptotic bounds as well. In addition, we
also give purely asymptotic bounds which are substantially better by
using a family of Shimura curves defined over Fq, with an optimal ratio
of Fqt -rational places to their genus where qt is a square.

1. Introduction

1.1. Tensor rank of multiplication. Let K be a field and let A be a
finite-dimensional K-algebra. We denote by mA the multiplication map of
A. It can be seen as a K-bilinear map from A×A into A, or equivalently,
as a linear map from the tensor product A

⊗
A over K into A. One can also

represent it by a tensor tA ∈ A?
⊗
A?
⊗
A where A? denotes the dual of A

over K. Hence the product of two elements x and y of A is the convolution
of this tensor with x⊗ y ∈ A

⊗
A. If

tA =

λ∑
l=1

al ⊗ bl ⊗ cl (1)

where al ∈ A?, bl ∈ A?, cl ∈ A, then

x · y =
λ∑
l=1

al(x)bl(y)cl. (2)

Every expression (2) is called a bilinear multiplication algorithm U for A
over K. The integer λ is called the bilinear complexity µ(U) of U .
Let us set

µK(A) = min
U
µ(U),

where U is running over all bilinear multiplication algorithms for A over K.
Then µK(A) corresponds to the minimum possible number of summands
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in any tensor decomposition of type (1), which is the rank of the tensor of
multiplication in A over K. The tensor rank µK(A) is also called the bilinear
complexity of multiplication in A over K.

When the decomposition (1) is symmetric, i.e. al = bl for all l = 1, . . . , λ,
we say that the corresponding algorithm U is a symmetric bilinear multi-
plication algorithm. If we focus on such algorithms, then the corresponding
complexity is called the symmetric bilinear complexity of multiplication in
A over K and we set:

µsymK (A) = min
Usym

µ(U sym),

with U sym running over all symmetric bilinear multiplication algorithms for
A over K. Note that one has

µK(A) ≤ µsymK (A).

In this work we will be mainly interested in the case where K = Fq is the
finite field with q elements (where q is a prime power) and A = Fqn is the
extension field of degree n of Fq. We then set

µq(n) = µFq(Fqn).

However for technical reasons we will also need the quantities

µq(m, l) = µFq(Fqm [t]/(tl))

so that µq(n) = µq(n, 1).
Similarly, we set µsymq (n) = µsymFq

(Fqn) and µsymq (m, l) = µsymFq
(Fqm [t]/(tl)).

1.2. Notations. Let F/Fq be an algebraic function field of one variable of
genus g, with constant field Fq, associated to a curve X defined over Fq.
For any place P we define FP to be the residue class field of P and OP
its valuation ring. Every element t ∈ P such that P = tOP is called a local
parameter for P and we denote by vP a discrete valuation associated to the
place P of F/Fq. Recall that this valuation does not depend on the choice of
the local parameter. Let f ∈ F\{0}, we denote by (f) :=

∑
P vP (f)P where

P is running over all places in F/Fq, the principal divisor of f . If D is a
divisor then L(D) = {f ∈ F/Fq;D + (f) ≥ 0} ∪ {0} is a vector space over Fq
whose dimension dimD is given by the Riemann-Roch Theorem. The degree
of a divisor D =

∑
P aPP is defined by degD =

∑
P aP degP where degP

is the dimension of FP over Fq. The order of a divisor D =
∑

P aPP at P
is the integer aP denoted by ordP D. The support of a divisor D is the set
suppD of the places P such that ordP D 6= 0. Two divisors D and D′ are
said to be equivalent if D = D′ + (x) for an element x ∈ F\{0}.

We denote by Bk(F/Fq) the number of places of degree k of F and by
g(F/Fq) the genus of F/Fq.
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1.3. Known results. The bilinear complexity µq(n) of the multiplication
in the n-degree extension of a finite field Fq is known for certain values of
n. In particular, S. Winograd [20] and H. de Groote [14] have shown that
this complexity is ≥ 2n− 1, with equality holding if and only if n ≤ 1

2q + 1.
Moreover, in this case one has µsymq (n) = µq(n). Using the principle of the
D.V. and G.V. Chudnovsky algorithm [13] applied to elliptic curves, M.A.
Shokrollahi has shown in [18] that the symmetric bilinear complexity of mul-
tiplication is equal to 2n for 1

2q + 1 < n < 1
2(q + 1 + ε(q)) where ε is the

function defined by:

ε(q) =

{
the greatest integer ≤ 2

√
q prime to q, if q is not a perfect square

2
√
q, if q is a perfect square.

Moreover, U. Baum and M.A. Shokrollahi have succeeded in [10] to con-
struct effective optimal algorithms of type Chudnovsky in the elliptic case.

Recently in [1], [2], [8], [6], [5], [4] and [3] the study made by M.A. Shokrol-
lahi has been generalized to algebraic function fields of genus g.

Let us recall that the original algorithm of D.V. and G.V. Chudnovsky
introduced in [13] leads to the following theorem:

Theorem 1.1. Let q = pr be a power of the prime p. The symmetric tensor
rank µsymq (n) of multiplication in any finite field Fqn is linear with respect to
the extension degree; more precisely, there exists a constant Cq such that:

µsymq (n) ≤ Cqn.

Moreover, one can give explicit values for Cq:

Proposition 1.2. The best known values for the constant Cq defined in the
previous theorem are:

Cq =



if q = 2 then 22 [12] and [7]
else if q = 3 then 27 [1]
else if q = p ≥ 5 then 3(1 + 4

q−3) [4]
else if q = p2 ≥ 25 then 2(1 + 2√

q−3) [4]
else if q = p2k ≥ 16 then 2(1 + p√

q−3) [2]
else if q ≥ 16 then 3(1 + 2p

q−3) [8], [6] and [5]
else if q > 3 then 6(1 + p

q−3) [2].

In order to obtain these good estimates for the constant Cq, S. Ballet has
given in [1] some easy to verify conditions allowing the use of the D.V. and
G.V. Chudnovsky algorithm. Then S. Ballet and R. Rolland have generalized
in [8] the algorithm using places of degree one and two.

Recently, various generalizations of this algorithm were introduced in [17].
We will use the version that can be found in [17, Proposition 5.7] and which,
expressed in the language of function fields, reads as follows:
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Theorem 1.3. Let F/Fq be an algebraic function field of genus g ≥ 2, and
let m, l ≥ 1 be two integers.

Suppose that F admits a place of degree m (a sufficient condition for this
is 2g + 1 ≤ q(m−1)/2(q1/2 − 1)).

Consider now a collection of integers nd,u ≥ 0 (for d, u ≥ 1), such that
almost all of them are zero, and that for any d,∑

u

nd,u ≤ Bd(F/Fq).

Suppose the following assumption is satisfied:∑
d,u

nd,udu ≥ 2ml + 3e+ g − 1,

where the constant e is defined as e = 2 if q = 2; e = 1 if q = 3, 4, 5; and
e = 0 if q ≥ 7. Then we have

µq(m, l) ≤
∑
d,u

nd,uµq(d, u).

Intuitively, the algorithm works as follows: if x, y are two elements in
Fqm [t]/(tl) to be multiplied, we lift them to functions fx, fy in some well-
chosen Riemann-Roch spaces of F , we evaluate these functions at various
places of F with multiplicities (more precisely, nd,u is the number of places
of degree d used with multiplicity u), we multiply these values locally, and
then we interpolate to find the product function fxfy, from which the product
xy is deduced.

Note that this algorithm is a non necessarily symmetric algorithm since
fx and fy can be lifted in two different Riemann-Roch spaces; so we obtain
bounds for µq(m, l), and not for µsymq (m, l).

1.4. New results established in this paper. In Section 2, we describe a
general method to obtain new uniform bounds for the bilinear complexity of
multiplication, by applying the algorithm recalled in Theorem 1.3 on towers
of function fields which satisfy some properties.
In Section 3, we recall some results about a completed Garcia-Stichtenoth
tower [15] studied in [2] and about the Garcia-Stichtenoth tower introduced
in [16]. For both towers, we study some of their properties which will be
useful in Section 4, to apply the general method on these towers. By doing
so, we obtain in Section 4, new uniform bounds on the (asymmetric) bilinear
complexity of multiplication in extensions of F2, of Fq2 and Fq for any prime
power q ≥ 4 and of Fp2 and Fp for any prime p ≥ 3, which are the currently
known best ones.
Last, in Section 5, we turn to the asymptotics of the bilinear complexity as
the degree of the extension goes to infinity. In some cases, the asymptotics of
our uniform bounds already improve on previously known results. But then
we also present some (non-uniform) bounds with even better asymptotics,
which appear to establish a new present state of the art.
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2. General algorithm used in this paper

Lemma 2.1. Let d be a positive integer. For any integer 0 < j ≤ d such that
j < 1

2 (q + 1 + ε(q)) if q ≥ 4, or j ≤ 1
2q + 1 if q ∈ {2, 3}, one has

µsymq (j)

j
≤ µsymq (d)

d
.

Proof. Suppose that the lemma is false. Then there exists an in-
teger 0 < j < d such that j < 1

2 (q + 1 + ε(q)) if q ≥ 4 (resp. j ≤ 1
2q + 1 if

q ∈ {2, 3}) and µsymq (j) > j
dµ

sym
q (d). Two cases can occur:

– either j ≤ q
2 + 1 (in particular, this is the case if q ∈ {2, 3}), and then

we have µsymq (j) > j
dµ

sym
q (d) ≥ j

d(2d− 1) > 2j − 1,
– or q

2 + 1 < j < 1
2 (q + 1 + ε(q)), so µsymq (d) ≥ 2d leads to

µsymq (j) > j
dµ

sym
q (d) ≥ 2j,

so both cases contradict the results recalled in Section 1.3. �

Proposition 2.2. Let q be a prime power and d be a positive integer such that
any proper divisor j of d satisfies j < 1

2 (q + 1 + ε(q)) if q ≥ 4, or j ≤ 1
2q + 1

if q ∈ {2, 3}. Let F/Fq be an algebraic function field of genus g ≥ 2 with Ni

places of degree i and let li be integers such that 0 ≤ li ≤ Ni, for all i|d.
Suppose that:

(i) there exists a place of degree n of F/Fq,
(ii)

∑
i|d i(Ni + li) ≥ 2n+ g + αq, where α2 = 5, α3 = α4 = α5 = 2 and

αq = −1 for q > 5.

Then

µq(n) ≤ 2µsymq (d)

d

(
n+

g

2

)
+ γq,d

∑
i|d

ili + κq,d, (3)

where γq,d := maxi|d
(µq(i,2)

i

)
− 2µsymq (d)

d and κq,d ≤
µsymq (d)

d (αq + d− 1).
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Proof. We apply Theorem 1.3 with ni,1 = Ni − li and ni,2 = li for any
i|d, and the others nj,u = 0. We choose l = 1 and m = n and we get

µq(n) ≤
∑
i|d

(
ni,1µq(i) + ni,2µq(i, 2)

)
=

∑
i|d

(
(Ni − li)µq(i) + liµq(i, 2)

)
≤

∑
i|d

(
(Ni − li)µsymq (i) + liµq(i, 2)

)
=

∑
i|d

((
Ni + li

)
µsymq (i) + li

(
µq(i, 2)− 2µsymq (i)

))
=

∑
i|d

(
i
(
Ni + li

)µsymq (i)

i
+ ili

(
µq(i, 2)− 2µsymq (i)

i

))
so

µq(n) ≤ µsymq (d)

d

∑
i|d

i
(
Ni + li

)
+
∑
i|d

(
i
(
Ni + li

)(µsymq (i)

i
− µsymq (d)

d

)

+ ili

(
µq(i, 2)− 2µsymq (i)

i

))
≤ µsymq (d)

d

∑
i|d

i
(
Ni + li

)
+
∑
i|d

ili

(
µq(i, 2)− µsymq (i)

i
− µsymq (d)

d

)

+
∑
i|d

iNi

(
µsymq (i)

i
− µsymq (d)

d

)

According to Lemma 2.1, we have µsymq (i)
i − µsymq (d)

d ≤ 0, so∑
i|d

iNi

(
µsymq (i)

i
− µsymq (d)

d

)
≤
∑
i|d

ili

(
µsymq (i)

i
− µsymq (d)

d

)
since 0 ≤ li ≤ Ni for any i|d. Moreover, w.l.o.g we can suppose from (ii) that∑

i|d i(Ni + li) = 2n+ g + αq + kd, with kd ∈ {0, . . . , d− 1}. We obtain:

µq(n) ≤ µsymq (d)

d
(2n+ g + αq + kd) +

∑
i|d

ili

(
µq(i, 2)

i
− 2µsymq (d)

d

)
which gives the result. �

The two following corollaries are straightforward and give explicit values
for Bound (3) obtained from the preceding proposition applied for the special
cases where d = 1, 2 or 4.
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Corollary 2.3. Let q ≥ 3 be a prime power and F/Fq be an algebraic func-
tion field of genus g ≥ 2 with Ni places of degree i and let li be integers such
that 0 ≤ li ≤ Ni. If
(i) there exists a place of degree n of F/Fq,
(ii) N1 + l1 + 2(N2 + l2) ≥ 2n+ g + αq, where α3 = α4 = α5 = 2 and

αq = −1 for q > 5,
then

µ3(n) ≤ 3n+
3

2
g +

3

2
(l1 + 2l2) +

9

2
,

for q = 4 or 5, µq(n) ≤ 3n+
3

2
g + l1 + 2l2 +

9

2
,

and for q > 5

µq(n) ≤ 3n+
3

2
g +

1

2
(l1 + 2l2), if q > 5

or in the special case where N2 = l2 = 0 (corresponding to d = 1 in Prop.
2.2)

µq(n) ≤ 2n+ g + l1 − 1.

Proof. To apply Proposition 2.2, let us recall that µsymq (2) = 3 and
µq(1, 2) ≤ 3 for any prime power q. Moreover according to [17, Example
4.4], one knows that µ3(2, 2) ≤ 9, µq(2, 2) ≤ 8 for q = 4 or 5 and µq(2, 2) ≤ 7
for q > 5. Hence, we can deduce that γ3,2 ≤ 9

2 − 3 = 3
2 , γq,2 ≤

8
2 − 3 = 1 for

q = 4 or 5, and γq,2 ≤ 7
2 − 3 = 1

2 and γq,1 ≤ 1 for q > 5. �

Corollary 2.4. Let F/F2 be an algebraic function field of genus g ≥ 2 with
Ni places of degree i and let li be integers such that 0 ≤ li ≤ Ni. If
(i) there exists a place of degree n of F/F2,
(ii)

∑
i|4 i(Ni + li) ≥ 2n+ g + 5,

then
µ2(n) ≤ 9

2

(
n+

g

2

)
+

3

2

∑
i|4

ili + 18.

Proof. We recall from [13, Example 6.1] that µsym2 (4) = 9 and from [17,
Example 4.4, Lemma 4.6] that µ2(2, 2) ≤ 9 and µ2(4, 2) ≤ 24, which gives
γ2,4 ≤ 24

4 −
2·9
4 = 3

2 . �

2.1. General method to obtain uniform bounds for µq(n). We con-
sider a tower F of function fields Fi/Fq of genus g(Fi) with B`(Fi) places of
degree `. Let d be an integer such that any proper divisor j of d satisfies
j < 1

2 (q + 1 + ε(q)) if q ≥ 4, or j ≤ 1
2q + 1 if q ∈ {2, 3}.

Suppose there exists an integer N such that, for all n ≥ N , there is an inte-
ger k(n) for which:
(A)

∑
j|d jBj(Fk(n)+1) ≥ 2n+ g(Fk(n)+1) + αq and Bn(Fk(n)+1) > 0,
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(B)
∑

j|d jBj(Fk(n)) < 2n+ g(Fk(n)) + αq but Bn(Fk(n)) > 0,
(C) g(Fk(n)) ≥ 2 (so g(Fk(n)+1) ≥ 2),
(D) ∆gk(n) := g(Fk(n)+1)− g(Fk(n)) ≥ λDk(n) with λ :=

dγq,d
µsymq (d)

,
(E)

∑
j|d jBj(Fk(n)) ≥ Dk(n),

where αq is as in Proposition 2.2 and Dk(n) is chosen to satisfy (D) and (E),
and is fixed for the tower F .
We also set

nl0 := sup
{
m ∈ N

∣∣∣ ∑
j|d

jBj(Fl) ≥ 2m+ g(Fl) + αq

}
.

Note that for the integer nk(n)0 , the following holds:∑
j|d

jBj(Fk(n)) + 2
(
n− nk(n)0

)
≥ 2n+ g(Fk(n)) + αq. (4)

Now, fix an integer n ≥ N and let k := k(n) satisfying Hypotheses (A)
to (E).
To multiply in Fqn , one has the following alternative:
(a) apply the algorithm on the step Fk+1, with Bj(Fk+1) places of degree j

for any j|d, all of them used with multiplicity 1; this is possible according
to (A) and (C). In this case, Proposition 2.2 gives the following bound
for µq(n):

µq(n) ≤ 2µsymq (d)

d

(
n+

g(Fk+1)

2

)
+
µsymq (d)

d
(αq + d− 1), (5)

(b) apply the algorithm on the step Fk, with Bj(Fk) places of degree j of
which lj used with multiplicity 2 and the remaining with multiplicity 1,
for any j|d, where the integers lj ≤ Bj(Fk) satisfy

∑
j|d lj ≥ 2(n− nk0);

for such integers lj , we can apply Proposition 2.2 according to (B)
and (4). In particular, if 2(n− nk0) + d− 1 ≤

∑
j|d jBj(Fk), then we

can choose the integers lj such that
∑

j|d jlj = 2(n− nk0) + ε for some
ε ∈ {0, . . . , d− 1}, and this is a suitable choice. In this case, Proposi-
tion 2.2 gives:

µq(n) ≤ 2µsymq (d)

d

(
n+

g(Fk)

2

)
+ γq,d

∑
i|d

ili +
µsymq (d)

d
(αq + d− 1). (6)

Note that we can rewrite (5) as follow:

µq(n) ≤ 2µsymq (d)

d

(
n+

g(Fk)

2

)
+
µsymq (d)

d
∆gk +

µsymq (d)

d
(αq + d− 1)

which makes clear that if γq,d
∑

i|d ili <
µsymq (d)

d ∆gk, then Case (b) gives a
better bound then Case (a).
So if 2(n− nk0) + d− 1 < Dk , then we can proceed as in Case (b) since
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according to Hypothesis (E) we can choose ε ∈ {0, . . . , d− 1} and lj for j|d
such that

∑
j|d jlj = 2(n− nk0) + ε. Moreover, we have

dγq,d
µsymq (d)

(2(n− nk0) + d− 1) < ∆gk

from Hypothesis (D), so γq,d
(
2(n− nk0) + ε

)
<

µsymq (d)
d ∆gk which means that

the bound obtained from Case (b) is sharper.
For x ∈ R+, x ≥ N , such that

∑
j|d jBj(Fk+1) ≥ 2 [x] + g(Fk+1) + αq and∑

j|d jBj(Fk+1) < 2 [x] + g(Fk) + αq, we define the function Φk(x) as fol-
lows:

Φk(x) =


2µsymq (d)

d

(
x+ g(Fk)

2

)
+ γq,d

(
2(x− nk0) + d− 1

)
+

µsymq (d)
d (αq + d− 1),

if 2(x− nk0) + d− 1 < Dk.
2µsymq (d)

d

(
x+

g(Fk+1)
2

)
+

µsymq (d)
d (αq + d− 1), else.

that is to say:

Φk(x) =


(
2µsymq (d)

d + 2γq,d

)
(x− nk0) +

µsymq (d)
d

(
2nk0 + g(Fk) + αq + d− 1

)
,

if 2(x− nk0) + d− 1 < Dk.
2µsymq (d)

d (x− nk0) +
µsymq (d)

d

(
2nk0 + g(Fk+1) + αq + d− 1

)
, else.

We define the function Φ for all x ≥ N as the minimum of the functions Φi

for which x is in the domain of Φi. This function is piecewise linear with two
kinds of pieces: those which have slope 2µsymq (d)

d and those which have slope
2µsymq (d)

d +2γq,d. Moreover, the graph of the function Φ lies below any straight
line that lies above all the points

(
ni0 + 1

2(Di − d+ 1),Φ(ni0 + 1
2(Di − d+ 1))

)
,

since these are the vertices of the graph. Let X := ni0 + 1
2(Di − d+ 1), then

Φ(X) =
2µsymq (d)

d

(
X +

g(Fi+1)

2

)
+
µsymq (d)

d
(αq + d− 1)

=
2µsymq (d)

d

(
1 +

g(Fi+1)

2X

)
X +

µsymq (d)

d
(αq + d− 1).

If we can give a bound for Φ(X) which is independent of i, then it will
provide a bound for µq(n) for all n ≥ N , since µq(n) ≤ Φ(n).

3. Good sequences of function fields

3.1. Garcia-Stichtenoth tower of Artin-Schreier algebraic function
field extensions. We present now a modified Garcia-Stichtenoth’s tower
(cf. [15], [2], [8]) having good properties. Let us consider a finite field Fq2
with q = pr ≥ 4 and r an integer. We consider the Garcia-Stichtenoth’s
elementary abelian tower T1 over Fq2 constructed in [15] and defined by the
sequence (F1, F2, F3, . . .) where

Fk+1 := Fk(zk+1)
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and zk+1 satisfies the equation:

zqk+1 + zk+1 = xq+1
k

with
xk := zk/xk−1 in Fk (for k ≥ 2).

Moreover F1 := Fq2(x1) is the rational function field over Fq2 and F2 the
Hermitian function field over Fq2 . Let us denote by gk the genus of Fk, we
recall the following formulae:

gk =

{
qk + qk−1 − q

k+1
2 − 2q

k−1
2 + 1 if k ≡ 1 mod 2,

qk + qk−1 − 1
2q

k
2
+1 − 3

2q
k
2 − q

k
2
−1 + 1 if k ≡ 0 mod 2.

(7)

Let us consider the completed Garcia-Stichtenoth tower

T2 = F1,0 ⊆ F1,1 ⊆ · · · ⊆ F1,r = F2,0 ⊆ F2,1 ⊆ · · · ⊆ F2,r ⊆ · · ·

considered in [2] such that Fk ⊆ Fk,s ⊆ Fk+1 for any integer s ∈ {0, . . . , r},
with Fk,0 = Fk and Fk,r = Fk+1. Recall that each extension Fk,s/Fk is
Galois of degree ps with full constant field Fq2 . Now, we consider the tower
studied in [8]

T3 = G1,0 ⊆ G1,1 ⊆ · · · ⊆ G1,r = G2,0 ⊆ G2,1 ⊆ · · · ⊆ G2,r ⊆ · · ·

defined over the constant field Fq and related to the tower T2 by

Fk,s = Fq2Gk,s for all k and s,

namely Fk,s/Fq2 is the constant field extension of Gk,s/Fq. Note that the
tower T3 is well defined by [8] and [6]. Moreover, we have the following result:

Proposition 3.1. Let q = pr ≥ 4 be a prime power. For all integers k ≥ 1
and s ∈ {0, . . . , r}, there exists a step Fk,s/Fq2 (respectively Gk,s/Fq) with
genus gk,s and Nk,s places of degree one in Fk,s/Fq2 (respectively
Nk,s := B1(Gk,s/Fq) + 2B2(Gk,s/Fq) where Bi(Gk,s/Fq) denote the number
of places of degree i in Gk,s/Fq) such that:
(1) Fk ⊆ Fk,s ⊆ Fk+1, where we set Fk,0 := Fk and Fk,r := Fk+1,

(respectively Gk ⊆ Gk,s ⊆ Gk+1, with Gk,0 := Gk and Gk,r := Gk+1),
(2)

(
gk − 1

)
ps + 1 ≤ gk,s ≤ gk+1

pr−s + 1,
(3) Nk,s ≥ (q2 − 1)qk−1ps.

Now, we are interested to search the descent of the definition field of the
tower T2/Fq2 from Fq2 to Fp if it is possible. In fact, one cannot establish a
general result but one can prove that it is possible in the case of character-
istic 2 which is given by the following result obtained in [9].

Proposition 3.2. Let p = 2. If q = p2, the descent of the definition field
of the tower T2/Fq2 from Fq2 to Fp is possible. More precisely, there exists a
tower T4/Fp defined over Fp given by a sequence:

T4/Fp = H1,0 ⊆ H1,1 ⊆ H1,2 = H2,0 ⊆ H2,1 ⊆ H2,2 = H3,0 ⊆ · · ·
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defined over the constant field Fp and related to the towers T1/Fq2 and T2/Fq
by

Fk,s = Fq2Hk,s for all k and s = 0, 1, 2,

Gk,s = FqHk,s for all k and s = 0, 1, 2,

namely Fk,s/Fq2 is the constant field extension of Gk,s/Fq and Hk,s/Fp and
Gk,s/Fq is the constant field extension of Hk,s/Fp.

Moreover, from [9], the following properties holds for this tower T3/Fp:

Proposition 3.3. Let q = p2 = 4. For any integers k ≥ 1 and s ∈ {0, 1, 2},
the algebraic function field Hk,s/Fp in the tower T3/Fp with genus
gk,s := g(Hk,s/Fp) and Bi(Hk,s/Fp) places of degree i, is such that:
(1) Hk/Fp ⊆ Hk,s/Fp ⊆ Hk+1/Fp with Hk,0 = Hk and Hk,2 = Hk+1,
(2) gk,s ≤ gk+1

p2−s + 1 with gk+1 ≤ qk+1 + qk,
(3) B1(Hk,s/Fp) + 2B2(Hk,s/Fp) + 4B4(Hk,s/Fp) ≥ (q2 − 1)qk−1ps.

3.2. Garcia-Stichtenoth tower of Kummer function field extensions.
In this section we present a Garcia-Stichtenoth’s tower (cf. [4]) having good
properties. Let Fq be a finite field of characteristic p ≥ 3. Let us consider
the tower T over Fq which is defined recursively by the following equation,
studied in [16]:

y2 =
x2 + 1

2x
.

The tower T/Fq is represented by the sequence of function fields
(L0, L1, L2, . . .) where Ln = Fq(x0, x1, . . . , xn) and x2i+1 = (x2i + 1)/2xi holds
for each i ≥ 0. Note that L0 is the rational function field. For any prime
number p ≥ 3, the tower T/Fp2 is asymptotically optimal over the field Fp2 ,
i.e. T/Fp2 reaches the Drinfeld-Vlăduţ bound. Moreover, for any integer k,
Lk/Fp2 is the constant field extension of Lk/Fp.

From [4], we know that the genus g(Lk) of the steps Lk/Fp2 and Lk/Fp is
given by:

g(Lk) =

{
2k+1 − 3 · 2

k
2 + 1 if k ≡ 0 mod 2,

2k+1 − 2 · 2
k+1
2 + 1 if k ≡ 1 mod 2.

(8)

and that the following bounds hold for the number of rational places in Lk
over Fp2 and for the number of places of degree one and two over Fp:

B1(Lk/Fp2) ≥ 2k+1(p− 1) (9)

and
B1(Lk/Fp) + 2B2(Lk/Fp) ≥ 2k+1(p− 1). (10)

3.3. Some preliminary results. Here we establish some technical results
about genus and number of places of each step of the towers T2/Fq2 , T3/Fq,
T4/F2, T/Fp2 and T/Fp defined in Sections 3.1 and 3.2. These results will
allow us to determine a suitable step of the tower to apply the algorithm on.
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3.3.1. About the Garcia-Stichtenoth’s tower of Artin-Schreier extensions. In
this section, q = pr is a power of the prime p. We denote by gk,s the genus of
the corresponding steps of the towers T2/Fq2 , T3/Fq and T4/F2; recall that
gk = gk,0 = gk−1,r. We also set

∆gk,s := gk,s+1 − gk,s.

Lemma 3.4. Let q ≥ 4. We have the following bounds for the genus of each
step of the towers T2/Fq2, T3/Fq and T4/F2 (we set q = 4 and p = r = 2 in
the special case of this tower):
i) gk > qk for all k ≥ 4,

moreover for the tower T4/F2, one has gk > pqk−1 for all k ≥ 3,
ii) gk ≤ qk−1(q + 1)−√qq

k
2 ,

iii) gk,s ≤ qk−1(q + 1)ps for all k ≥ 0 and s ∈ {0, . . . , r},

iv) gk,s ≤ qk(q+1)−q
k
2 (q−1)

pr−s for all k ≥ 2 and s ∈ {0, . . . , r}.

Proof.
i) According to Formula (7), we know that if k ≡ 1 mod 2, then

gk = qk + qk−1 − q
k+1
2 − 2q

k−1
2 + 1 = qk + q

k−1
2 (q

k−1
2 − q − 2) + 1.

Since q > 3 and k ≥ 4, we have q
k−1
2 − q − 2 > 0, thus gk > qk.

Else if k ≡ 0 mod 2, then

gk = qk+qk−1− 1

2
q

k
2
+1− 3

2
q

k
2 −q

k
2
−1+1 = qk+q

k
2
−1(q

k
2 − 1

2
q2− 3

2
q−1)+1.

Since q > 3 and k ≥ 4, we have q
k
2 − 1

2q
2 − 3

2q − 1 > 0, thus gk > qk.
Hence, the second bound for the tower T4/F2 is already proved for k ≥ 4,
and for k = 3, one has g3 − pq2 = q3 − 2q + 1− pq2 = 25 so this bound
holds also for k = 3.

ii) It follows from Formula (7) since for all k ≥ 1 we have 2q
k−1
2 ≥ 1 which

works out for odd k cases and 3
2q

k
2 + q

k
2
−1 ≥ 1 which works out for even

k cases, since 1
2q ≥

√
q.

iii) If s = r, then according to Formula (7), we have

gk,s = gk+1 ≤ qk+1 + qk = qk−1(q + 1)ps.

Else, s < r and Proposition 3.1 says that gk,s ≤ gk+1

pr−s + 1. Moreover,

since q
k+2
2 ≥ q and 1

2q
k+1
2

+1 ≥ q, we obtain gk+1 ≤ qk+1 + qk − q + 1
from Formula (7). Thus, we get

gk,s ≤
qk+1 + qk − q + 1

pr−s
+ 1

= qk−1(q + 1)ps − ps + ps−r + 1

≤ qk−1(q + 1)ps + ps−r

≤ qk−1(q + 1)ps since 0 ≤ ps−r < 1 and gk,s ∈ N.
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iv) It follows from ii) since Proposition 3.1 gives gk,s ≤ gk+1

pr−s + 1, so

gk,s ≤
qk(q+1)−√qq

k+1
2

pr−s + 1 which gives the result since pr−s ≤ q
k
2 for all

k ≥ 2.
�

Now we set Nk,s := B1(Fk,s/Fq2) = B1(Gk,s/Fq) + 2B2(Gk,s/Fq).

Lemma 3.5. Let Dk,s := (p− 1)psqk. For any k ≥ 1 and s ∈ {0, . . . , r − 1},
one has:
i) ∆gk,s ≥ Dk,s if k ≥ 4,
ii) Nk,s ≥ Dk,s.

Proof.
i) From Hurwitz Genus Formula, one has gk,s+1 − 1 ≥ p(gk,s − 1), so
gk,s+1 − gk,s ≥ (p− 1)(gk,s − 1). Applying s more times Hurwitz Genus
Formula, we get gk,s+1 − gk,s ≥ (p− 1)ps(gk − 1). Thus we have
gk,s+1 − gk,s ≥ (p− 1)psqk, from Lemma 3.4 i) since q > 3 and k ≥ 4.

ii) According to Proposition 3.1, one has

Nk,s ≥ (q2 − 1)qk−1ps

= (q + 1)(q − 1)qk−1ps

≥ (q − 1)qkps

≥ (p− 1)qkps.

�

Lemma 3.6. For all k ≥ 1 and s ∈ {0, . . . , r}, one has

sup
{
n ∈ N | Nk,s ≥ 2n+ gk,s − 1

}
≥ 1

2
(q + 1)qk−1ps(q − 2) +

1

2
.

Proof. From Proposition 3.1 and Lemma 3.4 iii), we get

Nk,s − gk,s + 1 ≥ (q2 − 1)qk−1ps − qk−1(q + 1)ps + 1

= (q + 1)qk−1ps
(
(q − 1)− 1

)
+ 1.

�

Now we recall similar technical results about genus and number of places
of each step of the tower T4/F2 defined in Section 3.1. In order to simplify
the presentation, we still use the variables p and q.

Lemma 3.7. Let q = p2 = 4. For all k ≥ 1 and s ∈ {0, 1}, we set
Dk,s := 3

2p
s+1qk−1. Then we have

i) ∆gk,s ≥ λDk,s, with λ :=
4γ2,4
µsym2 (4)

≤ 3
2 (see Section 2.1),

ii) B1(Hk,s/Fp) + 2B2(Hk,s/Fp) + 4B4(Hk,s/Fp) ≥ Dk,s.
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Proof.
i) We apply Genus Hurwitz Formula as in the proof of Lemma 3.5 to ob-

tain gk,s+1 − gk,s ≥ (p− 1)ps(gk − 1), so we get ∆gk,s ≥ (p− 1)ps+1qk−1

from Lemma 3.4 i) for k ≥ 3, which gives the results. For k = 1 and 2, we
check that the result is still valid since g1 = 0, g1,1 = 2, g2 = 6, g2,1 = 23
and g3 = 57.

ii) It is obvious since q2 − 1 > 3
2p and since from Proposition 3.3 we have

B1(Hk,s/F2) + 2B2(Hk,s/F2) + 4B4(Hk,s/F2) ≥ (q2 − 1)qk−1ps.
�

Lemma 3.8. Let q = p2 = 4. For all k ≥ 1 and s ∈ {0, 1, 2}, we have

sup
{
n ∈ N

∣∣∣ ∑
i=1,2,4

iBi(Hk,s/F2) ≥ 2n+ gk,s + 5
}
≥ 5psqk−1 − 5

2
.

Proof. From Proposition 3.3 and Lemma 3.4 iii), we get∑
i=1,2,4

iBi(Hk,s/F2)− gk,s − 5 ≥ (q2 − 1)qk−1ps − qk−1(q + 1)ps − 5

= psqk−1(q + 1)(q − 2)− 5

thus we get the result since q = 4. �

3.3.2. About the Garcia-Stichtenoth’s tower of Kummer extensions. In this
section, p is an odd prime. We denote by gk the genus of the step Lk and
we fix

Nk := B1(Lk/Fp2) = B1(Lk/Fp) + 2B2(Lk/Fp)
and

∆gk := gk+1 − gk.
The following lemma is straightforward according to Formulae (8):

Lemma 3.9. These two bounds hold for the genus of each step of the towers
T/Fp2 and T/Fp:

i) gk ≤ 2k+1 − 2 · 2
k+1
2 + 1,

ii) gk ≤ 2k+1.

Lemma 3.10. For all k ≥ 0, one has Nk ≥ ∆gk ≥ 2k+1 − 2
k+1
2 .

Proof. If k is even then ∆gk = 2k+1 − 2
k
2 , else ∆gk = 2k+1 − 2

k+1
2 so the

second equality holds trivially. Moreover, since p ≥ 3, the first one follows
from Bounds (9) and (10) which gives Nk ≥ 2k+2. �

Lemma 3.11. Let Lk be a step of one of the towers T/Fp2 or T/Fp. One
has:

sup
{
n ∈ N | Nk ≥ 2n+ gk − 1

}
≥ 2k(p− 2) + 2

k+1
2 , if p > 5
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and

sup
{
n ∈ N | Nk ≥ 2n+ gk + 2

}
≥ 2k(p− 2) + 2

k+1
2 − 1, if p = 5 or 3.

Proof. From Bounds (9) and (10) for Nk and Lemma 3.9 i), we get

Nk − gk + 1 ≥ 2k+1(p− 1)− (2k+1 − 2 · 2
k+1
2 + 1) + 1

= 2k+1(p− 2) + 2 · 2
k+1
2 .

Similarly, we get

Nk − gk − 2 ≥ 2k+1(p− 1)− (2k+1 − 2 · 2
k+1
2 + 1)− 2

= 2k+1(p− 2) + 2 · 2
k+1
2 − 3

which gives the result for p = 5 or 3. �

3.4. Existence of a good step in each tower. The following lemmas
prove the existence of a « good » step of the towers defined in Sections 3.1
and 3.2, that is to say a step that will be optimal for the bilinear complexity
of multiplication in a degree n extension of Fq, for any integer n.

Lemma 3.12. Let n ≥ 1
2

(
q2 + 1 + ε(q2)

)
be an integer. If q = pr ≥ 4, then

there exists a step Fk,s/Fq2 of the tower T2/Fq2 such that the following con-
ditions are verified:
(1) there exists a place of Fk,s/Fq2 of degree n,
(2) B1(Fk,s/Fq2) ≥ 2n+ gk,s − 1.
Moreover, the first step for which both Conditions (1) and (2) are verified is
the first step for which (2) is verified.

Proof. Note that n ≥ 13 since q ≥ 4 and n ≥ 1
2(q2 + 1 + 2q) ≥ 12.5.

First, we prove that for 1 ≤ k ≤ n− 2 and s ∈ {0, . . . , r}, there exists a
place of Fk,s/Fq2 of degree n. Indeed, for such an integer k, one has
qn−k−1 ≥ q > 2× 5

3 ≥ 2 q+1
q−1 , so q

n−kp−s > 2 q+1
q−1 since 1 ≥ p−s ≥ q−1, which

gives 2qk−1(q + 1)ps < qn−1(q − 1). Thus Lemma 3.4 iii) implies that
2gk,s + 1 ≤ qn−1(q − 1), which ensures that there exists a place of Fk,s/Fq2
of degree n. On the other hand, we prove that for k ≥ K(n) + 1, with
K(n) := logq

(
2n

(q+1)(q−2)

)
, Condition (2) is satisfied. Indeed, for such inte-

gers k, one has 2n
(q+1)(q−2) ≤ q

k−1, so 2n− 1 ≤ qk−1(q + 1)(q − 2)ps. Hence,
one gets 2n+ qk−1(q + 1)ps − 1 ≤ (q2 − 1)qk−1ps, which gives the result ac-
cording to Lemma 3.4 iii) and Proposition 3.1 (3). To conclude, note that
there exists at least one step Fk,s/Fq2 satisfying both Conditions (1) and
(2) since for n ≥ 13 and q ≥ 4, n−K(n)− 3 ≥ 13− (log4(2 · 13))− 3 > 1.
Moreover, remark that Condition (1) is satisfied from the step F1,0/Fq2 , so
the first step for which both Conditions (1) and (2) are verified is the first
step for which (2) is verified. �

This is a similar result for the tower T3/Fq:
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Lemma 3.13. Let n ≥ 1
2 (q + 1 + ε(q)) be an integer. If q = pr > 5,

then there exists a step Gk,s/Fq of the tower T3/Fq such that the following
conditions are verified:
(1) there exists a place of Gk,s/Fq of degree n,
(2) B1(Gk,s/Fq) + 2B2(Gk,s/Fq) ≥ 2n+ gk,s − 1.
Moreover, the first step for which both Conditions (1) and (2) are verified is
the first step for which (2) is verified.

Proof. Here we have n ≥ 7 since q ≥ 7 and n ≥ 1
2(q + 1 + ε(q)) ≥ 6.5.

First, we prove that for 1 ≤ k ≤ n
2 − 2 and s ∈ {0, . . . , r}, there exists a

place of Gk,s/Fq of degree n, by showing that 2gk,s + 1 ≤ q
n−1
2 (
√
q − 1). In-

deed, the function q 7→
√
q−1
q+1 · q

n−1
2
−k is increasing, so one has

√
q−1
q+1 · q

n−1
2
−k ≥

√
7−1
8 · 7

n−1
2
−k since q ≥ 7. Thus for any k ≤ n

2 − 2, we get
√
q−1
q+1 · q

n−1
2
−k ≥ 7

3
2 (
√
7−1)
8 > 2. It follows that 2qk(q + 1) < q

n−1
2 (
√
q − 1),

so 2qk−1(q + 1)ps < q
n−1
2 (
√
q − 1) since ps ≤ q, and we get

2qk−1(q + 1)ps + 1 ≤ q
n−1
2 (
√
q − 1) which ensures that there exists a place

of Fk,s/Fq2 of degree n, according to Lemma 3.4 iii). On the other hand,
we can proceed as the preceding proof to prove that for k ≥ K(n) + 1, with
K(n) := logq

(
2n

(q+1)(q−2)

)
, Condition (2) is satisfied. To conclude, note that

there exists at least one step Gk,s/Fq satisfying both Conditions (1) and (2)
since for n ≥ 7 and q ≥ 7, n

2 −K(n)− 3 ≥ 7
2 − log7

(
2×7
8×5

)
− 3 > 1. More-

over, remark that Condition (1) is satisfied from the step G1,0/Fq, so the
first step for which both Conditions (1) and (2) are verified is the first step
for which (2) is verified. �

In the special case where q = 4, Condition (2) needs to be slightly stronger:

Lemma 3.14. Let n ≥ 10 be an integer. If q = p2 = 4, then there exists
a step Gk,s/F4 of the tower T3/F4 such that the following conditions are
verified:
(1) there exists a place of Gk,s/F4 of degree n,
(2) B1(Gk,s/F4) + 2B2(Gk,s/F4) ≥ 2n+ gk,s + 2.
Moreover, the first step for which both Conditions (1) and (2) are verified is
the first step for which (2) is verified.

Proof. We can proceed as in the previous proof with minor changes.
Indeed, we first have that 2gk,s + 1 ≤ q

n−1
2 (
√
q − 1) for 1 ≤ k ≤ n−9/2

2 and
s ∈ {0, 1}, since in this case

√
q−1
q+1 · q

n−1
2
−k = 1

52n−1−2k ≥ 27/2

5 > 2, which
proves that Condition (1) is verified according to Lemma 3.4 iii). Moreover,
Condition (2) is satisfied for k ≥ K(n) + 1 with K(n) := log4

(
2n+2

(q+1)(q−2)

)
,

and one can check that n
2 −K(n)− 9

4 − 1 ≥ 10
2 −

9
4 − log4

(
20
10

)
> 1. �
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This is a similar result for the tower T4/F2:

Lemma 3.15. For any integer n ≥ 12 there exists a step Hk,s/F2 of the
tower T4/F2, with genus gk,s ≥ 2, such that both following conditions are
verified:
(1) there exists a place of degree n in Hk,s/F2,
(2) B1(Hk,s/F2) + 2B2(Hk,s/F2) + 4B4(Hk,s/F2) ≥ 2n+ gk,s + 5.
Moreover, the first step for which both Conditions (1) and (2) are verified is
the first step for which (2) is verified.

Proof. According to [7, Lemma 2.6], if n ≥ 12 then there exists a step
Hk,s/F2 of the tower T4/F2, with k ≥ 2 (so, in particular gk,s ≥ g2 = 6) such
that there exists a place of Hk,s/F2 of degree n and
B1(Hk,s/F2) + 2B2(Hk,s/F2) + 4B4(Hk,s/F2) ≥ 2n+ 2gk,s + 7. Thus we get
the result since 2n+ 2gk,s + 7 ≥ 2n+ gk,s + 5. �

This is a similar result for the tower T/Fp2 :

Lemma 3.16. Let p ≥ 3 and n ≥ 1
2

(
p2 + 1 + ε(p2)

)
. There exists a step

Lk/Fp2 of the tower T/Fp2 , with genus gk ≥ 2, such that the following con-
ditions are verified:
(1) there exists a place of Lk/Fp2 of degree n,
(2) B1(Lk/Fp2) ≥ 2n+ gk − 1.
Moreover the first step for which both Conditions (1) and (2) are verified is
the first step for which (2) is verified.

Proof. Note that n ≥ 1
2(32 + 1 + 2 · 3) = 8. We first prove that for all

integers k such that 2 ≤ k ≤ n− 2, we have 2gk + 1 ≤ pn−1(p− 1) , so Con-
dition (2) is satisfied. Indeed, for such an integer k, one has
2k+1 ≤ 2n−1 < pn−1, since p > 2. Thus 2 · 2k+1 < pn−1(p− 1) since 2 ≤ p− 1
and we get the result from Lemma 3.9 ii).
We prove now that for k ≥ log2

(
n
2

)
, Condition (2) is verified. Indeed, for

such an integer k, we have 2k+2 ≥ 2n, so 2k+2 ≥ 2n− 2 · 2
k+1
2 . Hence we get

2k+1(p− 2) ≥ 2n− 2 · 2
k+1
2 since p ≥ 3 and then we obtain

2k+1(p− 1) ≥ 2n+ 2k+1 − 2 · 2
k+1
2 . Thus we haveB1(Lk/Fp2) ≥ 2n+ gk − 1

according to Bound (9) and Lemma 3.9 i).
Hence, we have proved that for any integers n ≥ 8 and k ≥ 2 such that
log2

(
n
2

)
≤ k ≤ n− 2, both Conditions (1) and (2) are verified. Moreover,

note that for any n ≥ 8, there exists an integer k ≥ 2 in the interval[
log2

(
n
2

)
;n− 2

]
since n− 2− log2

(
n
2

)
≥ 6− log2(4) > 1. To conclude, re-

mark that Condition (1) is satisfied from the step L0/Fp2 , so the first step
for which both Conditions (1) and (2) are verified is the first step for which
(2) is verified; moreover, for k ≥ 2, gk ≥ g2 = 3. �

This is a similar result for the tower T/Fp:
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Lemma 3.17. Let p > 5 and n ≥ 1
2 (p+ 1 + ε(p)). There exists a step Lk/Fp

of the tower T/Fp, with genus gk ≥ 2, such that the following conditions are
verified:
(1) there exists a place of Lk/Fp of degree n,
(2) B1(Lk/Fp) + 2B2(Lk/Fp) ≥ 2n+ gk − 1.
Moreover the first step for which both Conditions (1) and (2) are verified is
the first step for which (2) is verified.

Proof. Note that n ≥ 1
2(7 + 1 + ε(7)) = 7. We first prove that for all in-

tegers k such that 2 ≤ k ≤ n− 3, we have 2gk + 1 ≤ p
n−1
2 (
√
p− 1), so Condi-

tion (1) is satisfied. Indeed, for such an integer k, one has
2k+2 ≤ 2n−1 = 4

n−1
2 , so 2 · 2k+1 < p

n−1
2 since p > 4. Hence we get

2 · 2k+1 < p
n−1
2 (
√
p− 1), which gives the result from Lemma 3.9 ii).

On the other hand, we proceed as the preceding proof to prove that for
k ≥ log2

(
n
2

)
, Condition (2) is verified. Moreover, note that for any n ≥ 7,

there exists an integer k ≥ 2 in the interval
[

log2
(
n
2

)
;n− 3

]
since

n− 3− log2
(
n
2

)
≥ 4− log2(3.5) > 1. To conclude, remark that Condition

(1) is satisfied from the step L0/Fp, so the first step for which both Con-
ditions (1) and (2) are verified is the first step for which (2) is verified;
moreover, for k ≥ 2, gk ≥ g2 = 3. �

This is a similar result for the tower T/Fp for p = 3 or 5:

Lemma 3.18. If p = 5 and n ≥ 1
2(5 + 1 + ε(5)) = 5 or p = 3 and n ≥ 11,

then there exists a step Lk/Fp of the tower T/Fp, with genus gk ≥ 2, such
that the following conditions are verified:
(1) there exists a place of Lk/Fp of degree n,
(2) B1(Lk/Fp) + 2B2(Lk/Fp) ≥ 2n+ gk,s + 2.
Moreover the first step for which both Conditions (1) and (2) are verified is
the first step for which (2) is verified.

Proof. We first consider the case p = 5 and n ≥ 5. Since p > 4, the
first part of the preceding proof shows that for all integers k such that
2 ≤ k ≤ n− 3, we have 2gk + 1 ≤ p

n−1
2 (
√
p− 1), so Condition (1) is satisfied.

Now, we prove that for k ≥ log2
(
n
3

)
, Condition (2) is satisfied. Indeed for

such an integer k, one has 2k+1(p− 2) + 2
k+3
2 ≥ 2n+ 2

√
2n
3 > 2n+ 3 since

n ≥ 5. Thus we get 2k+1(p− 1) > 2n+ (2k+1 − 2
k+3
2 + 1) + 2, which gives

the result according to Bound (9) and Lemma 3.9 i). Hence, we have proved
that for any integers n ≥ 5 and k ≥ 2 such that
log2

(
n
3

)
≤ k ≤ n− 3, both Conditions (1) and (2) are verified. Moreover,

note that for any n ≥ 5, there exists an integer k ≥ 2 in the interval[
log2

(
n
3

)
;n− 3

]
since n− 3− log2

(
n
3

)
≥ 2− log2

(
n
3

)
> 1. To conclude, re-

mark that Condition (1) is satisfied from the step L0/Fp2 , so the first step
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for which both Conditions (1) and (2) are verified is the first step for which
(2) is verified; moreover, for k ≥ 2, gk ≥ g2 = 3.

Now we consider the case p = 3 and n ≥ 11. We first prove that for all inte-
gers k such that 2 ≤ k ≤ log2(3

n−1
2 )− 3, we have 2gk + 1 ≤ 3

n−1
2 (
√

3− 1), so
Condition (1) is satisfied. Indeed, for such an integer k, one has
2k+3 ≤ 3

n−1
2 , so 2 · 2k+1 ≤ 1

2 · 3
n−1
2 < 3

n−1
2 (
√

3− 1) which gives the result
from Lemma 3.9 ii). On the other hand, we prove that for k ≥ log2(n), Con-
dition (2) is satisfied. Indeed for such an integer k, one has
2k+1(p− 2) + 2

k+3
2 = 2k+1 + 2

k+3
2 ≥ 2n+ 2

√
2n > 2n+ 3 since n ≥ 11. Thus

we get 2k+1(p− 1) > 2n+ (2k+1 − 2
k+3
2 + 1) + 2, which gives the result ac-

cording to Bound (9) and Lemma 3.9 i). Hence, we have proved that
for any integers n ≥ 11 and k ≥ 2 such that log2(n) ≤ k ≤ log2(3

n−1
2 )− 3,

both Conditions (1) and (2) are verified. Moreover, note that for any
n ≥ 11, there exists an integer k ≥ 2 in the interval

[
log2(n); log2(3

n−1
2 )− 3

]
since log2(3

n−1
2 )− 3− log2(n) ≥ log2(3

5)− 3− log2(11) > 1. To conclude,
remark that Condition (1) is satisfied from the step L0/Fp2 , so the first step
for which both Conditions (1) and (2) are verified is the first step for which
(2) is verified; moreover, for k ≥ 2, gk ≥ g2 = 3. �

4. New uniform bounds for the tensor rank

Theorem 4.1. For any integer n ≥ 2, we have

µ2(n) ≤ 189

22
n+ 18.

Proof. Let q := p2 = 4 and n ≥ 2. We apply the general method
described in Section 2.1 on the tower T4/Fq with d = 4, γ2,4 ≤ 3

2 (see Proof
of Corollary 2.4) and λ :=

4γ2,4
µsym2 (4)

≤ 2
3 , since µ

sym
2 (4) = 9.

We set X = nk,s0 + 1
2(Dk,s − 3) where Dk,s = 3

2p
s+1qk−1. Lemmas 3.7 and

3.15 ensure that Hypotheses (A) to (E) are satisfied, so we have:

Φ(X) =
2µsymq (d)

d

(
1 +

g(Hk,s+1)

2X

)
X +

µsymq (d)

d
(αq + d− 1)

=
9

2

(
1 +

g(Hk,s+1)

2X

)
X + 18.
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From Lemmas 3.4 iii) and 3.8 it follows that:

g(Hk,s+1)

2X
≤ qk−1(q + 1)ps+1

2nk,s0 +Dk,s − 3

≤ qk−1(q + 1)ps+1

5ps+1qk−1 − 5 + 3
2p
s+1qk−1 − 3

=
q + 1

13
2 −

8
qk−1ps+1

.

Since k ≥ 2, one has g(Hk,s+1)
2X ≤ 10

11 which leads to µq(n) ≤ 9
2

(
1 + 10

11

)
n+ 18

and gives the result. �

Theorem 4.2. Let p be a prime and q := pr. For any n ≥ 2, we have:

(a) if q ≥ 4, then

µq2(n) ≤ 2

(
1 +

p

q − 2 + (p− 1) q
q+1

)
n− 1,

(b) if p ≥ 3, then

µp2(n) ≤ 2

(
1 +

2

p− 1

)
n− 1,

(c) if q > 5, then

µq(n) ≤ 3

(
1 +

p

q − 2 + (p− 1) q
q+1

)
n,

(d) if p > 5, then

µp(n) ≤ 3

(
1 +

2

p− 1

)
n.

Proof.

(a) Let n ≥ 1
2(q2 + 1 + ε(q2)). We apply the general method described in

Section 2.1 on the tower T2/Fq2 with d = 1, γq2,1 ≤ 1 (see Proof of Corol-
lary 2.3) and λ :=

γq2,1
µsym
q2

(1)
≤ 1.

We set X = nk,s0 + 1
2Dk,s where Dk,s = (p− 1)psqk. Lemmas 3.5 and

3.12 ensure that Hypotheses (A) to (E) are satisfied. Note that we can
always choose a step Fk,s+1 with k ≥ 4 (so in particular gk,s+1 ≥ 2), even
if doing so we may have a non-optimal bound for some small n.
Thus we have:

Φ(X) = 2

(
1 +

g(Fk,s+1)

2X

)
X − 1



NEW UNIFORM AND ASYMPTOTIC UPPER BOUNDS ON THE TENSOR RANK 21

From Lemmas 3.4 iii) and 3.6 it follows that:

g(Fk,s+1)

2X
≤ qk−1(q + 1)ps+1

2nk,s0 +Dk,s

≤ qk−1(q + 1)ps+1

(q + 1)qk−1ps(q − 2) + (p− 1)psqk

=
p

q − 2 + (p− 1) q
q+1

which gives the result.

(b) Let n ≥ 1
2(p2 + 1 + ε(p2)). We apply the general method described in

Section 2.1 on the tower T/Fp2 with d = 1, γp2,1 ≤ 1 and λ :=
γp2,1
µp2 (1)

≤ 1.

We set X = nk0 + 1
2Dk where Dk = 2k+1 − 2

k+1
2 . Lemmas 3.10 and 3.16

ensure that Hypotheses (A) to (E) are satisfied.
Thus we have:

Φ(X) = 2

(
1 +

g(Lk+1)

2X

)
X − 1

From Lemmas 3.9 ii) and 3.11 it follows that:

g(Lk+1)

2X
≤ 2k+2

2nk,s0 +Dk,s

≤ 2k+2

2k+1(p− 2) + 2k+3
2 + 2k+1 − 2

k+1
2

=
2

p− 1 + 2−
k−1
2 − 2−

k+1
2

which gives the result, since 2−
k−1
2 − 2−

k+1
2 ≥ 0.

(c) Let n ≥ 1
2(q + 1 + ε(q)). We apply the general method described in Sec-

tion 2.1 on the tower T3/Fq with d = 2, γq,2 ≤ 1
2 (see Proof of Corollary

2.3) and λ :=
2γq,2
µsymq (2)

≤ 1
3 since µsymq (2) ≥ 3.

We set X = nk,s0 + 1
2(Dk,s − 1) where Dk,s = (p− 1)psqk. Lemmas 3.5

and 3.13 ensure that Hypotheses (A) to (E) are satisfied. Note that we
can always choose a step Fk,s+1 with k ≥ 4 (so in particular gk,s+1 ≥ 2),
even if doing so we may have a non-optimal bound for some small n.
Thus we have:

Φ(X) = 3

(
1 +

g(Gk,s+1)

2X

)
X.

We proceed as in (a) to get g(Gk,s+1)
2X ≤ p

q−2+(p−1) q
q+1

which gives the re-

sult. (Note that λ ≤ 1 so Lemma 3.5 implies that Hypothesis (D) of
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Section 2.1 is satisfied.)

(d) Let n ≥ 1
2(p+ 1 + ε(p)). We apply the general method described in Sec-

tion 2.1 on the tower T/Fp with d = 2, γp,2 ≤ 1
2 (see Proof of Corollary

2.3) and λ :=
2γp,2
3 ≤ 1

3 .
We set X = nk0 + 1

2(Dk − 1) where Dk = 2k+1 − 2
k+1
2 . Lemmas 3.10 and

3.17 ensure that Hypotheses (A) to (E) are satisfied.
Thus we have:

Φ(X) = 3

(
1 +

g(Lk+1)

2X

)
X

We proceed as in (b) to get g(Lk+1)
2X ≤ 2

p−1 which gives the result. (Note
that λ ≤ 1 so Lemma 3.10 implies that Hypothesis (D) of Section 2.1 is
satisfied.) �

Theorem 4.3. For any n ≥ 2, we have

µ3(n) ≤ 6n, µ4(n) ≤ 87

19
n, and µ5(n) ≤ 9

2
n.

Proof. For the bounds over F3 and F5, we proceed as in the proof of
Theorem 4.2 (d), since Lemma 3.18 ensures that the method is still valid in
this cases. Thus we get

µp(n) ≤ 3

(
1 +

2

p− 1

)
.

Note that with our method, we prove the bound for µ3(n) for n ≥ 11 accord-
ing to Lemma 3.18, but that this bound holds also for n ≤ 10, according to
Table 1 in [12].

The bound over F4 is obtained for n ≥ 10 with the same reasoning as in the
proof of Theorem 4.2 (c): let q := 4 and n ≥ 10 > 1

2(q + 1 + ε(q)), we apply
the general method described in Section 2.1 on the tower T3/F4 with d = 2,
γ4,2 ≤ 1 (see Proof of Corollary 2.3) and λ :=

2γ4,2
µsym4 (2)

≤ 2
3 since µsym4 (2) ≥ 3.

We setX = nk,s0 + 1
2(Dk,s − 1) whereDk,s = (p− 1)psqk−1. Lemmas 3.5 and

3.14 ensure that Hypotheses (A) to (E) are satisfied. Note that we can always
choose a step Fk,s+1 with k ≥ 4 (so in particular
gk,s+1 ≥ 2), even if doing so we may have a non-optimal bound for some
small n. Thus we have:

Φ(X) = 3

(
1 +

g(Gk,s+1)

2X

)
X

which gives g(Gk,s+1)
2X ≤ p

q−2+(p−1) q
q+1

. (Note that λ ≤ 1 so Lemma 3.5 im-

plies that Hypothesis (D) of Section 2.1 is satisfied.) To conclude, remark
that our bound is still valid for µ4(n) when 4.5 = 1

2(q + 1 + ε(q)) ≤ n < 10
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according to the known estimates for µsym4 (n) (recalled in [12, Table 1]). �

5. Asymptotic bounds

So far we gave upper bounds for the tensor rank of multiplication that hold
uniformly for any extension of finite fields. Now, introducing the quantity

Mq = lim sup
n→∞

µq(n)

n

and letting the degree of the extension go to infinity, these bounds then turn
into the following asymptotic estimates:

Proposition 5.1. We have

M2 ≤
189

22
≈ 8.591, M3 ≤ 6, M4 ≤

87

19
≈ 4.579, M5 ≤ 4.5,

and for p a prime and q = pr,

(a) if q ≥ 4, then Mq2 ≤ 2

(
1 + p

q−2+(p−1) q
q+1

)
,

(b) if p ≥ 3, then Mp2 ≤ 2
(

1 + 2
p−1

)
,

(c) if q > 5, then Mq ≤ 3

(
1 + p

q−2+(p−1) q
q+1

)
,

(d) if p > 5, then Mp ≤ 3
(

1 + 2
p−1

)
.

Proof. Let n→∞ in Theorems 4.1, 4.2, and 4.3. �

It is interesting to compare these asymptotic bounds with other known
similar results, such as the ones in [11]. We see the bound on M2 in Propo-
sition 5.1 is less sharp than the one in [11], while the bounds on M3, M4,
and M5 are better.

However, in such a comparison, one should keep in mind other features of
these various bounds. On one hand, the bounds in [11] hold not only for the
general bilinear complexity, but also for the symmetric bilinear complexity.
On the other hand, the constructions leading to Proposition 5.1 were not
aimed solely at maximizing asymptotics:

• they give uniform bounds, that hold for any given extension of finite
fields (so, not only asymptotically)
• they come from towers of curves given by explicit equations, so at
least in principle, it should be possible to write explicitly the multi-
plication algorithms reaching these bounds.

Now, if one relaxes these last two conditions, it is possible to give sub-
stantially better asymptotic bounds, especially for q small. For this we will
borrow the following lemma from [11] (with a very slight modification):
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Lemma 5.2 (compare [11], Lemma IV.4). Let q be a prime power and t ≥ 1
an integer such that qt is a square (so q itself is a square, or t is even).
Then there exists a family (Fs/Fq)s≥1 of function fields such that, as s goes
to infinity, we have:
(i) gs →∞
(ii) gs+1/gs → 1

(iii) Bt(Fs)/gs → (qt/2 − 1)/t

where gs is the genus of Fs/Fq.

For the details of the proof we refer to [11], where it is in fact credited
to Elkies, who proceeded by modifying the construction of Shimura curves
previously introduced in [19].

As a matter of fact, the version of the lemma originally stated in [11]
requires t even, while we allow t odd provided q is a square. However our
increased generality is only apparent, because it is readily seen that the
aforementioned proof of Elkies also gives the version we stated. Alternatively,
when q is a square, we can replace q and t with q1/2 and 2t to reduce to the
case t even, and conclude with a base field extension argument.

Theorem 5.3. Let q be a prime power and t ≥ 1 an integer such that qt ≥ 9
is a square. Then

Mq ≤
2µq(t)

t

(
1 +

1

qt/2 − 2

)
.

Proof. Let (Fs/Fq)s≥1 be the family of function fields given by Lemma 5.2
for q and t. Given an integer n, let s(n) be the smallest integer such that

tBt(Fs(n)/Fq)− gs(n) ≥ 2n+ 8.

Such an integer exists because of conditions (i) and (iii) in Lemma 5.2 and our
hypothesis qt ≥ 9, and it goes to infinity with n. More precisely, minimality
of s(n) and conditions (iii) and (ii) give, respectively:

• tBt(Fs(n)/Fq)− gs(n) ≥ 2n+ 8 > tBt(Fs(n)−1/Fq)− gs(n)−1
• tBt(Fs(n)/Fq) = (qt/2 − 1)gs(n) + o(gs(n))
• gs(n)−1 = gs(n) + o(gs(n))

hence the estimate

(qt/2 − 2)gs(n) + o(gs(n)) = 2n+ o(n)

which can be restated finally as

gs(n) =
2n

qt/2 − 2
+ o(n)

and

Bt(Fs(n)/Fq) =
2n

t

(
1 +

1

qt/2 − 2

)
+ o(n).

The estimate on gs(n) implies 2gs(n) + 1 ≤ q(n−1)/2(q1/2 − 1) as soon as n is
big enough. We can then use Theorem 1.3 with Fs(n)/Fq, setting m = n,
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l = 1, Nt = nt,1 = Bt(Fs(n)/Fq), and nd,u = 0 for all other values of d and
u. This gives

µq(n) ≤ µq(t)Bt(Fs(n)/Fq)
and the conclusion follows. �

Corollary 5.4. We have:

M2 ≤ 35/6 ≈ 5.833

M3 ≤ 36/7 ≈ 5.143

M4 ≤ 30/7 ≈ 4.286

Proof. Apply Theorem 5.3 with q = 2, t = 6, µ2(6) ≤ 15; with q = 3, t = 4,
µ3(4) ≤ 9; and with q = 4, t = 4, µ4(4) ≤ 8. �

Corollary 5.5. For any q ≥ 3 we have Mq ≤ 3
(

1 + 1
q−2

)
. In particular:

M5 ≤ 4

M7 ≤ 3.6

M8 ≤ 3.5

Proof. Apply Theorem 5.3 with t = 2, µq(2) = 3. �
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