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1. Introduction 1.1. Tensor rank of multiplication. Let K be a field and let A be a finite-dimensional K-algebra. We denote by m A the multiplication map of A. It can be seen as a K-bilinear map from A × A into A, or equivalently, as a linear map from the tensor product A A over K into A. One can also represent it by a tensor t A ∈ A A A where A denotes the dual of A over K. Hence the product of two elements x and y of A is the convolution of this tensor with x ⊗ y ∈ A A. If

t A = λ l=1 a l ⊗ b l ⊗ c l (1) 
where a l ∈ A , b l ∈ A , c l ∈ A, then

x • y = λ l=1 a l (x)b l (y)c l . (2) 
Every expression ( 2) is called a bilinear multiplication algorithm U for A over K. The integer λ is called the bilinear complexity µ(U) of U.

Let us set µ

K (A) = min U µ(U),
where U is running over all bilinear multiplication algorithms for A over K. Then µ K (A) corresponds to the minimum possible number of summands in any tensor decomposition of type [START_REF] Ballet | Curves with many points and multiplication complexity in any extension of Fq[END_REF], which is the rank of the tensor of multiplication in A over K. The tensor rank µ K (A) is also called the bilinear complexity of multiplication in A over K.

When the decomposition (1) is symmetric, i.e. a l = b l for all l = 1, . . . , λ, we say that the corresponding algorithm U is a symmetric bilinear multiplication algorithm. If we focus on such algorithms, then the corresponding complexity is called the symmetric bilinear complexity of multiplication in A over K and we set:

µ sym K (A) = min U sym µ(U sym ),
with U sym running over all symmetric bilinear multiplication algorithms for A over K. Note that one has

µ K (A) ≤ µ sym K (A).
In this work we will be mainly interested in the case where K = F q is the finite field with q elements (where q is a prime power) and A = F q n is the extension field of degree n of F q . We then set µ q (n) = µ Fq (F q n ).

However for technical reasons we will also need the quantities µ q (m, l) = µ Fq (F q m [t]/(t l )) so that µ q (n) = µ q (n, 1).

Similarly, we set µ sym q (n) = µ sym Fq (F q n ) and µ sym q (m, l) = µ sym Fq (F q m [t]/(t l )).

1.2. Notations. Let F/F q be an algebraic function field of one variable of genus g, with constant field F q , associated to a curve X defined over F q .

For any place P we define F P to be the residue class field of P and O P its valuation ring. Every element t ∈ P such that P = tO P is called a local parameter for P and we denote by v P a discrete valuation associated to the place P of F/F q . Recall that this valuation does not depend on the choice of the local parameter. Let f ∈ F \{0}, we denote by (f ) := P v P (f )P where P is running over all places in F/F q , the principal divisor of f . If D is a divisor then L(D) = {f ∈ F/F q ; D + (f ) ≥ 0} ∪ {0} is a vector space over F q whose dimension dim D is given by the Riemann-Roch Theorem. The degree of a divisor D = P a P P is defined by deg D = P a P deg P where deg P is the dimension of F P over F q . The order of a divisor D = P a P P at P is the integer a P denoted by ord P D. The support of a divisor D is the set supp D of the places P such that ord P D = 0. Two divisors D and D are said to be equivalent if D = D + (x) for an element x ∈ F \{0}. We denote by B k (F/F q ) the number of places of degree k of F and by g(F/F q ) the genus of F/F q . 1.3. Known results. The bilinear complexity µ q (n) of the multiplication in the n-degree extension of a finite field F q is known for certain values of n. In particular, S. Winograd [START_REF] Winograd | On multiplication in algebraic extension fields[END_REF] and H. de Groote [START_REF] Hans | Characterization of division algebras of minimal rank and the structure of their algorithm varieties[END_REF] have shown that this complexity is ≥ 2n -1, with equality holding if and only if n ≤ 1 2 q + 1. Moreover, in this case one has µ sym q (n) = µ q (n). Using the principle of the D.V. and G.V. Chudnovsky algorithm [START_REF] Chudnovsky | Algebraic complexities and algebraic curves over finite fields[END_REF] applied to elliptic curves, M.A. Shokrollahi has shown in [START_REF] Shokrollahi | Optimal algorithms for multiplication in certain finite fields using algebraic curves[END_REF] that the symmetric bilinear complexity of multiplication is equal to 2n for 1 2 q + 1 < n < 1 2 (q + 1 + (q)) where is the function defined by: (q) = the greatest integer ≤ 2 √ q prime to q, if q is not a perfect square 2 √ q, if q is a perfect square.

Moreover, U. Baum and M.A. Shokrollahi have succeeded in [START_REF] Baum | An optimal algorithm for multiplication in F256/F4[END_REF] to construct effective optimal algorithms of type Chudnovsky in the elliptic case.

Recently in [START_REF] Ballet | Curves with many points and multiplication complexity in any extension of Fq[END_REF], [START_REF] Ballet | Low increasing tower of algebraic function fields and bilinear complexity of multiplication in any extension of Fq[END_REF], [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF], [START_REF] Ballet | On an application of the definition field descent of a tower of function fields[END_REF], [START_REF] Ballet | On the existence of non-special divisors of degree g and g -1 in algebraic function fields over Fq[END_REF], [START_REF] Ballet | On the bounds of the bilinear complexity of multiplication in some finite fields[END_REF] and [START_REF] Ballet | On the tensor rank of the multiplication in the finite fields[END_REF] the study made by M.A. Shokrollahi has been generalized to algebraic function fields of genus g.

Let us recall that the original algorithm of D.V. and G.V. Chudnovsky introduced in [START_REF] Chudnovsky | Algebraic complexities and algebraic curves over finite fields[END_REF] leads to the following theorem: Theorem 1.1. Let q = p r be a power of the prime p. The symmetric tensor rank µ sym q (n) of multiplication in any finite field F q n is linear with respect to the extension degree; more precisely, there exists a constant C q such that: µ sym q (n) ≤ C q n. Moreover, one can give explicit values for C q : Proposition 1.2. The best known values for the constant C q defined in the previous theorem are:

C q =                      if q = 2 then 22 [12] and [7] else if q = 3 then 27 [1] else if q = p ≥ 5 then 3(1 + 4 q-3 ) [4] else if q = p 2 ≥ 25 then 2(1 + 2 √ q-3 ) [4] else if q = p 2k ≥ 16 then 2(1 + p √ q-3 ) [2] else if q ≥ 16 then 3(1 + 2p q-3 ) [8], [6] and [5] else if q > 3 then 6(1 + p q-3 ) [2].
In order to obtain these good estimates for the constant C q , S. Ballet has given in [START_REF] Ballet | Curves with many points and multiplication complexity in any extension of Fq[END_REF] some easy to verify conditions allowing the use of the D.V. and G.V. Chudnovsky algorithm. Then S. Ballet and R. Rolland have generalized in [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF] the algorithm using places of degree one and two.

Recently, various generalizations of this algorithm were introduced in [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF]. We will use the version that can be found in [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF]Proposition 5.7] and which, expressed in the language of function fields, reads as follows:

Theorem 1.3. Let F/F q be an algebraic function field of genus g ≥ 2, and let m, l ≥ 1 be two integers.

Suppose that F admits a place of degree m (a sufficient condition for this is 2g + 1 ≤ q (m-1)/2 (q 1/2 -1)).

Consider now a collection of integers n d,u ≥ 0 (for d, u ≥ 1), such that almost all of them are zero, and that for any d,

u n d,u ≤ B d (F/F q ).
Suppose the following assumption is satisfied:

d,u n d,u du ≥ 2ml + 3e + g -1,
where the constant e is defined as e = 2 if q = 2; e = 1 if q = 3, 4, 5; and e = 0 if q ≥ 7. Then we have

µ q (m, l) ≤ d,u n d,u µ q (d, u).
Intuitively, the algorithm works as follows: if x, y are two elements in F q m [t]/(t l ) to be multiplied, we lift them to functions f x , f y in some wellchosen Riemann-Roch spaces of F , we evaluate these functions at various places of F with multiplicities (more precisely, n d,u is the number of places of degree d used with multiplicity u), we multiply these values locally, and then we interpolate to find the product function f x f y , from which the product xy is deduced.

Note that this algorithm is a non necessarily symmetric algorithm since f x and f y can be lifted in two different Riemann-Roch spaces; so we obtain bounds for µ q (m, l), and not for µ sym q (m, l).

1.4. New results established in this paper. In Section 2, we describe a general method to obtain new uniform bounds for the bilinear complexity of multiplication, by applying the algorithm recalled in Theorem 1.3 on towers of function fields which satisfy some properties.

In Section 3, we recall some results about a completed Garcia-Stichtenoth tower [START_REF] Garcia | A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound[END_REF] studied in [START_REF] Ballet | Low increasing tower of algebraic function fields and bilinear complexity of multiplication in any extension of Fq[END_REF] and about the Garcia-Stichtenoth tower introduced in [START_REF] Garcia | On tame towers over finite fields[END_REF]. For both towers, we study some of their properties which will be useful in Section 4, to apply the general method on these towers. By doing so, we obtain in Section 4, new uniform bounds on the (asymmetric) bilinear complexity of multiplication in extensions of F 2 , of F q 2 and F q for any prime power q ≥ 4 and of F p 2 and F p for any prime p ≥ 3, which are the currently known best ones. Last, in Section 5, we turn to the asymptotics of the bilinear complexity as the degree of the extension goes to infinity. In some cases, the asymptotics of our uniform bounds already improve on previously known results. But then we also present some (non-uniform) bounds with even better asymptotics, which appear to establish a new present state of the art.

General algorithm used in this paper

Lemma 2.1. Let d be a positive integer. For any integer 0 < j ≤ d such that j < 1 2 (q + 1 + (q)) if q ≥ 4, or j ≤ 1 2 q + 1 if q ∈ {2, 3}, one has

µ sym q (j) j ≤ µ sym q (d) d .
Proof.

Suppose that the lemma is false. Then there exists an integer 0 < j < d such that j < 1 2 (q + 1 + (q)) if q ≥ 4 (resp. j ≤ 1 2 q + 1 if q ∈ {2, 3}) and µ sym q (j) > j d µ sym q (d). Two cases can occur:

-either j ≤ q 2 + 1 (in particular, this is the case if q ∈ {2, 3}), and then we have µ sym q (j)

> j d µ sym q (d) ≥ j d (2d -1) > 2j -1, -or q 2 + 1 < j < 1 2 (q + 1 + (q)), so µ sym q (d) ≥ 2d leads to µ sym q (j) > j d µ sym q (d) ≥ 2j,
so both cases contradict the results recalled in Section 1.3.

Proposition 2.2. Let q be a prime power and d be a positive integer such that any proper divisor j of d satisfies j < 1 2 (q + 1 + (q)) if q ≥ 4, or j ≤ 1 2 q + 1 if q ∈ {2, 3}. Let F/F q be an algebraic function field of genus g ≥ 2 with N i places of degree i and let l i be integers such that 0 ≤ l i ≤ N i , for all i|d. Suppose that: (i) there exists a place of degree n of F/F q , (ii) i|d i(N i + l i ) ≥ 2n + g + α q , where α 2 = 5, α 3 = α 4 = α 5 = 2 and α q = -1 for q > 5.

Then

µ q (n) ≤ 2µ sym q (d) d n + g 2 + γ q,d i|d il i + κ q,d , (3) 
where γ q,d := max i|d µq(i,2) i -

2µ sym q (d) d and κ q,d ≤ µ sym q (d) d (α q + d -1).
Proof. We apply Theorem 1.3 with n i,1 = N i -l i and n i,2 = l i for any i|d, and the others n j,u = 0. We choose l = 1 and m = n and we get

µ q (n) ≤ i|d n i,1 µ q (i) + n i,2 µ q (i, 2) = i|d (N i -l i )µ q (i) + l i µ q (i, 2) ≤ i|d (N i -l i )µ sym q (i) + l i µ q (i, 2) = i|d N i + l i µ sym q (i) + l i µ q (i, 2) -2µ sym q (i) = i|d i N i + l i µ sym q (i) i + il i µ q (i, 2) -2µ sym q (i) i so µ q (n) ≤ µ sym q (d) d i|d i N i + l i + i|d i N i + l i µ sym q (i) i - µ sym q (d) d + il i µ q (i, 2) -2µ sym q (i) i ≤ µ sym q (d) d i|d i N i + l i + i|d il i µ q (i, 2) -µ sym q (i) i - µ sym q (d) d + i|d iN i µ sym q (i) i - µ sym q (d) d
According to Lemma 2.1, we have

µ sym q (i) i - µ sym q (d) d ≤ 0, so i|d iN i µ sym q (i) i - µ sym q (d) d ≤ i|d il i µ sym q (i) i - µ sym q (d) d since 0 ≤ l i ≤ N i for any i|d. Moreover, w.l.o.g we can suppose from (ii) that i|d i(N i + l i ) = 2n + g + α q + k d , with k d ∈ {0, . . . , d -1}.
We obtain:

µ q (n) ≤ µ sym q (d) d (2n + g + α q + k d ) + i|d il i µ q (i, 2) i - 2µ sym q (d) d
which gives the result.

The two following corollaries are straightforward and give explicit values for Bound (3) obtained from the preceding proposition applied for the special cases where d = 1, 2 or 4.

Corollary 2.3. Let q ≥ 3 be a prime power and F/F q be an algebraic function field of genus g ≥ 2 with N i places of degree i and let l i be integers such that 0 ≤ l i ≤ N i . If (i) there exists a place of degree n of F/F q , (ii)

N 1 + l 1 + 2(N 2 + l 2 ) ≥ 2n + g + α q , where α 3 = α 4 = α 5 = 2 and α q = -1 for q > 5, then µ 3 (n) ≤ 3n + 3 2 g + 3 2 (l 1 + 2l 2 ) + 9 2 , for q = 4 or 5, µ q (n) ≤ 3n + 3 2 g + l 1 + 2l 2 + 9 2 ,
and for q > 5

µ q (n) ≤ 3n + 3 2 g + 1 2 (l 1 + 2l 2 ), if q > 5
or in the special case where

N 2 = l 2 = 0 (corresponding to d = 1 in Prop. 2.2) µ q (n) ≤ 2n + g + l 1 -1.
Proof.

To apply Proposition 2.2, let us recall that µ sym q (2) = 3 and µ q (1, 2) ≤ 3 for any prime power q. Moreover according to [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF]Example 4.4], one knows that µ 3 (2, 2) ≤ 9, µ q (2, 2) ≤ 8 for q = 4 or 5 and µ q (2, 2) ≤ 7 for q > 5. Hence, we can deduce that γ 3,2 ≤ 9 2 -3 = 3 2 , γ q,2 ≤ 8 2 -3 = 1 for q = 4 or 5, and γ q,2 ≤ 7 2 -3 = 1 2 and γ q,1 ≤ 1 for q > 5.

Corollary 2.4. Let F/F 2 be an algebraic function field of genus g ≥ 2 with N i places of degree i and let l i be integers such that 0

≤ l i ≤ N i . If (i) there exists a place of degree n of F/F 2 , (ii) i|4 i(N i + l i ) ≥ 2n + g + 5, then µ 2 (n) ≤ 9 2 n + g 2 + 3 2 i|4 il i + 18.
Proof. We recall from [13, Example 6.1] that µ sym 2 (4) = 9 and from [17, Example 4.4, Lemma 4.6] that µ 2 (2, 2) ≤ 9 and µ 2 (4, 2) ≤ 24, which gives

γ 2,4 ≤ 24 4 -2•9 4 = 3 2 .
2.1. General method to obtain uniform bounds for µ q (n). We consider a tower F of function fields F i /F q of genus g(F i ) with B (F i ) places of degree . Let d be an integer such that any proper divisor j of d satisfies j < 1 2 (q + 1 + (q)) if q ≥ 4, or j ≤ 1 2 q + 1 if q ∈ {2, 3}. Suppose there exists an integer N such that, for all n ≥ N , there is an integer k(n) for which:

(A) j|d jB j (F k(n)+1 ) ≥ 2n + g(F k(n)+1 ) + α q and B n (F k(n)+1 ) > 0, (B) j|d jB j (F k(n) ) < 2n + g(F k(n) ) + α q but B n (F k(n) ) > 0, (C) g(F k(n) ) ≥ 2 (so g(F k(n)+1 ) ≥ 2), (D) ∆g k(n) := g(F k(n)+1 ) -g(F k(n) ) ≥ λD k(n) with λ := dγ q,d µ sym q (d) , (E) j|d jB j (F k(n) ) ≥ D k(n)
, where α q is as in Proposition 2.2 and D k(n) is chosen to satisfy (D) and (E), and is fixed for the tower F. We also set

n l 0 := sup m ∈ N j|d jB j (F l ) ≥ 2m + g(F l ) + α q .
Note that for the integer n k(n) 0

, the following holds:

j|d jB j (F k(n) ) + 2 n -n k(n) 0 ≥ 2n + g(F k(n) ) + α q . (4) 
Now, fix an integer n ≥ N and let k := k(n) satisfying Hypotheses (A) to (E). To multiply in F q n , one has the following alternative: (a) apply the algorithm on the step F k+1 , with B j (F k+1 ) places of degree j for any j|d, all of them used with multiplicity 1; this is possible according to (A) and (C). In this case, Proposition 2.2 gives the following bound for µ q (n):

µ q (n) ≤ 2µ sym q (d) d n + g(F k+1 ) 2 + µ sym q (d) d (α q + d -1), (5) 
(b) apply the algorithm on the step F k , with B j (F k ) places of degree j of which l j used with multiplicity 2 and the remaining with multiplicity 1, for any j|d, where the integers l j ≤ B j (F k ) satisfy j|d l j ≥ 2(n -n k 0 ); for such integers l j , we can apply Proposition 2.2 according to (B) and (4). In particular, if 2(n -n k 0 ) + d -1 ≤ j|d jB j (F k ), then we can choose the integers l j such that j|d jl j = 2(n -n k 0 ) + for some ∈ {0, . . . , d -1}, and this is a suitable choice. In this case, Proposition 2.2 gives:

µ q (n) ≤ 2µ sym q (d) d n + g(F k ) 2 + γ q,d i|d il i + µ sym q (d) d (α q + d -1). ( 6 
)
Note that we can rewrite (5) as follow:

µ q (n) ≤ 2µ sym q (d) d n + g(F k ) 2 + µ sym q (d) d ∆g k + µ sym q (d) d (α q + d -1)
which makes clear that if γ q,d i|d il i <

µ sym q (d) d ∆g k , then Case (b) gives a better bound then Case (a). So if 2(n -n k 0 ) + d -1 < D k
, then we can proceed as in Case (b) since according to Hypothesis (E) we can choose ∈ {0, . . . , d -1} and l j for j|d such that j|d jl j = 2(n -n k 0 ) + . Moreover, we have

dγ q,d µ sym q (d) (2(n -n k 0 ) + d -1) < ∆g k from Hypothesis (D), so γ q,d 2(n -n k 0 ) + < µ sym q (d) d ∆g k which means that the bound obtained from Case (b) is sharper. For x ∈ R + , x ≥ N , such that j|d jB j (F k+1 ) ≥ 2 [x] + g(F k+1
) + α q and j|d jB j (F k+1 ) < 2 [x] + g(F k ) + α q , we define the function Φ k (x) as follows:

Φ k (x) =        2µ sym q (d) d x + g(F k ) 2 + γ q,d 2(x -n k 0 ) + d -1 + µ sym q (d) d (α q + d -1), if 2(x -n k 0 ) + d -1 < D k . 2µ sym q (d) d x + g(F k+1 ) 2 + µ sym q (d) d (α q + d -1), else.
that is to say:

Φ k (x) =      2µ sym q (d) d + 2γ q,d (x -n k 0 ) + µ sym q (d) d 2n k 0 + g(F k ) + α q + d -1 , if 2(x -n k 0 ) + d -1 < D k . 2µ sym q (d) d (x -n k 0 ) + µ sym q (d) d 2n k 0 + g(F k+1 ) + α q + d -1 , else.
We define the function Φ for all x ≥ N as the minimum of the functions Φ i for which x is in the domain of Φ i . This function is piecewise linear with two kinds of pieces: those which have slope

2µ sym q (d) d
and those which have slope

2µ sym q (d) d
+2γ q,d . Moreover, the graph of the function Φ lies below any straight line that lies above all the points

n i 0 + 1 2 (D i -d + 1), Φ(n i 0 + 1 2 (D i -d + 1
)) , since these are the vertices of the graph. Let X :

= n i 0 + 1 2 (D i -d + 1), then Φ(X) = 2µ sym q (d) d X + g(F i+1 ) 2 + µ sym q (d) d (α q + d -1) = 2µ sym q (d) d 1 + g(F i+1 ) 2X X + µ sym q (d) d (α q + d -1).
If we can give a bound for Φ(X) which is independent of i, then it will provide a bound for µ q (n) for all n ≥ N , since µ q (n) ≤ Φ(n).

Good sequences of function fields

3.1. Garcia-Stichtenoth tower of Artin-Schreier algebraic function field extensions. We present now a modified Garcia-Stichtenoth's tower (cf. [START_REF] Garcia | A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound[END_REF], [START_REF] Ballet | Low increasing tower of algebraic function fields and bilinear complexity of multiplication in any extension of Fq[END_REF], [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF]) having good properties. Let us consider a finite field F q 2 with q = p r ≥ 4 and r an integer. We consider the Garcia-Stichtenoth's elementary abelian tower T 1 over F q 2 constructed in [START_REF] Garcia | A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound[END_REF] and defined by the sequence (F 1 , F 2 , F 3 , . . .) where

F k+1 := F k (z k+1 )
and z k+1 satisfies the equation:

z q k+1 + z k+1 = x q+1 k with x k := z k /x k-1 in F k (for k ≥ 2).
Moreover F 1 := F q 2 (x 1 ) is the rational function field over F q 2 and F 2 the Hermitian function field over F q 2 . Let us denote by g k the genus of F k , we recall the following formulae:

g k = q k + q k-1 -q k+1 2 -2q k-1 2 + 1 if k ≡ 1 mod 2, q k + q k-1 -1 2 q k 2 +1 -3 2 q k 2 -q k 2 -1 + 1 if k ≡ 0 mod 2. ( 7 
)
Let us consider the completed Garcia-Stichtenoth tower

T 2 = F 1,0 ⊆ F 1,1 ⊆ • • • ⊆ F 1,r = F 2,0 ⊆ F 2,1 ⊆ • • • ⊆ F 2,r ⊆ • • • considered in [2] such that F k ⊆ F k,s ⊆ F k+1 for any integer s ∈ {0, . . . , r}, with F k,0 = F k and F k,r = F k+1 . Recall that each extension F k,s /F k is
Galois of degree p s with full constant field F q 2 . Now, we consider the tower studied in [8]

T 3 = G 1,0 ⊆ G 1,1 ⊆ • • • ⊆ G 1,r = G 2,0 ⊆ G 2,1 ⊆ • • • ⊆ G 2,r ⊆ • • •
defined over the constant field F q and related to the tower T 2 by F k,s = F q 2 G k,s for all k and s, namely F k,s /F q 2 is the constant field extension of G k,s /F q . Note that the tower T 3 is well defined by [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF] and [START_REF] Ballet | On an application of the definition field descent of a tower of function fields[END_REF]. Moreover, we have the following result:

Proposition 3.1. Let q = p r ≥ 4 be a prime power. For all integers k ≥ 1 and s ∈ {0, . . . , r}, there exists a step F k,s /F q 2 (respectively G k,s /F q ) with genus g k,s and N k,s places of degree one in F k,s /F q 2 (respectively

N k,s := B 1 (G k,s /F q ) + 2B 2 (G k,s /F q )
where B i (G k,s /F q ) denote the number of places of degree i in G k,s /F q ) such that:

(1)

F k ⊆ F k,s ⊆ F k+1 , where we set F k,0 := F k and F k,r := F k+1 , (respectively G k ⊆ G k,s ⊆ G k+1 , with G k,0 := G k and G k,r := G k+1 ), (2) g k -1 p s + 1 ≤ g k,s ≤ g k+1 p r-s + 1, (3) N k,s ≥ (q 2 -1)q k-1 p s .
Now, we are interested to search the descent of the definition field of the tower T 2 /F q 2 from F q 2 to F p if it is possible. In fact, one cannot establish a general result but one can prove that it is possible in the case of characteristic 2 which is given by the following result obtained in [START_REF] Ballet | Families of curves over any finite field attaining the generalized Drinfeld-Vladut bound[END_REF]. Proposition 3.2. Let p = 2. If q = p 2 , the descent of the definition field of the tower T 2 /F q 2 from F q 2 to F p is possible. More precisely, there exists a tower T 4 /F p defined over F p given by a sequence:

T 4 /F p = H 1,0 ⊆ H 1,1 ⊆ H 1,2 = H 2,0 ⊆ H 2,1 ⊆ H 2,2 = H 3,0 ⊆ • • •
defined over the constant field F p and related to the towers T 1 /F q 2 and T 2 /F q by F k,s = F q 2 H k,s for all k and s = 0, 1, 2, G k,s = F q H k,s for all k and s = 0, 1, 2, namely F k,s /F q 2 is the constant field extension of G k,s /F q and H k,s /F p and G k,s /F q is the constant field extension of H k,s /F p . Moreover, from [START_REF] Ballet | Families of curves over any finite field attaining the generalized Drinfeld-Vladut bound[END_REF], the following properties holds for this tower T 3 /F p : Proposition 3.3. Let q = p 2 = 4. For any integers k ≥ 1 and s ∈ {0, 1, 2}, the algebraic function field H k,s /F p in the tower T 3 /F p with genus g k,s := g(H k,s /F p ) and B i (H k,s /F p ) places of degree i, is such that:

(1) H k /F p ⊆ H k,s /F p ⊆ H k+1 /F p with H k,0 = H k and H k,2 = H k+1 , (2) g k,s ≤ g k+1 p 2-s + 1 with g k+1 ≤ q k+1 + q k , (3) B 1 (H k,s /F p ) + 2B 2 (H k,s /F p ) + 4B 4 (H k,s /F p ) ≥ (q 2 -1)q k-1 p s .

Garcia-Stichtenoth tower of Kummer function field extensions.

In this section we present a Garcia-Stichtenoth's tower (cf. [START_REF] Ballet | On the bounds of the bilinear complexity of multiplication in some finite fields[END_REF]) having good properties. Let F q be a finite field of characteristic p ≥ 3. Let us consider the tower T over F q which is defined recursively by the following equation, studied in [START_REF] Garcia | On tame towers over finite fields[END_REF]:

y 2 = x 2 + 1 2x .
The tower T /F q is represented by the sequence of function fields (L 0 , L 1 , L 2 , . . .) where L n = F q (x 0 , x 1 , . . . , x n ) and x 2 i+1 = (x 2 i + 1)/2x i holds for each i ≥ 0. Note that L 0 is the rational function field. For any prime number p ≥ 3, the tower T /F p 2 is asymptotically optimal over the field F p 2 , i.e. T /F p 2 reaches the Drinfeld-Vlăduţ bound. Moreover, for any integer k, L k /F p 2 is the constant field extension of L k /F p .

From [START_REF] Ballet | On the bounds of the bilinear complexity of multiplication in some finite fields[END_REF], we know that the genus g(L k ) of the steps L k /F p 2 and L k /F p is given by:

g(L k ) = 2 k+1 -3 • 2 k 2 + 1 if k ≡ 0 mod 2, 2 k+1 -2 • 2 k+1 2 + 1 if k ≡ 1 mod 2. ( 8 
)
and that the following bounds hold for the number of rational places in L k over F p 2 and for the number of places of degree one and two over F p :

B 1 (L k /F p 2 ) ≥ 2 k+1 (p -1) (9) 
and

B 1 (L k /F p ) + 2B 2 (L k /F p ) ≥ 2 k+1 (p -1). (10) 
3.3. Some preliminary results. Here we establish some technical results about genus and number of places of each step of the towers T 2 /F q 2 , T 3 /F q , T 4 /F 2 , T /F p 2 and T /F p defined in Sections 3.1 and 3.2. These results will allow us to determine a suitable step of the tower to apply the algorithm on.

3.3.1. About the Garcia-Stichtenoth's tower of Artin-Schreier extensions. In this section, q = p r is a power of the prime p. We denote by g k,s the genus of the corresponding steps of the towers T 2 /F q 2 , T 3 /F q and T 4 /F 2 ; recall that g k = g k,0 = g k-1,r . We also set ∆g k,s := g k,s+1 -g k,s .

Lemma 3.4. Let q ≥ 4. We have the following bounds for the genus of each step of the towers T 2 /F q 2 , T 3 /F q and T 4 /F 2 (we set q = 4 and p = r = 2 in the special case of this tower): i) g k > q k for all k ≥ 4, moreover for the tower T 4 /F 2 , one has g k > pq k-1 for all k ≥ 3, ii) g k ≤ q k-1 (q + 1) -√ qq k 2 , iii) g k,s ≤ q k-1 (q + 1)p s for all k ≥ 0 and s ∈ {0, . . . , r}, iv) g k,s ≤ q k (q+1)-q k 2 (q-1) p r-s for all k ≥ 2 and s ∈ {0, . . . , r}.

Proof. i) According to Formula (7), we know that if k ≡ 1 mod 2, then

g k = q k + q k-1 -q k+1 2 -2q k-1 2 + 1 = q k + q k-1 2 (q k-1 2 -q -2) + 1.
Since q > 3 and k ≥ 4, we have

q k-1 2 -q -2 > 0, thus g k > q k . Else if k ≡ 0 mod 2, then g k = q k + q k-1 - 1 2 q k 2 +1 - 3 2 q k 2 -q k 2 -1 + 1 = q k + q k 2 -1 (q k 2 - 1 2 q 2 - 3 2 q -1) + 1.
Since q > 3 and k ≥ 4, we have q k 2 -1 2 q 2 -3 2 q -1 > 0, thus g k > q k . Hence, the second bound for the tower T 4 /F 2 is already proved for k ≥ 4, and for k = 3, one has g 3 -pq 2 = q 3 -2q + 1 -pq 2 = 25 so this bound holds also for k = 3.

ii) It follows from Formula (7) since for all k ≥ 1 we have 2q k-1 2

≥ 1 which works out for odd k cases and 3 2 q k 2 + q k 2 -1 ≥ 1 which works out for even k cases, since 1 2 q ≥ √ q.

iii) If s = r, then according to Formula (7), we have

g k,s = g k+1 ≤ q k+1 + q k = q k-1 (q + 1)p s .
Else, s < r and Proposition 3.1 says that g k,s ≤

g k+1 p r-s + 1. Moreover, since q k+2 2
≥ q and 1 2 q k+1 2 +1 ≥ q, we obtain g k+1 ≤ q k+1 + q k -q + 1 from Formula [START_REF] Ballet | On the tensor rank of multiplication in any extension of F2[END_REF]. Thus, we get g k,s ≤ q k+1 + q k -q + 1 p r-s + 1 = q k-1 (q + 1)p s -p s + p s-r + 1 ≤ q k-1 (q + 1)p s + p s-r ≤ q k-1 (q + 1)p s since 0 ≤ p s-r < 1 and g k,s ∈ N.

iv) It follows from ii) since Proposition 3.1 gives g k,s ≤

g k+1 p r-s + 1, so g k,s ≤ q k (q+1)- √ qq k+1 2 p r-s
+ 1 which gives the result since p r-s ≤ q k 2 for all k ≥ 2.

Now we set N k,s := B 1 (F k,s /F q 2 ) = B 1 (G k,s /F q ) + 2B 2 (G k,s /F q ). Lemma 3.5. Let D k,s := (p -1)p s q k . For any k ≥ 1 and s ∈ {0, . . . , r -1}, one has: i) ∆g k,s ≥ D k,s if k ≥ 4, ii) N k,s ≥ D k,s .
Proof. i) From Hurwitz Genus Formula, one has g k,s+1 -1 ≥ p(g k,s -1), so g k,s+1 -g k,s ≥ (p -1)(g k,s -1). Applying s more times Hurwitz Genus Formula, we get g k,s+1 -g k,s ≥ (p -1)p s (g k -1).

Thus we have g k,s+1 -g k,s ≥ (p -1)p s q k , from Lemma 3.4 i) since q > 3 and k ≥ 4. ii) According to Proposition 3.1, one has N k,s ≥ (q 2 -1)q k-1 p s = (q + 1)(q -1)q k-1 p s ≥ (q -1)q k p s ≥ (p -1)q k p s . Lemma 3.6. For all k ≥ 1 and s ∈ {0, . . . , r}, one has

sup n ∈ N | N k,s ≥ 2n + g k,s -1 ≥ 1 2 (q + 1)q k-1 p s (q -2) + 1 2 .
Proof. From Proposition 3.1 and Lemma 3.4 iii), we get

N k,s -g k,s + 1 ≥ (q 2 -1)q k-1 p s -q k-1 (q + 1)p s + 1 = (q + 1)q k-1 p s (q -1) -1 + 1.
Now we recall similar technical results about genus and number of places of each step of the tower T 4 /F 2 defined in Section 3.1. In order to simplify the presentation, we still use the variables p and q. Lemma 3.7. Let q = p 2 = 4. For all k ≥ 1 and s ∈ {0, 1}, we set D k,s := 3 2 p s+1 q k-1 . Then we have i) ∆g k,s ≥ λD k,s , with λ :=

4γ 2,4 µ sym 2 (4) ≤ 3 2 (see Section 2.1), ii) B 1 (H k,s /F p ) + 2B 2 (H k,s /F p ) + 4B 4 (H k,s /F p ) ≥ D k,s .
Proof. i) We apply Genus Hurwitz Formula as in the proof of Lemma 3.5 to obtain g k,s+1 -g k,s ≥ (p -1)p s (g k -1), so we get ∆g k,s ≥ (p -1)p s+1 q k-1 from Lemma 3.4 i) for k ≥ 3, which gives the results. For k = 1 and 2, we check that the result is still valid since g 1 = 0, g 1,1 = 2, g 2 = 6, g 2,1 = 23 and g 3 = 57. ii) It is obvious since q 2 -1 > 3 2 p and since from Proposition 3.3 we have

B 1 (H k,s /F 2 ) + 2B 2 (H k,s /F 2 ) + 4B 4 (H k,s /F 2 ) ≥ (q 2 -1)q k-1 p s .
Lemma 3.8. Let q = p 2 = 4. For all k ≥ 1 and s ∈ {0, 1, 2}, we have

sup n ∈ N i=1,2,4 iB i (H k,s /F 2 ) ≥ 2n + g k,s + 5 ≥ 5p s q k-1 - 5 2 . 
Proof. From Proposition 3.3 and Lemma 3.4 iii), we get

i=1,2,4 iB i (H k,s /F 2 ) -g k,s -5 ≥ (q 2 -1)q k-1 p s -q k-1 (q + 1)p s -5 = p s q k-1 (q + 1)(q -2) -5
thus we get the result since q = 4.

3.3.2.

About the Garcia-Stichtenoth's tower of Kummer extensions. In this section, p is an odd prime. We denote by g k the genus of the step L k and we fix

N k := B 1 (L k /F p 2 ) = B 1 (L k /F p ) + 2B 2 (L k /F p ) and ∆g k := g k+1 -g k .
The following lemma is straightforward according to Formulae (8):

Lemma 3.9. These two bounds hold for the genus of each step of the towers T /F p 2 and T /F p :

i) g k ≤ 2 k+1 -2 • 2 k+1 2 + 1, ii) g k ≤ 2 k+1 . Lemma 3.10. For all k ≥ 0, one has N k ≥ ∆g k ≥ 2 k+1 -2 k+1 2 . Proof. If k is even then ∆g k = 2 k+1 -2 k 2 , else ∆g k = 2 k+1 -2 k+1 2
so the second equality holds trivially. Moreover, since p ≥ 3, the first one follows from Bounds (9) and (10) which gives N k ≥ 2 k+2 . Lemma 3.11. Let L k be a step of one of the towers T /F p 2 or T /F p . One has:

sup n ∈ N | N k ≥ 2n + g k -1 ≥ 2 k (p -2) + 2 k+1 2 , if p > 5 and sup n ∈ N | N k ≥ 2n + g k + 2 ≥ 2 k (p -2) + 2 k+1 2 -1, if p = 5 or 3.
Proof. From Bounds ( 9) and [START_REF] Baum | An optimal algorithm for multiplication in F256/F4[END_REF] for N k and Lemma 3.9 i), we get

N k -g k + 1 ≥ 2 k+1 (p -1) -(2 k+1 -2 • 2 k+1 2 + 1) + 1 = 2 k+1 (p -2) + 2 • 2 k+1 2 .
Similarly, we get

N k -g k -2 ≥ 2 k+1 (p -1) -(2 k+1 -2 • 2 k+1 2 + 1) -2 = 2 k+1 (p -2) + 2 • 2 k+1 2 -3
which gives the result for p = 5 or 3.

3.4.

Existence of a good step in each tower. The following lemmas prove the existence of a « good » step of the towers defined in Sections 3.1 and 3.2, that is to say a step that will be optimal for the bilinear complexity of multiplication in a degree n extension of F q , for any integer n. Lemma 3.12. Let n ≥ 1 2 q 2 + 1 + (q 2 ) be an integer. If q = p r ≥ 4, then there exists a step F k,s /F q 2 of the tower T 2 /F q 2 such that the following conditions are verified: (1) there exists a place of F k,s /F q 2 of degree n, (2) B 1 (F k,s /F q 2 ) ≥ 2n + g k,s -1. Moreover, the first step for which both Conditions (1) and ( 2) are verified is the first step for which (2) is verified.

Proof. Note that n ≥ 13 since q ≥ 4 and n ≥ 1 2 (q 2 + 1 + 2q) ≥ 12.5. First, we prove that for 1 ≤ k ≤ n -2 and s ∈ {0, . . . , r}, there exists a place of F k,s /F q 2 of degree n. Indeed, for such an integer k, one has q n-k-1 ≥ q > 2 × 5 3 ≥ 2 q+1 q-1 , so q n-k p -s > 2 q+1 q-1 since 1 ≥ p -s ≥ q -1 , which gives 2q k-1 (q + 1)p s < q n-1 (q -1). Thus Lemma 3.4 iii) implies that 2g k,s + 1 ≤ q n-1 (q -1), which ensures that there exists a place of F k,s /F q 2 of degree n. On the other hand, we prove that for k ≥ K

(n) + 1, with K(n) := log q 2n (q+1)(q-2) , Condition (2) 
is satisfied. Indeed, for such integers k, one has 2n (q+1)(q-2) ≤ q k-1 , so 2n -1 ≤ q k-1 (q + 1)(q -2)p s . Hence, one gets 2n + q k-1 (q + 1)p s -1 ≤ (q 2 -1)q k-1 p s , which gives the result according to Lemma 3.4 iii) and Proposition 3.1 (3). To conclude, note that there exists at least one step F k,s /F q 2 satisfying both Conditions (1) and (2) since for n ≥ 13 and q ≥ 4, n -K(n) -3 ≥ 13 -(log 4 (2 • 13)) -3 > 1. Moreover, remark that Condition (1) is satisfied from the step F 1,0 /F q 2 , so the first step for which both Conditions (1) and ( 2) are verified is the first step for which [START_REF] Ballet | Low increasing tower of algebraic function fields and bilinear complexity of multiplication in any extension of Fq[END_REF] is verified. This is a similar result for the tower T 3 /F q : Lemma 3.13. Let n ≥ 1 2 (q + 1 + (q)) be an integer. If q = p r > 5, then there exists a step G k,s /F q of the tower T 3 /F q such that the following conditions are verified: (1) there exists a place of G k,s /F q of degree n, (2) B 1 (G k,s /F q ) + 2B 2 (G k,s /F q ) ≥ 2n + g k,s -1. Moreover, the first step for which both Conditions (1) and ( 2) are verified is the first step for which (2) is verified.

Proof. Here we have n ≥ 7 since q ≥ 7 and n ≥ 1 2 (q + 1 + (q)) ≥ 6.5. First, we prove that for 1 ≤ k ≤ n 2 -2 and s ∈ {0, . . . , r}, there exists a place of G k,s /F q of degree n, by showing that 2g k,s + 1 ≤ q n-1

(

√ q -1). Indeed, the function q

→ √ q-1 q+1 • q n-1
2 -k is increasing, so one has

√ q-1 q+1 • q n-1 2 -k ≥ √ 7-1 8 • 7 n-1 2 -k since q ≥ 7. Thus for any k ≤ n 2 -2, we get √ q-1 q+1 • q n-1 2 -k ≥ 7 3 2 ( √ 7-1) 8 > 2.
It follows that 2q k (q + 1) < q n-1 2 ( √ q -1), so 2q k-1 (q + 1)p s < q n-1 2 ( √ q -1) since p s ≤ q, and we get 2q k-1 (q + 1)p s + 1 ≤ q n-1 2 ( √ q -1) which ensures that there exists a place of F k,s /F q 2 of degree n, according to Lemma 3.4 iii). On the other hand, we can proceed as the preceding proof to prove that for k ≥ K(n) + 1, with K(n) := log q 2n (q+1)(q-2) , Condition ( 2) is satisfied. To conclude, note that there exists at least one step G k,s /F q satisfying both Conditions (1) and [START_REF] Ballet | Low increasing tower of algebraic function fields and bilinear complexity of multiplication in any extension of Fq[END_REF] since for n ≥ 7 and q ≥ 7, n 2 -K(n) -3 ≥ 7 2 -log 7 2×7 8×5 -3 > 1. Moreover, remark that Condition (1) is satisfied from the step G 1,0 /F q , so the first step for which both Conditions (1) and ( 2) are verified is the first step for which (2) is verified.

In the special case where q = 4, Condition (2) needs to be slightly stronger: Lemma 3.14. Let n ≥ 10 be an integer. If q = p 2 = 4, then there exists a step G k,s /F 4 of the tower T 3 /F 4 such that the following conditions are verified:

(1) there exists a place of G k,s /F 4 of degree n,

(2) B 1 (G k,s /F 4 ) + 2B 2 (G k,s /F 4 ) ≥ 2n + g k,s + 2.
Moreover, the first step for which both Conditions (1) and ( 2) are verified is the first step for which (2) is verified.

Proof. We can proceed as in the previous proof with minor changes. Indeed, we first have that 2g k,s + 1 ≤ q n-1

2 ( √ q -1) for 1 ≤ k ≤ n-9/2
2 and s ∈ {0, 1}, since in this case

√ q-1 q+1 • q n-1 2 -k = 1 5 2 n-1-2k ≥ 2 7/2
5 > 2, which proves that Condition (1) is verified according to Lemma 3.4 iii). Moreover, Condition (2) is satisfied for k ≥ K(n) + 1 with K(n) := log 4 2n+2 (q+1)(q-2) , and one can check that n 2 -K(n) - From Lemmas 3.4 iii) and 3.8 it follows that:

g(H k,s+1 ) 2X ≤ q k-1 (q + 1)p s+1 2n k,s 0 + D k,s -3 ≤ q k-1 (q + 1)p s+1 5p s+1 q k-1 -5 + 3 2 p s+1 q k-1 -3 = q + 1 13 2 - 8 q k-1 p s+1 . Since k ≥ 2, one has g(H k,s+1 ) 2X
≤ 10 11 which leads to µ q (n) ≤ 9 2 1 + 10 11 n + 18 and gives the result. Theorem 4.2. Let p be a prime and q := p r . For any n ≥ 2, we have:

(a) if q ≥ 4, then µ q 2 (n) ≤ 2 1 + p q -2 + (p -1) q q+1 n -1, (b) if p ≥ 3, then µ p 2 (n) ≤ 2 1 + 2 p -1 n -1, (c) if q > 5, then µ q (n) ≤ 3 1 + p q -2 + (p -1) q q+1 n, (d) if p > 5, then µ p (n) ≤ 3 1 + 2 p -1 n.
Proof.

(a) Let n ≥ 1 2 (q 2 + 1 + (q 2 )). We apply the general method described in Section 2.1 on the tower T 2 /F q 2 with d = 1, γ q 2 ,1 ≤ 1 (see Proof of Corollary 2.3) and λ :=

γ q 2 ,1 µ sym q 2 (1) ≤ 1. We set X = n k,s 0 + 1 2 D k,s
where D k,s = (p -1)p s q k . Lemmas 3.5 and 3.12 ensure that Hypotheses (A) to (E) are satisfied. Note that we can always choose a step F k,s+1 with k ≥ 4 (so in particular g k,s+1 ≥ 2), even if doing so we may have a non-optimal bound for some small n. Thus we have:

Φ(X) = 2 1 + g(F k,s+1 ) 2X X - 1 
From Lemmas 3.4 iii) and 3.6 it follows that:

g(F k,s+1 ) 2X ≤ q k-1 (q + 1)p s+1 2n k,s 0 + D k,s ≤ q k-1 (q + 1)p s+1 (q + 1)q k-1 p s (q -2) + (p -1)p s q k = p q -2 + (p -1) q q+1 which gives the result. (b) Let n ≥ 1 2 (p 2 + 1 + (p 2 
)). We apply the general method described in Section 2.1 on the tower T /F p 2 with d = 1, γ p 2 ,1 ≤ 1 and λ :=

γ p 2 ,1 µ p 2 (1) ≤ 1. We set X = n k 0 + 1 2 D k where D k = 2 k+1 -2 k+1 
2 . Lemmas 3.10 and 3.16 ensure that Hypotheses (A) to (E) are satisfied. Thus we have:

Φ(X) = 2 1 + g(L k+1 ) 2X X -1
From Lemmas 3.9 ii) and 3.11 it follows that:

g(L k+1 ) 2X ≤ 2 k+2 2n k,s 0 + D k,s ≤ 2 k+2 2 k+1 (p -2) + 2 k+3 2 + 2 k+1 -2 k+1 2 = 2 p -1 + 2 -k-1 2 -2 -k+1 2 which gives the result, since 2 -k-1 2 -2 -k+1 2 ≥ 0. (c) Let n ≥ 1
2 (q + 1 + (q)). We apply the general method described in Section 2.1 on the tower T 3 /F q with d = 2, γ q,2 ≤ 1 2 (see Proof of Corollary 2.3) and λ :=

2γ q,2 µ sym q (2) ≤ 1 3 since µ sym q (2) ≥ 3. We set X = n k,s 0 + 1 2 (D k,s -1)
where D k,s = (p -1)p s q k . Lemmas 3.5 and 3.13 ensure that Hypotheses (A) to (E) are satisfied. Note that we can always choose a step F k,s+1 with k ≥ 4 (so in particular g k,s+1 ≥ 2), even if doing so we may have a non-optimal bound for some small n. Thus we have:

Φ(X) = 3 1 + g(G k,s+1 ) 2X X.
We proceed as in (a) to get g(G k,s+1 ) 2X ≤ p q-2+(p-1) q q+1 which gives the result. (Note that λ ≤ 1 so Lemma 3.5 implies that Hypothesis (D) of according to the known estimates for µ sym 4 (n) (recalled in [START_REF] Cenk | On multiplication in finite fields[END_REF]Table 1]).

Asymptotic bounds

So far we gave upper bounds for the tensor rank of multiplication that hold uniformly for any extension of finite fields. Now, introducing the quantity

M q = lim sup n→∞ µ q (n) n
and letting the degree of the extension go to infinity, these bounds then turn into the following asymptotic estimates: 

= p r , (a) if q ≥ 4, then M q 2 ≤ 2 1 + p q-2+(p-1) q q+1 , (b) if p ≥ 3, then M p 2 ≤ 2 1 + 2 p-1 , (c 
) if q > 5, then M q ≤ 3 1 + p q-2+(p-1) q q+1 , (d) if p > 5, then M p ≤ 3 1 + 2 p-1 .

Proof. Let n → ∞ in Theorems 4.1, 4.2, and 4.3.

It is interesting to compare these asymptotic bounds with other known similar results, such as the ones in [START_REF] Cascudo | Asymptotic bound for multiplication complexity in the extensions of small finite fields[END_REF]. We see the bound on M 2 in Proposition 5.1 is less sharp than the one in [START_REF] Cascudo | Asymptotic bound for multiplication complexity in the extensions of small finite fields[END_REF], while the bounds on M 3 , M 4 , and M 5 are better.

However, in such a comparison, one should keep in mind other features of these various bounds. On one hand, the bounds in [START_REF] Cascudo | Asymptotic bound for multiplication complexity in the extensions of small finite fields[END_REF] hold not only for the general bilinear complexity, but also for the symmetric bilinear complexity. On the other hand, the constructions leading to Proposition 5.1 were not aimed solely at maximizing asymptotics:

• they give uniform bounds, that hold for any given extension of finite fields (so, not only asymptotically) • they come from towers of curves given by explicit equations, so at least in principle, it should be possible to write explicitly the multiplication algorithms reaching these bounds. Now, if one relaxes these last two conditions, it is possible to give substantially better asymptotic bounds, especially for q small. For this we will borrow the following lemma from [START_REF] Cascudo | Asymptotic bound for multiplication complexity in the extensions of small finite fields[END_REF] (with a very slight modification): Lemma 5.2 (compare [START_REF] Cascudo | Asymptotic bound for multiplication complexity in the extensions of small finite fields[END_REF], Lemma IV.4). Let q be a prime power and t ≥ 1 an integer such that q t is a square (so q itself is a square, or t is even). Then there exists a family (F s /F q ) s≥1 of function fields such that, as s goes to infinity, we have:

(i) g s → ∞ (ii) g s+1 /g s → 1 (iii) B t (F s )/g s → (q t/2 -1)/t where g s is the genus of F s /F q .

For the details of the proof we refer to [START_REF] Cascudo | Asymptotic bound for multiplication complexity in the extensions of small finite fields[END_REF], where it is in fact credited to Elkies, who proceeded by modifying the construction of Shimura curves previously introduced in [START_REF] Shparlinski | Curves with many points and multiplication in finite fields[END_REF].

As a matter of fact, the version of the lemma originally stated in [START_REF] Cascudo | Asymptotic bound for multiplication complexity in the extensions of small finite fields[END_REF] requires t even, while we allow t odd provided q is a square. However our increased generality is only apparent, because it is readily seen that the aforementioned proof of Elkies also gives the version we stated. Alternatively, when q is a square, we can replace q and t with q 1/2 and 2t to reduce to the case t even, and conclude with a base field extension argument.

Theorem 5.3. Let q be a prime power and t ≥ 1 an integer such that q t ≥ 9 is a square. Then M q ≤ 2µ q (t) t 1 + 1 q t/2 -2 .

Proof. Let (F s /F q ) s≥1 be the family of function fields given by Lemma 5.2 for q and t. Given an integer n, let s(n) be the smallest integer such that tB t (F s(n) /F q ) -g s(n) ≥ 2n + 8.

Such an integer exists because of conditions (i) and (iii) in Lemma 5.2 and our hypothesis q t ≥ 9, and it goes to infinity with n. More precisely, minimality of s(n) and conditions (iii) and (ii) give, respectively:

• tB t (F s(n) /F q ) -g s(n) ≥ 2n + 8 > tB t (F s(n)-1 /F q ) -g s(n)-1

• tB t (F s(n) /F q ) = (q t/2 -1)g s(n) + o(g s(n) )

• g s(n)-1 = g s(n) + o(g s(n) ) hence the estimate

(q t/2 -2)g s(n) + o(g s(n) ) = 2n + o(n)
which can be restated finally as

g s(n) = 2n q t/2 -2 + o(n) and B t (F s(n) /F q ) = 2n t 1 + 1 q t/2 -2 + o(n).
The estimate on g s(n) implies 2g s(n) + 1 ≤ q (n-1)/2 (q 1/2 -1) as soon as n is big enough. We can then use Theorem 1.3 with F s(n) /F q , setting m = n,

This is a similar result for the tower T 4 /F 2 : Lemma 3.15. For any integer n ≥ 12 there exists a step H k,s /F 2 of the tower T 4 /F 2 , with genus g k,s ≥ 2, such that both following conditions are verified: [START_REF] Ballet | Curves with many points and multiplication complexity in any extension of Fq[END_REF] there exists a place of degree n in H k,s /F 2 , (2) B 1 (H k,s /F 2 ) + 2B 2 (H k,s /F 2 ) + 4B 4 (H k,s /F 2 ) ≥ 2n + g k,s + 5. Moreover, the first step for which both Conditions (1) and ( 2) are verified is the first step for which (2) is verified.

Proof. According to [START_REF] Ballet | On the tensor rank of multiplication in any extension of F2[END_REF]Lemma 2.6], if n ≥ 12 then there exists a step H k,s /F 2 of the tower T 4 /F 2 , with k ≥ 2 (so, in particular g k,s ≥ g 2 = 6) such that there exists a place of H k,s /F 2 of degree n and B 1 (H k,s /F 2 ) + 2B 2 (H k,s /F 2 ) + 4B 4 (H k,s /F 2 ) ≥ 2n + 2g k,s + 7. Thus we get the result since 2n + 2g k,s + 7 ≥ 2n + g k,s + 5. This is a similar result for the tower T /F p 2 : Lemma 3.16. Let p ≥ 3 and n ≥ 1 2 p 2 + 1 + (p 2 ) . There exists a step L k /F p 2 of the tower T /F p 2 , with genus g k ≥ 2, such that the following conditions are verified: (1) there exists a place of

Moreover the first step for which both Conditions (1) and ( 2) are verified is the first step for which (2) is verified.

We first prove that for all integers k such that 2 ≤ k ≤ n -2, we have 2g k + 1 ≤ p n-1 (p -1) , so Condition (2) is satisfied.

Indeed, for such an integer k, one has

and we get the result from Lemma 3.9 ii). We prove now that for k ≥ log 2 n 2 , Condition (2) is verified. Indeed, for such an integer k, we have

according to Bound (9) and Lemma 3.9 i). Hence, we have proved that for any integers n ≥ 8 and k ≥ 2 such that log 2 n 2 ≤ k ≤ n -2, both Conditions (1) and (2) are verified. Moreover, note that for any n ≥ 8, there exists an integer k ≥ 2 in the interval

To conclude, remark that Condition (1) is satisfied from the step L 0 /F p 2 , so the first step for which both Conditions (1) and (2) are verified is the first step for which [START_REF] Ballet | Low increasing tower of algebraic function fields and bilinear complexity of multiplication in any extension of Fq[END_REF] 

This is a similar result for the tower T /F p : Lemma 3.17. Let p > 5 and n ≥ 1 2 (p + 1 + (p)). There exists a step L k /F p of the tower T /F p , with genus g k ≥ 2, such that the following conditions are verified:

(1) there exists a place of L k /F p of degree n,

Moreover the first step for which both Conditions (1) and ( 2) are verified is the first step for which (2) is verified.

Indeed, for such an integer k, one has

, which gives the result from Lemma 3.9 ii).

On the other hand, we proceed as the preceding proof to prove that for k ≥ log 2 n 2 , Condition (2) is verified. Moreover, note that for any n ≥ 7, there exists an integer k ≥ 2 in the interval log 2

To conclude, remark that Condition (1) is satisfied from the step L 0 /F p , so the first step for which both Conditions ( 1) and ( 2) are verified is the first step for which [START_REF] Ballet | Low increasing tower of algebraic function fields and bilinear complexity of multiplication in any extension of Fq[END_REF] 

This is a similar result for the tower T /F p for p = 3 or 5: Lemma 3.18. If p = 5 and n ≥ 1 2 (5 + 1 + (5)) = 5 or p = 3 and n ≥ 11, then there exists a step L k /F p of the tower T /F p , with genus g k ≥ 2, such that the following conditions are verified:

(1) there exists a place of L k /F p of degree n,

Moreover the first step for which both Conditions (1) and ( 2) are verified is the first step for which (2) is verified.

Proof.

We first consider the case p = 5 and n ≥ 5. Since p > 4, the first part of the preceding proof shows that for all integers k such that 

To conclude, remark that Condition (1) is satisfied from the step L 0 /F p 2 , so the first step for which both Conditions (1) and ( 2) are verified is the first step for which (2) is verified; moreover, for k ≥ 2, g k ≥ g 2 = 3. Now we consider the case p = 3 and n ≥ 11. We first prove that for all integers k such that 2 ≤ k ≤ log 2 (3

Indeed, for such an integer k, one has

which gives the result from Lemma 3.9 ii). On the other hand, we prove that for k ≥ log 2 (n), Condition ( 2) is satisfied.

Indeed for such an integer k, one has

2 + 1) + 2, which gives the result according to Bound (9) and Lemma 3.9 Hence, we have proved that for any integers n ≥ 11 and k ≥ 2 such that log 1) and ( 2) are verified. Moreover, note that for any n ≥ 11, there exists an integer k ≥ 2 in the interval log 2 (n); log 2 (3

To conclude, remark that Condition (1) is satisfied from the step L 0 /F p 2 , so the first step for which both Conditions (1) and ( 2) are verified is the first step for which (2) is verified; moreover, for k ≥ 2, g k ≥ g 2 = 3.

New uniform bounds for the tensor rank

Theorem 4.1. For any integer n ≥ 2, we have

Proof.

Let q := p 2 = 4 and n ≥ 2. We apply the general method described in Section 2.1 on the tower T 4 /F q with d = 4, γ 2,4 ≤ 3 2 (see Proof of Corollary 2.4) and λ :=

where D k,s = 3 2 p s+1 q k-1 . Lemmas 3.7 and 3.15 ensure that Hypotheses (A) to (E) are satisfied, so we have:

We apply the general method described in Section 2.1 on the tower T /F p with d = 2, γ p,2 ≤ 1 2 (see Proof of Corollary 2.3) and λ :=

2 . Lemmas 3.10 and 3.17 ensure that Hypotheses (A) to (E) are satisfied. Thus we have:

We proceed as in (b) to get g(L k+1 ) 2X

≤ 2 p-1 which gives the result. (Note that λ ≤ 1 so Lemma 3.10 implies that Hypothesis (D) of Section 2.1 is satisfied.) Theorem 4.3. For any n ≥ 2, we have

Proof. For the bounds over F 3 and F 5 , we proceed as in the proof of Theorem 4.2 (d), since Lemma 3.18 ensures that the method is still valid in this cases. Thus we get

Note that with our method, we prove the bound for µ 3 (n) for n ≥ 11 according to Lemma 3.18, but that this bound holds also for n ≤ 10, according to Table 1 in [START_REF] Cenk | On multiplication in finite fields[END_REF]. The bound over F 4 is obtained for n ≥ 10 with the same reasoning as in the proof of Theorem 4.2 (c): let q := 4 and n ≥ 10 > 1 2 (q + 1 + (q)), we apply the general method described in Section 2.1 on the tower T 3 /F 4 with d = 2, γ 4,2 ≤ 1 (see Proof of Corollary 2.3) and λ :=

where D k,s = (p -1)p s q k-1 . Lemmas 3.5 and 3.14 ensure that Hypotheses (A) to (E) are satisfied. Note that we can always choose a step F k,s+1 with k ≥ 4 (so in particular g k,s+1 ≥ 2), even if doing so we may have a non-optimal bound for some small n. Thus we have:

which gives g(G k,s+1 ) 2X ≤ p q-2+(p-1) q q+1 . (Note that λ ≤ 1 so Lemma 3.5 implies that Hypothesis (D) of Section 2.1 is satisfied.) To conclude, remark that our bound is still valid for µ 4 (n) when 4.5 = 1 2 (q + 1 + (q)) ≤ n < 10 l = 1, N t = n t,1 = B t (F s(n) /F q ), and n d,u = 0 for all other values of d and u. This gives µ q (n) ≤ µ q (t)B t (F s(n) /F q ) and the conclusion follows. Proof. Apply Theorem 5.3 with q = 2, t = 6, µ 2 (6) ≤ 15; with q = 3, t = 4, µ 3 (4) ≤ 9; and with q = 4, t = 4, µ 4 (4) ≤ 8.

Corollary 5.5. For any q ≥ 3 we have M q ≤ 3 1 + 1 q-2 . In particular:

Proof. Apply Theorem 5.3 with t = 2, µ q (2) = 3.