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Abstract— This work considers the stabilization of linear
time invariant high order systems with two unstable poles plus
time delay. For this, we will propose a simple observer based
controller in order to stabilize the system. Numerical examples
and an electronic implementation of the proposed scheme are
presented in order to illustrate the performance of the closed
loop system.

I. I NTRODUCTION

Systems with delays are very common and are due to
several mechanisms like material or energy transport, re-
cycling loops, etc. In addition, actuators, sensors and field
networks that are involved in feedback loops usually in-
troduce such delays, [14], [19]. Also delays can be used
in model reduction where high-order (finite-dimensional)
systems are approximated (in some norm sense) by low
order systems with delays, [17]. It is known that time-
delay is often a source of complex behaviors (oscillations,
instability, bad performance), in many dynamic systems, and
thus considerable attention has been paid on the stability
analysis and controller design of time delay systems. Hence,
there exists a great motivation to study delay effects on
dynamical systems properties for two main reasons: first
to understand how the delay presence may deteriorate the
behavior of the system, and second to control their effects
for better performance achievement on closed-loop systems,
[2], [10].

Several control strategies have been developed to deal with
delayed systems. A common approach is to approximate the
time-delay operator by means of a Taylor or Pade series
which could lead to a non minimum-phase system with
rational transfer function representation. The Proportional-
Integral (PI) and Proportional-Integral-Derivative (PID) con-
trollers are included in the control design for time delay
systems [16]. On the other hand, some recent works have
been devoted to the analysis of stability and stabilization
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of systems with delay based on approaches of Lyapunov-
Krasovskii and Lyapunov-Razumikhin. These results are
expressed in terms of algebraic Riccati equations, [3], [19],
etc., or linear matrix inequalities, [1], [4], etc.

A different approach to deal with dead time systems
is the classical Smith Predictor (SP), which consists in
counteracting the time delay effects by means of strategies
intended to estimate the effects of current inputs over future
outputs, [13], [18]. The main limitation of the original SP
is the fact that the prediction scheme has not a stabilization
step, which restricts its application to open-loop stable plants.

However, open-loop unstable processes arise frequently in
different dynamic systems and are fundamentally difficult to
control. To overcome this problem, some modifications of
the SP original structure have been proposed to deal with
non-stable delayed process, for instance, [15] has presented
an efficient modification to the Smith predictor in order to
control unstable first order system plus time delay. With a
different perspective, [12] proposes a modification to the
original Smith structure in order to deal with unstable first
order delayed systems. Using a similar structure, the result is
extended to delayed high order systems [11]. In both works,
a robustness analysis is done concluding that for unstable
dead time dominant systems, the closed-loop system can be
unstabilized with an infinitesimal value of the modeling error,
i.e., that robustness is strongly dependent on the relationship
τ/τun, where τ is the process time delay andτun the
dominant unstable time-constant. For the control scheme
proposed in the later works, it can be easily proven that
in the case of unstable plants, the internal stability is not
guaranteed. In fact it is obtained an unstable estimation
error and, as a result, a minimal initial condition difference
between the original plant and the model produces an internal
unbounded signal.

A different approach for the stabilization problem for time
delay systems has been introduced in different works, [6],
[7], for instance. In these works it is proposed a solution
based on the parametrization of the controllers and predictors



of the rational part of the plant. However, the potential
problem of this approach might be the implementation issue,
since the resulting controllers involve FIR blocks, which
are built upon Hamiltonian matrices and require matrix
exponentials to be computed.

This paper is concerned with the stabilization problem of
systems with two unstable poles andm stable poles plus
time delay. The control scheme relies on an observer-based
structure, on the contrary of modified Smith predictors, the
scheme only contains discrete time delay (and not distributed
ones) which makes easy its practical implementation (see
[19] for details on numerical implementation of modified
Smith predictor scheme). This paper is organized as follows,
Section 2 is dedicated to the problem formulation. Section
3 yields the preliminaries results used to obtain the main
result of this work. An observer based controller is proposed
in Section 4 in order to stabilize the unstable delayed system
previously described, also the stability conditions of the
proposed control structure are stated. Numerical simulations
are presented in Section 5 to show the controller performance
and the control strategy is implemented on a real electronic
plant built with operational amplifiers. Finally conclusions
and future perspectives are drawn.

II. PROBLEM FORMULATION

Consider the following class of single-input single-output
(SISO) linear systems with input delay:

Y (s)

U(s)
=

N(s)

D(s)
e−τs = G(s)e−τs, (1)

where U(s) and Y (s) are the input and output signals
respectively,τ ≥ 0 is the constant time delay,N(s) and
D(s) are polynomials in the complex variables andG(s) is
the delay-free transfer function. Notice that with respectto
the class of systems (1) a traditional control strategy based
on an output feedback of the form

U(s) = C(s)[R(s)− Y (s)], (2)

yields a closed-loop system given by:

Y (s)

R(s)
=

C(s)G(s)e−τs

1 + C(s)G(s)e−τs
, (3)

where the exponential terme−τs located at the denomi-
nator of the transfer function (3) leads to a system with an
infinite number of poles and where the closed-loop stabil-
ity properties must be carefully stated. From the classical
structure of the Smith predictor, it is known that the transfer
function of the closed-loop system is obtained as follows:

Y (s)

R(s)
=

C(s)G(s)

1 + C(s)G(s)
e−τs, (4)

where the delay term is shifted outside of the characteristic
equation of the system. Under ideal conditions, i.e., exact
knowledge of the plant parameters and delay value, the SP
provides a successful future estimationτ time units ahead
of the y(t) signal, which could be used like a control signal

in a specific feedback scheme [13], [17]. Unfortunately, the
classical structure of the SP is restricted to stable process.
Different authors have proposed several modifications to the
original SP structure to give solution to some particular cases,
[11], [12], [15], [19].

This work proposes an observer based control scheme in
order to stabilize a system characterized by the following
transfer function:

Y (s)

U(s)
=

α

(s− a)(s− b)(s+ c1)(s+ c2)...(s+ cm)
e−τs.

(5)
Where τ, a b c1, c2...cm > 0 and without loss of

generality,a ≥ b > 0. The proposed control scheme has
been design based on a traditional observer theory, hence,
only the plant model and two static gains are enough to
get an adequate estimation of an internal delay free variable
which will be used in the final stabilizing control scheme.

III. PRELIMINARY RESULTS

Preliminary results are presented, which will be used later
in order to state the stability conditions of the proposed
strategy in this work.

Consider the following unstable first order system plus
time delay:

Y (s)

U(s)
= G(s)e−τs =

α

s− σ
e−τs, (6)

with σ > 0, and a proportional output feedback control as
follows:

U(s) = R(s)− kY (s), (7)

which produces a closed-loop system:

Y (s)

R(s)
=

αe−τs

s− σ + kαe−τs
. (8)

The following result has been widely studied in the
literature and the proof can be easily obtained by considering
different approaches as a classical frequency domain. An
alternative simple proof based on a discrete time approach
is shown in [9], [8].

Lemma 1:Consider the delayed system (6) and the pro-
portional output feedback (7). Then, there exists a propor-
tional gaink such that the closed loop system (8), is stable
if and only if τ < 1

σ
.

Now consider the high-order unstable system characterized
by:

G(s) =
α

(s− σ)(s+ φ1)(s+ φ2)...(s+ φn)
e−τs. (9)

with σ, φ1, φ2...φn > 0. With the proportional output
feedback (7), the closed-loop system is as follows:

Y (s)

R(s)
=

αe−τs

[(s− σ)(s+ φ1)(s+ φ2)...(s + φn)] + kαe−τs
.

(10)



Lemma 2:Consider the delayed system (9) and the pro-
portional output feedback (7). Then, there exists a propor-
tional gaink such that the closed loop system (10), is stable

if and only if τ < 1

σ
−

n
∑

i=1

1

φi

.

The proof of this result is presented in the Appendix A.

IV. PROPOSEDCONTROL STRATEGY

Consider the class of systems studied in this work
and characterized by the transfer function (5) with
a, b, c1, c2, · · · , cm > 0 and the time delayτ > 0, and
assuming without loss of generalitya ≥ b. An observer based
controller is designed in order to obtain an estimation of the
internal states of the system to be used as control signals for
the original process.

As a first step, the stability conditions for the controller
and the observer systems are stated separately. This condi-
tions will be used later in order to state the closed loop sta-
bility conditions for the proposed observer based controller.

A. Controller Scheme

First, taking into account the state feedback control strat-
egy shown in the Figure 1, let us introduce the following
result.

Fig. 1. Control Scheme.

Lemma 3:Consider the delayed system (5), and the state
feedback controller proposed in Figure 1. There exist con-
stant gainsk1 and k2 such that the closed-loop system is
stable if and only if

τ <
1

b
−

m
∑

i=1

1

ci
.

The aim of the foregoing proof is to apply the stability
conditions given in Lemma 2 to the closed loop system
shown in the Figure 1.

Proof:

Sufficiency. Let us considerτ < 1

b
−

m
∑

i=1

1

ci
. Then,τ =

1

b
−

m
∑

i=1

1

ci
− β, for someβ > 0. Therefore, there existsk1

such thatβ > 1

αk1−a
> 0. Thenτ < 1

b
−

m
∑

i=1

1

ci
−

1

αk1 − a
.

Finally we can conclude from Lemma 2, whereσ = b, φi =
ci andφm+1 = αk1 − a there existsk2 such that the closed
loop system shown in Figure 1 is stable.

Necessity. Consider the delayed system (5), and the state
feedback controller shown in Figure 1, with constant gains

k1 and k2 such that the closed-loop system is stable. The
closed loop transfer function can be written as follows:

Y (s)

R(s)
=

αe−τs

(s− b)(s+ c1) · · · (s+ cm)(s+ φm+1) + αk2e−τs
,

(11)
with φm+1 = αk1 − a. It is well known that ak2 that
stabilizes the delayed system (11) must also stabilize the
delay free system (see for instance [5] or [10]), which implies

that φm+1 > 0. Indeed, from Lemma 2,τ < 1

σ
−

n
∑

i=1

1

φi

with σ = b and φi = ci, wheren = m + 1 (note that
φm+1 > 0 is a free parameter function ofk1). Let us consider

β > 1

φm+1
> 0, denotingβ = 1

σ
−

m
∑

i=1

1

φi

− τ , therefore:

τ =
1

σ
−

m
∑

i=1

1

φi

− β <
1

σ
−

m
∑

i=1

1

φi

=
1

b
−

m
∑

i=1

1

ci

Note that a root locus and/or frequency domain analysis can
be used to compute proper constant gainsk1 andk2 in order
to stabilize the proportional state feedback scheme.

B. Observer Scheme

In most of the practical applications, the internal variables
are not measured. Thus, an observer based on an output
injection strategy is proposed, as represented in Figure 2.
The stability of the observer can be tackled as follows.

Fig. 2. Observer Scheme.

Lemma 4:Consider the delayed system (5), and the static
output injection scheme shown in Figure 2. There exist
constantsg1 andg2 such that the closed-loop system is stable
if and only if

τ <
1

a
−

m
∑

i=1

1

ci
.

Proof:
The proof can be easily derived from a dual procedure of

the previous result.

As in the controller design, the computation of the propor-
tional gainsg1 andg2 can be solved by means of a root locus
and/or a frequency domain analysis.

C. Observer-Based Controller

Finally, the main result of this work is presented, we
propose an observed based controller as in the Figure 3,
where the observer allows to estimate the state variables, to



be used in state feedback controller. The authors would like
to stress that, in the proposed scheme, only four proportional
gains are enough to get a stable closed loop behavior. As a
consequence of the previous results, the following lemma
can be stated.

Fig. 3. Control Strategy Proposed.

Lemma 5:Consider the observer based controller scheme
shown in Figure 3. There exist proportional gainsk1, k2, g1
andg2 such that the closed-loop system is stable if and only
if

τ <
1

a
−

m
∑

i=1

1

ci
.

Proof: Consider the state space representation of the
system (5) characterized by the following equation:

ẋ(t) = A0x(t) +A1x(t− τ) +Bu(t) (12)

y(t) = Cx(t)

. With x(t) =
[

w(t) x1(t) x2(t) · · · xm(t) z(t)
]T

.
Where,

A0 =















a 0 · · · 0 0
1 −c1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −cm 0
0 0 · · · 0 b















A1 =















0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 1 0















B =











α
0
...
0











C =
[

0 0 · · · 0 1
]

Note that the state state representation characterized by
(12) can be returned to its transfer function representation
by mean of:

Y (s)

U(s)
= C(sI − (A0 +A1e

−τs))−1B. (13)

Which brings us back to the delayed transfer function (5).
The dynamics of the estimated states and the control law can
be described as follows.

˙̂x(t) = A0x̂(t)+A1x̂(t−τ)+Bu(t)−G(Cx̂(t)−y(t)) (14)

u(t) = −Kx̂(t).

Where x̂(t) is the estimated state ofx(t), and the gain
vectorsK andG are defined by:

K =
[

k1 0 0 · · · 0 k2
]

G =
[

g1 0 0 · · · 0 g2
]T

Let e(t) := x(t)− x̂(t), then we have:

ė(t) = ẋ(t)− ˙̂x(t) = (A0 −GC)e(t) +A1e(t− τ). (15)

And the controlled system:

ẋ(t) = A0x(t) +A1x(t− τ) −BKx̂(t). (16)

Noting xe = [x(t) e(t)]T and after a simple manipulation
of variables we have the following closed loop system with
the observer and the controller proposed in the Figure 3:

ẋe(t) =

[

A0 −BK BK
0 A0 −GC

]

xe(t) + · · · (17)

· · ·+

[

A1 0
0 A1

]

xe(t− τ)

y(t) =
[

C 0
]

xe(t).

It is easy to see that the observer based controller proposed
satisfies the separation principle. Hence, the stability of
the observer scheme is enough to assure an adequate error
convergence, i.e. there exist proportional gainsg1 and g2
such that lim

t→∞

[ŵ(t)− w(t)] = 0 if and only if

τ <
1

a
−

m
∑

i=1

1

ci
.

Then, considering the fact of the observer and controller
can be designed separately and reminding the stability con-
ditions stated previously in Lemmas 3 and 4, is clear that
the observer stability condition is more restrictive than the
controller one, i.e.,

1

a
−

m
∑

i=1

ci <
1

b
−

m
∑

i=1

1

ci
.

Therefore, there existk1, k2, g1 and g2 such that the
closed-loop system is stable if

τ <
1

a
−

m
∑

i=1

1

ci
.



V. EXAMPLES

The following numerical examples illustrate the perfor-
mance obtained by means of the observed based controller
proposed.

Example 1.Consider the delayed system with two unstable
poles characterized with the following transfer function:

Y (s)

U(s)
=

1

(s− 0.7)(s− 0.4)(s+ 5)(s+ 10)
e−0.5s (18)

Let be a = 0.7, b = 0.4, c1 = 5, c2 = 10, α = 1
andτ = 0.5 the parameters of the system, it is clear that the
stability conditions given in Lemma 5 are satisfied, therefore
there exists an observer based structure with proportional
gainsk1, k2, g1 and g2 such that the resulting closed-loop
system is stable due to:

τ = 0.5 <
1

a
−

m
∑

i=1

1

ci
= 1.128.

As stated before, the control scheme 3 holds the separation
property, hence the design of the controller and the observer
is independent. Therefore, to ensure the existence of a
proportional gaink2 such that the closed loop system is
stable, from Lemma 3:

k1 >
1

α(1
b
−

m
∑

i=1

1

ci
− τ)

+
a

α
= 1.28,

as the valuek1 can be as large as we wish, the gain chosen
is k1 = 20.7, (to place the pole ins = −20), from this, after
a frequency domain analysis, Nyquist stability criterion for
instance, we can compute the gaink2 such that the controller
scheme shown in the Figure 3 is stable, for this example,
400 < k2 < 1721.

The procedure to compute the observer gainsg1 and g2
is quite similar, the proportional gaing2 must be larger than
b to ensure the stability of the system. From Lemma 4 we
know that

g2 >
1

( 1
a
−

m
∑

i=1

1

ci
− τ)

+ b = 1.99,

as the valueg2 can be as large as we wish, the gain chosen
is g2 = 20.4, form this, after a frequency domain analysis,
we can compute the gaing1, such that the observer scheme
shown in the Figure 2 is stable, for this example,700 <
g1 < 1499.

Hence, the constant gains computed for this example are
k1 = 20.7, k2 = 1000, g1 = 1100 and g2 = 20.4.
The Figure 4 illustrate the performance of the observer
based controller in numerical simulations, the output and the
error are shown respectively. The continuous line indicates
the output of the closed loop system with identical initial
conditions betweeny(t) and ŷ(t). The dashed line point
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Fig. 4. Numerical Simulation Results.

to the system performance whit different initial conditions,
(ŷ(t)− y(t) = 0.1).

Below, for the same example, the observed based con-
troller is implemented by mean of the Data Acquisition Sys-
tem Sensoray 626, using its analog inputs/ouputs as sensors
and actuators communicated with a computer through the
MATLAB Real Time Workshop Toolbox. The real electronic
plant is built with commercial operational amplifiers, resis-
tors, and capacitors.

The stable outputy(t) of the closed loop system and the
error signale(t) are shown in the Figure 5.
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Fig. 5. Practical Implementation.

Remark 1:Notice that the controller has a efficient per-
formance regardless the different initial conditions between
the original process and the observer, and the parametrical
variations due to the use of commercial electronic devices.

VI. CONCLUSIONS

An observer based controller is proposed in this work
in order to stabilize high order system with two unstable
poles plus time delay. The necessary and sufficient conditions
that ensure existence of the stabilizing control scheme are
stated. The scheme is simple and may be easily implemented,
The procedure to design the controller can be performed
easily using well know analysis of linear control theory.
An implementation of the observer based controller is pre-
sented by mean of an electronic plant built with operational
amplifiers and the Data Acquisition system Sensoray 626.
The example show the closed loop system behavior working
under different initial conditions between the plant and the



observer, as well as the parametrical variations introduced
by the use of commercial electronic devices.

APPENDIX

A Proof of The Lemma 2.
Let us consider the High-Order Unstable System with time

delay given by:

G(s) =
α

(s− σ)(s+ φ1)(s+ φ2)...(s + φn)
e−τs. (A.1)

First, analyzing the First Order Unstable Delayed System
given by (6) and considering the Lemma 1, there exists a
proportional gaink such that a closed loop system with a
simple proportional output feedback is stable if and only if
τ < 1

σ
. An analysis in the frequency domain shall confirm

this result. The Nyquist stability criteria establishes that,
when closing the loop whit a proportional gaink, the system
will be stable if0 = N+P , with P being the number of poles
in the right half plane”s” andN the numbers of clockwise
round trips to the point−1 (N negative suggests round trips
in the opposite direction) in the Nyquist diagram. The angle
as a function of the frequencyω is given by:

∠G(jω) = −(180◦ − arctan
(ω

σ

)

)− (ωτ) (A.2)

Taking into consideration that for small frequencies
arctanωϕ ≈ ωϕ, it can be shown that the conditionτ < 1

σ

is equivalent to ask that the angle path taps at least one point
(for some frequency) with a value exceeding−180◦, that is
∠G(jω) > −180◦, i.e., one counter-clockwise round trip to
the point−1 in the Nyquist diagram. Now, analyzing the
system withn = 1 characterized by:

G(s) =
α

(s− σ)(s+ φ)
e−τs (A.3)

Then, there exists a proportional gaink such that a closed
loop system whit a simple proportional output feedback is
stable if and only ifτ < 1

σ
−

1

φ
. It can be easy to see that the

Nyquist condition remains the same (one counter-clockwise
round trip to the point−1 in the Nyquist diagram), now the
angle condition is:

∠G(jω) = −(180◦− arctan
(ω

σ

)

)− (arctan

(

ω

φ

)

)− (ωτ)

(A.4)
For small frequenciesarctanωϕ ≈ ωϕ, and starting from
∠G(jω) > −180◦ it is no difficult to conclude the relation
τ < 1

σ
− 1

φ
. Below considering the system whitn = 2 given

by:
G(s) =

α

(s− σ)(s+ φ1)(s+ φ2)
e−τs. (A.5)

It can be easy to see that the Nyquist condition remains the
same (one counter-clockwise round trip to the point−1 in
the Nyquist diagram), now the angle condition is:

∠G(jω) = −(180◦ − arctan
(ω

σ

)

)− (arctan

(

ω

φ1

)

)− · · ·

· · · − (arctan

(

ω

φ2

)

)− (ωτ) (A.6)

Again considering that for small frequenciesarctanωϕ ≈

ωϕ, and starting from∠G(jω) > −180◦ it is no difficult to
conclude the relationτ < 1

σ
−

1

φ1
−

1

φ2
.

This reflection can be generalized to anyn ∈ R con-
cluding that for the systems characterized by (A.1) with a
proportional output feedback, there exist a constant gaink
such that the closed loop system is stable if and only if:

τ <
1

σ
−

n
∑

i=1

1

φi

. (A.7)
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