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We obtain new asymptotical bounds for the symmetric tensor rank of multiplication in any finite extension of any finite field Fq. In this aim, we use the symmetric Chudnovsky-type generalized algorithm applied on a family of Shimura modular curves defined over F q 2 attaining the Drinfeld-Vlȃdut ¸bound and on the descent of this family over the definition field Fq.

Introduction

General context

The determination of the tensor rank of multiplication in finite fields is a problem which has been widely studied over the past decades both for its theoretical and practical importance. Besides it allows one to obtain multiplication algorithms with a low bilinear complexity, which determination is of crucial significance in cryptography, it has also its own interest in algebraic complexity theory. The pioneer work of D.V. and G.V. Chudnovsky [START_REF] Chudnovsky | Algebraic complexities and algebraic curves over finite fields[END_REF] resulted in the design of a Karatsuba-like algorithm where the interpolation is done on points of algebraic curves with a sufficient number of rational points over the ground field. Following these footsteps, several improvements and generalizations of this algorithm leading to ever sharper bounds have been proposed since by various authors [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF][START_REF] Arnaud | Évaluations dérivées, multiplication dans les corps finis et codes correcteurs[END_REF][START_REF] Cenk | On multiplication in finite fields[END_REF][START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF], and have required to investigate and combine different techniques and objects from algebraic geometry such as evaluations on places of arbitrary degree, generalized evaluations, towers of algebraic function fields. . . Furthermore, a lot of connexions with other topics have been made : Shparlinski, Tsfasman and Vlȃdut ¸ [START_REF] Shparlinski | Curves with many points and multiplication in finite fields[END_REF] have first developed a correspondence between decompositions of the tensor of multiplication and a family of linear codes with good parameters that they called (exact) supercodes. These codes, renamed multiplication friendly codes, had recently be more extensively studied and exploited by Cascudo, Cramer, Xing and Yang [START_REF] Cascudo | Asymptotic bound for multiplication complexity in the extensions of small finite fields[END_REF] to obtain good asymptotic results on the tensor rank. Moreover they combined their notion of multiplication friendly codes with two newly introduced primitives for function fields over finite fields [START_REF] Cascudo | The torsion-limit for algebraic function fields and its application to arithmetic secret sharing[END_REF], namely the torsion limit and systems of Riemann-Roch equations, to get news results not only on asymptotic tensor rank but also on linear secret sharing systems and frameproof codes. This stresses that the tensor rank determination problem has just as many mathematical interests as consequences and applications in various domains of computer science.

Tensor rank of multiplication

Let q = p s be a prime power, F q be the finite field with q elements and F q n be the degree n extension of F q . The multiplication of two elements of F q n is an F q -bilinear application from F q n × F q n onto F q n . Then it can be considered as an F q -linear application from the tensor product F q n ⊗ Fq F q n onto F q n . Consequently it can be also considered as an element T of (F q n ⊗ Fq F q n ) ⊗ Fq F q n , namely an element of F q n ⊗ Fq F q n ⊗ Fq F q n . More precisely, when T is written

T = r i=1 x i ⊗ y i ⊗ c i , (1) 
where the r elements x i and the r elements y i are in the dual F q n of F q n and the r elements c i are in F q n , the following holds for any x, y ∈ F q n :

x • y = r i=1 x i (x)y i (y)c i .
Unfortunately, the decomposition (1) is not unique.

Definition 1. The minimal number of summands in a decomposition of the tensor T of the multiplication is called the bilinear complexity of the multiplication and is denoted by µ q (n):

µ q (n) = min r T = r i=1 x i ⊗ y i ⊗ c i .
However, the tensor T admits also a symmetric decomposition:

T = r i=1 x i ⊗ x i ⊗ c i . (2) 
Definition 2. The minimal number of summands in a symmetric decomposition of the tensor T of the multiplication is called the symmetric bilinear complexity of the multiplication and is denoted by µ sym q (n):

µ sym q (n) = min r T = r i=1 x i ⊗ x i ⊗ c i .
One easily gets that µ q (n) ≤ µ sym q (n). We know some cases where µ q (n) = µ sym q (n) but to the best of our knowledge, no example is known where we can prove that µ q (n) < µ sym q (n). However, better upper bounds have been established in the asymmetric case and this may suggest that in general the asymmetric bilinear complexity of the multiplication and the symmetric one are distinct. In any case, at the moment, we must consider separately these two quantities. Remark that from an algorithmic point on view, as well as for some specific applications, a symmetric bilinear algorithm can be more interesting than an asymmetric one, unless if a priori, the constant factor in the bilinear complexity estimation is a little worse. In this note we study the asymptotic behavior of the symmetric bilinear complexity of the multiplication. More precisely we study the two following quantities:

M sym q = lim sup k→∞ µ sym q (k) k , (3) 
m sym q = lim inf k→∞ µ sym q (k) k . ( 4 
)

Known results

The bilinear complexity µ q (n) of the multiplication in the n-degree extension of a finite field F q is known for certain values of n. In particular, S. Winograd [START_REF] Winograd | On multiplication in algebraic extension fields[END_REF] and H. de Groote [START_REF] Hans | Characterization of division algebras of minimal rank and the structure of their algorithm varieties[END_REF] have shown that this complexity is ≥ 2n -1, with equality holding if and only if n ≤ 1 2 q + 1. Using the principle of the D.V. and G.V. Chudnovsky algorithm [START_REF] Chudnovsky | Algebraic complexities and algebraic curves over finite fields[END_REF] applied to elliptic curves, M.A. Shokrollahi has shown in [START_REF] Shokrollahi | Optimal algorithms for multiplication in certain finite fields using algebraic curves[END_REF] that the symmetric bilinear complexity of multiplication is equal to 2n for 1 2 q + 1 < n < 1 2 (q + 1 + (q)) where is the function defined by: (q) = greatest integer ≤ 2 √ q prime to q, if q is not a perfect square 2 √ q, if q is a perfect square.

Moreover, U. Baum and M.A. Shokrollahi have succeeded in [START_REF] Baum | An optimal algorithm for multiplication in F256/F4[END_REF] to construct effective optimal algorithms of type Chudnovsky in the elliptic case.

Recently in [START_REF] Ballet | Curves with many points and multiplication complexity in any extension of Fq[END_REF], [START_REF] Ballet | Low increasing tower of algebraic function fields and bilinear complexity of multiplication in any extension of Fq[END_REF], [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF], [START_REF] Ballet | On an application of the definition field descent of a tower of function fields[END_REF], [START_REF] Ballet | On the existence of non-special divisors of degree g and g -1 in algebraic function fields over Fq[END_REF], [START_REF] Ballet | On the bounds of the bilinear complexity of multiplication in some finite fields[END_REF] and [START_REF] Ballet | On the tensor rank of the multiplication in the finite fields[END_REF] the study made by M.A. Shokrollahi has been generalized to algebraic function fields of genus g.

Let us recall that the original algorithm of D.V. and G.V. Chudnovsky introduced in [START_REF] Chudnovsky | Algebraic complexities and algebraic curves over finite fields[END_REF] is symmetric by definition and leads to the following theorem: Theorem 3. Let q = p r be a power of the prime p. The symmetric tensor rank µ sym q (n) of multiplication in any finite field F q n is linear with respect to the extension degree; more precisely, there exists a constant C q such that:

µ sym q (n) ≤ C q n.
General forms for C q have been established since, depending on the cases where q is a prime or a prime power, a square or not. . . In order to obtain these good estimates for the constant C q , S. Ballet has given in [START_REF] Ballet | Curves with many points and multiplication complexity in any extension of Fq[END_REF] some easy to verify conditions allowing the use of the D.V. and G.V. Chudnovsky algorithm. Then S. Ballet and R. Rolland have generalized in [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF] the algorithm using places of degree one and two. The best finalized version of this algorithm in this direction is a generalization introduced by N. Arnaud in [START_REF] Arnaud | Évaluations dérivées, multiplication dans les corps finis et codes correcteurs[END_REF] and developed later by M. Cenk and F. Özbudak in [START_REF] Cenk | On multiplication in finite fields[END_REF]. This generalization uses several coefficients, instead of just the first one in the local expansion at each place on which we perform evaluations. Recently, Randriambolona introduced in [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF] a new generalization of the algorithm, which allows asymmetry in the construction.

From the results of [START_REF] Ballet | Curves with many points and multiplication complexity in any extension of Fq[END_REF] and the generalized symmetric algorithm, we obtain (cf. [START_REF] Ballet | Curves with many points and multiplication complexity in any extension of Fq[END_REF], [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF]): Theorem 4. Let q be a prime power and let n > 1 be an integer. Let F/F q be an algebraic function field of genus g and N k be the number of places of degree

k in F/F q . If F/F q is such that 2g + 1 ≤ q n-1 2 (q 1 2 -1) then: 1) if N 1 > 2n + 2g -2, then µ sym q (n) ≤ 2n + g -1,
2) if there exists a non-special divisor of degree g-1 and

N 1 + 2N 2 > 2n + 2g -2, then µ sym q (n) ≤ 3n + 3g, 3) if N 1 + 2N 2 > 2n + 4g -2, then µ sym q (n) ≤ 3n + 6g.
Theorem 5. Let q be a square ≥ 25. Then

m sym q ≤ 2 1 + 1 √ q -3 .
Moreover, let us recall a very useful lemma due to D.V. and G.V. Chudnovsky [START_REF] Chudnovsky | Algebraic complexities and algebraic curves over finite fields[END_REF] and Shparlinski, Tsfasman and Vlȃdut ¸[21, Lemma 1.2 and Corollary 1.3]. Lemma 6. For any prime power q and for all positive integers n and m, one has µ q (m) ≤ µ q (mn) ≤ µ q (n) • µ q n (m),

m q ≤ m q n • µ q (n)/n, M q ≤ M q n • µ q (n).
Note that these inequalities are also true in the symmetric case. Recall the following definitions that will be useful in the sequel. Let F/F q be a function field over the finite field F q and N 1 (F ) be the number of places of degree one of F/F q . Let us define:

N q (g) = max N 1 (F ) F is a function field over F q of genus g and A(q) = lim sup g→+∞ N q (g) g .
We know that (Drinfeld-Vlȃdut ¸bound):

A(q) ≤ q 1 2 -1,
the bound being reached if and only if q is a square.

2 New upper bounds for m sym q and M sym q

In this section, we give upper bounds for the asymptotical quantities M sym q and m sym q which are defined respectively by ( 3) and ( 4). As was noted in [11, p. 694] and more precisely in [12, Section 5] (cf. also [START_REF] Pieltant | Tours de corps de fonctions algébriques et rang de tenseur de la multiplication dans les corps finis[END_REF]), Theorems 3.1 and 3.9 in [START_REF] Shparlinski | Curves with many points and multiplication in finite fields[END_REF] are not completely correct. We are going to repair that in the following two propositions.

Proposition 7. Let q be a prime power such that A(q) > 2. Then

m sym q ≤ 2 1 + 1 A(q) -2 .
Proof. Let {F s /F q } s be a sequence of algebraic function fields defined over F q . Let us denote by g s the genus of F s /F q and by N 1 (s) the number of places of degree 1 of F s /F q . Suppose that the sequence (F s /F q ) s was chosen such that:

1. lim s→+∞ g s = +∞, 2. lim s→+∞ N1(s) gs

= A(q).
Let be any real number such that 0 < < A(q) 2 -1. Let us define the following integer

n s = N 1 (s) -2g s (1 + ) 2 .
Let us remark that

N 1 (s) = g s A(q) + o(g s ), so N 1 (s) -2(1 + )g s = g s A(q) -2(1 + ) + o(g s ).
Then the following holds:

1. there exists an integer s 0 such that for any s ≥ s 0 the integer n s is strictly positive, 2. for any real number c such that 0 < c < A(q) -2(1 + ) there exists an integer s 1 such that for any integer s ≥ s 1 the following holds: n s ≥ c 2 g s , hence n s tends to +∞, 3. there exists an integer s 2 such that for any integer s ≥ s 2 the following holds: 2g s + 1 ≤ q ns -1 2 q 1 2 -1 and consequently there exists a place of degree n s (cf. [22, Corollary 5.2.10 (c) p. 207]), 4. the following inequality holds: N 1 (s) > 2n s + 2g s -2 and consequently, using Theorem 4 we conclude that µ sym q (n s ) ≤ 2n s + g s -1.

Consequently,

µ sym q (n s ) n s ≤ 2 + g s -1 n s , so m sym q ≤ 2 + lim s→+∞ 2g s -2 N 1 (s) -2(1 + )g s -2 ≤ 2 1 + 1 A(q) -2(1 + ) .
This inequality holding for any > 0 sufficiently small, we then obtain the result.

Corollary 8. Let q = p m be a prime power such that q ≥ 4. Then

m sym q 2 ≤ 2 1 + 1 q -3 .
Note that this corollary lightly improves Theorem 5. Now in the case of arbitrary q, we obtain: Corollary 9. For any q = p m > 3,

m sym q ≤ 3 1 + 1 q -3 .
Proof. For any q = p m > 3, we have q 2 = p 2m ≥ 16 and thus Corollary 8 gives m sym q 2 ≤ 2 1 + 1 q-3 . Then, by Lemma 6, we have

m sym q ≤ m sym q 2 • µ sym q (2)/2
which gives the result since µ sym q

(2) = 3 for any q.

Now, we are going to show that for M sym q the same upper bound as for m sym q can be proved though only in the case of q being an even power of a prime. However, we are going to prove that in the case of q being an odd power of a prime, the difference between the two bounds is very slight.

Proposition 10. Let q = p m be a prime power such that q ≥ 4. Then

M sym q 2 ≤ 2 1 + 1 q -3 .
Proof. Let q = p m be a prime power such that q ≥ 4. Let us consider two cases. First, we suppose that q = p. Moreover, firstly, let us consider the characteristic p such that p = 11. Then it is known ( [START_REF] Tsfasman | Asymptotic properties of zeta-functions[END_REF] and [START_REF] Shparlinski | Curves with many points and multiplication in finite fields[END_REF]) that the curve

X k = X 0 (11 k ),
where k is the kth prime number, has a genus g k = k and satisfies N 1 (X k (F q 2 )) ≥ (q -1)(g k + 1) where N 1 (X k (F q 2 )) denotes the number of rational points over F q 2 of the curve X k . Let us consider a sufficiently large n. There exist two consecutive prime numbers k and k+1 such that (p -1)( k+1 + 1) > 2n + 2 k+1 -2 and (p -1)( k + 1) ≤ 2n + 2 k -2. Let us consider the algebraic function field F k+1 /F p 2 associated to the curve X k+1 of genus k+1 defined over F p 2 . Let N i (F k /F p 2 ) be the number of places of degree

i of F k /F p 2 . Then we get N 1 (F k+1 /F p 2 ) ≥ (p -1)( k+1 + 1) > 2n + 2 k+1 -2.
Moreover, it is known that N n (F k+1 /F p 2 ) > 0 for any integer n sufficiently large. We also know that k+1k ≤ 0,525 k for any integer k ≥ k 0 where k 0 can be effectively determined by [START_REF] Baker | The difference between consecutive primes, II[END_REF]. Then there exists a real number > 0 such that

k+1 -k = k ≤ 0,525 k namely k+1 ≤ (1 + ) k . It is sufficient to choose such that 0,475 k ≤ 1.
Consequently, for any integer n sufficiently large, this algebraic function field F k+1 /F p 2 satisfies Theorem 4, and so

µ sym p 2 (n) ≤ 2n + k+1 -1 ≤ 2n + (1 + ) k -1 with k ≤ 2n p-3 -p+1 p-3 .
Thus, as n → +∞ then k → +∞ and → 0, so we obtain M sym Now, let us study the more difficult case where q = p m with m > 1. We use the Shimura curves as in [START_REF] Shparlinski | Curves with many points and multiplication in finite fields[END_REF]. Recall the construction of this good family. Let L be a totally real abelian over Q number field of degree m in which p is inert, thus the residue class field O L /(p) of p, where O L denotes the ring of integers of L, is isomorphic to the finite field F q . Let ℘ be a prime of L which does not divide p and let B be a quaternion algebra for which

B ⊗ Q R = M 2 (R) ⊗ H ⊗ • • • ⊗ H
where H is the skew field of Hamilton quaternions. Let B be also unramified at any finite place if (m -1) is even; let B be also unramified outside infinity and ℘ if (m -1) is odd. Then, over L one can define the Shimura curve by its complex points X Γ (C) = Γ \ h, where h is the Poincaré upper half-plane and Γ is the group of units of a maximal order O of B with totally positive norm modulo its center. Hence, the considered Shimura curve admits an integral model over L and it is well known that its reduction X Γ,p (F p 2m ) modulo p is good and is defined over the residue class field O L /(p) of p, which is isomorphic to F q since p is inert in L. Moreover, by [START_REF] Ihara | Some remarks on the number of rational points of algebraic curves over finite fields[END_REF], the number N 1 (X Γ,p (F q 2 )) of F q 2 -points of X Γ,p is such that N 1 (X Γ,p (F q 2 )) ≥ (q -1)(g + 1), where g denotes the genus of X Γ,p (F q 2 ). Let now be a prime which is greater than the maximum order of stabilizers Γ z , where z ∈ h is a fixed point of Γ and let ℘ . Let Γ 0 ( ) be the following subgroup of GL 2 (Z ):

Γ 0 ( ) = a b c d ∈ GL 2 (Z ) ; c ≡ 0 (mod ) .
Suppose that splits completely in L. Then there exists an embedding L → Q where Q denotes the usual -adic field, and since

B ⊗ Q Q = M 2 (Q ), we have a natural map: φ : Γ → GL 2 (Z ).
Let Γ be the inverse image of Γ 0 ( ) in Γ under φ . Then Γ is a subgroup of Γ of index . We consider the Shimura curve X with

X (C) = Γ \ h.
It admits an integral model over L and so can be defined over L. Hence, its reduction X ,p modulo p is good and it is defined over the residue class field O L /(p) of p, which is isomorphic to F q since p is inert in L. Moreover the supersingular F p -points of X Γ,p split completely in the natural projection

π : X ,p → X Γ,p .
Thus, the number of rational points of X ,p (F q 2 ) verifies:

N 1 (X ,p (F q 2 )) ≥ (q -1)(g + 1).
Moreover, since is greater than the maximum order of a fixed point of Γ on h, the projection π is unramified and thus by Hurwitz formula,

g = 1 + (g -1)
where g is the genus of X (and also of X ,p ). Note that since the field L is abelian over Q, there exists an integer N such that the field L is contained in a cyclotomic extension Q(ζ N ) where ζ N denotes a primitive root of unity with minimal polynomial Φ N . Let us consider the reduction Φ N, of Φ N modulo the prime . Then, the prime is totally split in the integer ring of L if and only if the polynomial Φ N, is totally split in F = Z/ Z i.e. if and only if F contains the N th roots of unity which is equivalent to N | -1. Hence, any prime such that ≡ 1 (mod N ) is totally split in Q(ζ N ) and then in L. Since runs over primes in an arithmetical progression, the ratio of two consecutive prime numbers ≡ 1 (mod N ) tends to one.

Then for any real number > 0, there exists an integer k 0 such that for any integer k ≥ k 0 , k+1 ≤ (1 + ) k where k and k+1 are two consecutive prime numbers congruent to one modulo N . Then there exists an integer n such that for any integer n ≥ n , the integer k such that the two following inequalities hold k+1 (q -1)(g + 1) > 2n + 2g k+1 -2 and k (q -1)(g + 1) ≤ 2n + 2g k -2, satisfies k ≥ k 0 ; where g i = 1 + i (g -1) for any integer i. Let us consider the algebraic function field F k /F q 2 defined over the finite field F q 2 associated to the Shimura curve X k of genus g k . Let N i (F k /F q 2 ) be the number of places of degree i of F k /F q 2 . Then N 1 (F k+1 /F q 2 ) ≥ k+1 (q -1)(g + 1) > 2n + 2g k+1 -2 where g is the genus of the Shimura curve X Γ,p (F q 2 ). Moreover, it is known that there exists an integer n 0 such that for any integer n ≥ n 0 , N n (F k+1 /F q 2 ) > 0. Consequently, for any integer n ≥ max(n , n 0 ) this algebraic function field F k+1 /F q 2 satisfies Theorem 4 and so

µ sym q 2 (n) ≤ 2n + g k+1 -1 ≤ 2n + k+1 (g -1) ≤ 2n + (1 + ) k (g -1)
with k < 2n (q-1)(g+1)-2(g-1) . Thus, for any real number > 0 and for any n ≥ max(n , n 0 ), we obtain µ sym q 2 (n) ≤ 2n + 2n(1+ )(g-1) (q-1)(g+1)-2(g-1) which gives M sym q 2 ≤ 2 1 + 1 q-3 .

Proposition 11. Let q = p m be a prime power with odd m such that q ≥ 5. Then

M sym q ≤ 3 1 + 2 q -3 .
Proof. It is sufficient to consider the same families of curves than in Proposition 10. These families of curves {X k } are defined over the residue class field of p which is isomorphic to F q . Hence, we can consider the associated algebraic function fields F k /F q defined over F q . If q = p, we have

N 1 (F k+1 /F p 2 ) = N 1 (F k+1 /F p ) + 2N 2 (F k+1 /F p ) ≥ (p -1)( k+1 + 1) > 2n + 2 k+1 -2 since F k+1 /F p 2 = F k+1 /F p ⊗ Fp F p 2 .
Then, for any real number > 0 and for any integer n sufficiently large, we have µ sym p (n) ≤ 3n + 3g k+1 ≤ 3n + 3(1 + ) k by Theorem 4 since N n (F k+1 /F q 2 ) > 0. Then, by using the condition k ≤ 2n p-3 -p+1 p-3 , we obtain M sym p ≤ 3 1 + 2 p-3 . If q = p m with odd m, we have N 1 (F k+1 /F q 2 ) = N 1 (F k+1 /F q ) + 2N 2 (F k+1 /F q ) ≥ k+1 (q -1)(g + 1) > 2n + 2g k+1 -2 since F k+1 /F q 2 = F k+1 /F q ⊗ Fq F q 2 . Then, for any real number > 0 and for any integer n sufficiently large as in Proof of Proposition 10, we have

µ sym q (n) ≤ 3n + 3g k+1 ≤ 3n + 3(1 + ) k (g -1)
by Theorem 4 since N n (F k+1 /F q 2 ) > 0. Then, by using the condition k < 2n (q-1)(g+1)-2(g-1) we obtain M sym q ≤ 3 1 + 2 q-3 .

Remark 12. Note that in [13, Lemma IV.4], Elkies gives another construction of a family {χ s } ∞ s=1 of Shimura curves over F q satisfying for any prime power q and for any integer t ≥ 1 the following conditions:

(i) the genus g(F s ) tends to +∞ as s tends to +∞, where F s stands for the function field F q (χ s ), (ii) lim s→+∞ g(F s )/g(F s-1 ) = 1, (iii) lim s→+∞ B 2t (F s )/g(F s ) = (q t -1)/(2t), where B 2t (F s ) stands for the number of places of degree 2t in F s .

However, this construction is not sufficiently explicit to enable Cascudo and al. [START_REF] Cascudo | Torsion limits and Riemann-Roch systems for function fields and applications[END_REF] (and [START_REF] Cascudo | Asymptotic bound for multiplication complexity in the extensions of small finite fields[END_REF]) to derive the best bounds in all the cases (cf. Section 3). Indeed, let us recall the construction of Elkies.

Let q = p r be a prime power and put f = rt. Let K be a totally real number field such that K/Q is a Galois extension of degree f and p is totally inert in K. Let B be a quaternion algebra over K such that the set S of non-archimedean primes of K that are ramified in B is Galois invariant. Note that B can be constructed by taking S to be either the empty set for odd f , or the set of primes lying over p for even f (see [START_REF] Shparlinski | Curves with many points and multiplication in finite fields[END_REF]).

Let = p be a rational prime outside S such that is totally inert in K (note that in [START_REF] Shparlinski | Curves with many points and multiplication in finite fields[END_REF], is chosen such that it is completely splitting). Consider the Shimura curve X B 0 ( ) := Γ 0 ( O K )\h, where h is the upper half-plane and Γ 0 ( O K ) is the subgroup of the unit group of the maximal order of B mapping to upper triangle matrices modulo O K . Then X B 0 ( ) is defined over the rational field Q and has a good reduction modulo p. Thus, the reduction of X B 0 ( ) is defined over F p , and therefore over F q as well. This curve has at least (p f -1)g supersingular points over F p 2f = F q 2t , where g is the genus of X B 0 ( ). One knows that the ratio g / f tends to a fixed number a when tends to +∞. Now let { s } +∞ s=1 be the set of consecutive primes such that s are totally inert in K and s / ∈ S. By Chebotarev's density theorem, we have s / s-1 → 1 as s tends to +∞. Hence, g s /g s-1 → 1 as s tends to +∞.

For the family of function fields {F s /F q } of the above Shimura curves, the number N 2t (F s ) of F q 2t -rational places of F s satisfies lim g(Fs)→+∞ N 2t (F s ) g(F s ) = p f -1 = q t -1.

Moreover, (i) and (ii) are satisfied as well.

By the identity N 2t (F s ) = i|2t iB i (F s ), we get lim inf

g(Fs)→+∞ 1 g(F s ) 2t i=1 iB i (F s ) q t -1 ≥ lim inf g(Fs)→+∞ 1 g(F s ) i|2t iB i (F s ) q t -1 = lim inf g(Fs)→+∞ N 2t (F s ) g(F s )(q t -1) = 1.
Thus, the inequality lim inf

g(Fs)→+∞ 1 g(F s ) 2t i=1 iB i (F s ) q t -1 ≥ 1
is satisfied and consequently (iii) is also satisfied by [START_REF] Cascudo | Asymptotic bound for multiplication complexity in the extensions of small finite fields[END_REF]Lemma IV.3].

Comparison with the current best asymptotical bounds

In this section, we recall the results obtained in [13, Theorem IV.6 and IV.7] and [START_REF] Cascudo | Torsion limits and Riemann-Roch systems for function fields and applications[END_REF]Theorem 5.18] which are known to give the best current estimates for M sym q , and compare these bounds to those established in Propositions 10 and 11.

p 2 ≤

 2 2 1 + 1 p-3 . Note that for p = 11, Proposition 4.1.20 in [23] enables us to obtain g k = k + O(1).

Comparison with the bounds in

 [START_REF] Cascudo | Asymptotic bound for multiplication complexity in the extensions of small finite fields[END_REF]In [START_REF] Cascudo | Asymptotic bound for multiplication complexity in the extensions of small finite fields[END_REF], the authors establish the following results: Theorem 13. For any prime power q ≥ 2, one has

q t -1 t(q t -5) [START_REF] Ballet | On the tensor rank of the multiplication in the finite fields[END_REF] for any t ≥ 1 as long as q t -5 > 0, and

for any t ≥ 1 as long as q t -5 > 0.

Let us show that our results are better than those of this theorem except for some small values of q.

Bounds over F q . The estimates obtained in [START_REF] Cascudo | Asymptotic bound for multiplication complexity in the extensions of small finite fields[END_REF]Corollary IV.8.] show that [START_REF] Ballet | On the tensor rank of the multiplication in the finite fields[END_REF] gives better bounds than Proposition 11 for any q ≤ 13. Indeed, one has: However, as soon as q ≥ 15, our estimate is sharper than [START_REF] Ballet | On the tensor rank of the multiplication in the finite fields[END_REF]. Indeed, for q ≥ 15, Proposition 11 gives:

M sym q ≤ 3.5.

On the other hand, since µ sym q (2t) ≥ 4t -1, the best estimate that can be obtained with Bound ( 5) is:

Thus one must have 4 -1 t < 3.5 to obtain a better estimate than 3.5, which requires t = 1. In this case, (7) becomes:

which is less precise than the bound of Proposition 11 for any q ≥ 15.

Bounds over F q 2 . For q = 4, Proposition 10 gives M sym q 2 ≤ 4, which is less sharp than Bound (6) applied with t = 4, which leads to M sym q 2 ≤ 3.56. However, for any q ≥ 5, Proposition 10 gives better bounds than [START_REF] Ballet | On the bounds of the bilinear complexity of multiplication in some finite fields[END_REF]. Indeed, since µ sym q 2 (t) ≥ 2t -1, the best estimate that can be obtained with ( 6) is:

Since Proposition 10 gives M sym q 2 ≤ 3 for any q ≥ 5, it is necessary to have 4 -2 t < 3 to obtain a better bound with [START_REF] Ballet | On an application of the definition field descent of a tower of function fields[END_REF], which requires t = 1. This is impossible for q = 5 since Bound ( 6) is undefined in this case, and for q > 5 and t = 1, (8) becomes:

which is less sharp than the bound obtained from Proposition 10. [START_REF] Cascudo | Torsion limits and Riemann-Roch systems for function fields and applications[END_REF] In [START_REF] Cascudo | Torsion limits and Riemann-Roch systems for function fields and applications[END_REF] (which is an extended version of [START_REF] Cascudo | The torsion-limit for algebraic function fields and its application to arithmetic secret sharing[END_REF]), the authors establish the following asymptotic bounds: Theorem 14. For a prime power q, one has

Comparison with the bounds in

t(q t -2-2 log q 2) , otherwise for any t ≥ 1 as long as q t -2 -log q 2 > 0 for even q; and q t -2 -2 log q 2 > 0 for odd q. This bound always beats the one of Proposition 11 for arbitrary q (for example, by setting t = 1 and µ sym q (2t) = 4t -1). Nevertheless, if we focus on the case of M sym q 2 , then the bound of Proposition 10 is better as soon as q > 5 since in this case, it gives:

M sym q 2 < 3 which can not be reached with the bound of Theorem 3.2, since the best that one can get is:

q t -2-log q 2 , if 2|q 4 -1 t 1 + 1+2 log q 2 q t -2-2 log q 2 , otherwise which obviously can not be < 3.