Shimura modular curves and asymptotic symmetric tensor rank of multiplication in any finite field - Archive ouverte HAL Access content directly
Conference Papers Year : 2013

Shimura modular curves and asymptotic symmetric tensor rank of multiplication in any finite field

Abstract

We obtain new asymptotical bounds for the symmetric tensor rank of multiplication in any finite extension of any finite field~$\F_q$. In this aim, we use the symmetric Chudnovsky-type generalized algorithm applied on a family of Shimura modular curves defined over $\F_{q^2}$ attaining the Drinfeld-Vl\u{a}du\c{t} bound and on the descent of this family over the definition field $\F_q$.
Fichier principal
Vignette du fichier
ModularAsyMultBCP-SoumisModif4-llcns-CAI2013.pdf (359.49 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00828070 , version 1 (31-05-2013)

Identifiers

Cite

Stéphane Ballet, Jean Chaumine, Julia Pieltant. Shimura modular curves and asymptotic symmetric tensor rank of multiplication in any finite field. Conference on Algebraic Informatics, Sep 2013, Porquerolles Island, France. pp.160-172, ⟨10.1007/978-3-642-40663-8_16⟩. ⟨hal-00828070⟩
503 View
185 Download

Altmetric

Share

Gmail Facebook X LinkedIn More