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In this paper, we obtain new bounds for the tensor rank of multiplication in any extension of F 2 . In particular, it also enables us to obtain the best known asymptotic bound. To this aim, we use the generalized algorithm of type Chudnovsky with derivative evaluations on places of degree one, two and four applied on the descent over F 2 of a Garcia-Stichtenoth tower of algebraic function fields defined over F 2 4 .

1. Introduction 1.1. General context. The determination problem of the tensor rank of multiplication in finite fields has been widely studied over the past 20 years. This problem is worthwhile both because of its theoretical interest and because it has several applications in the area of information theory such as cryptography and coding theory. In particular, Shparlinski, Tsfasman and Vladut have developed a correspondence between bilinear multiplication algorithms and linear codes with good parameters [START_REF] Shparlinski | Curves with many points and multiplication in finite fields[END_REF]. Their work is an achievement of the brilliant idea introduced by D.V. and G.V. Chudnovsky in [START_REF] Chudnovsky | Algebraic complexities and algebraic curves over finite fields[END_REF]. Recently, Cenk and Özbudak have presented in [START_REF] Cenk | On multiplication in finite fields[END_REF] the best general version of Chudnovsky-Chudnovsky's algorithm and shown its significance in cryptography.

The theory of bilinear complexity of multiplication is a part of algebraic complexity theory. For a more extensive presentation of the background and the framework of this topic, we refer the reader to the classic book [START_REF] Bürgisser | Algebraic Complexity Theory[END_REF] by Bürgisser, Clausen and Shokrollahi.

1.2. Tensor rank of multiplication. Let F q be a finite field with q elements where q is a prime power and let F q n be a F q -extension of degree n. We denote by m the multiplication in the F q -vector space F q n . The multiplication m is a bilinear map from F q n × F q n into F q n , thus it corresponds to a linear map M from the tensor product F q n F q n over F q into F q n . One can also represent M by a tensor t M ∈ F * q n F * q n F q n where F * q n denotes the dual of F q n over F q . Hence the product of two elements x and y of F q n is the convolution of this tensor with x ⊗ y ∈ F q n F q n . If

t M = λ l=1 a l ⊗ b l ⊗ c l (1)
where a l ∈ F * q n , b l ∈ F * q n , c l ∈ F q n , then

x • y = λ l=1 a l (x)b l (y)c l . (2) 
Every expression ( 2) is called a bilinear multiplication algorithm U. The integer λ is called the bilinear complexity µ(U) of U.

Let us set µ q (n) = min U µ(U),
where U is running over all bilinear multiplication algorithms in F q n over F q . Then µ q (n) corresponds to the minimum possible number of summands in any tensor decomposition of type [START_REF] Arnaud | Évaluations dérivées, multiplication dans les corps finis et codes correcteurs[END_REF], which is the rank of the tensor of multiplication in F q n over F q . The tensor rank µ q (n) is also called the bilinear complexity of multiplication in F q n over F q .

1.3. Notations. Let F/F q be an algebraic function field of one variable of genus g, with constant field F q , associated to a curve X defined over F q .

For any place P we define F P to be the residue class field of P and O P its valuation ring. Every element t ∈ P such that P = tO P is called a local parameter for P and we denote by v P a discrete valuation associated to the place P in F/F q . Recall that this valuation does not depend on the choice of the local parameter. Let f ∈ F \{0}, we denote by (f ) := P v P (f )P where P is running over all places in F/F q , the principal divisor of f . If D is a divisor then L(D) = {f ∈ F/F q ; D + (f ) ≥ 0} ∪ {0} is a vector space over F q whose dimension dim D is given by the Riemann-Roch Theorem.

The degree of a divisor D = P a P P is defined by deg D = P a P deg P where deg P is the dimension of F P over F q .

The order of a divisor D = P a P P in P is the integer a P denoted by ord P D. The support of a divisor D is the set supp D of the places P such that ord P D = 0. Two divisors D and D are said to be equivalent if D = D + (x) for an element x ∈ F \{0}.

1.4. Known results.

1.4.1. General results. The bilinear complexity µ q (n) of the multiplication in the n-degree extension of a finite field F q is known for certain values of n. In particular, S. Winograd [START_REF] Winograd | On multiplication in algebraic extension fields[END_REF] and H. de Groote [START_REF] Hans | Characterization of division algebras of minimal rank and the structure of their algorithm varieties[END_REF] have shown that this complexity is ≥ 2n -1, with equality holding if and only if n ≤ 1 2 q + 1. Using the principle of the D.V. and G.V. Chudnovsky algorithm [START_REF] Chudnovsky | Algebraic complexities and algebraic curves over finite fields[END_REF] applied to elliptic curves, M.A. Shokrollahi has shown in [START_REF] Shokrollahi | Optimal algorithms for multiplication in certain finite fields using algebraic curves[END_REF] that the bilinear complexity of multiplication is equal to 2n for 1 2 q + 1 < n < 1 2 (q + 1 + (q)) where is the function defined by:

(q) = greatest integer ≤ 2 √ q prime to q, if q is not a perfect square 2 √ q, if q is a perfect square.

Moreover, U. Baum and M.A. Shokrollahi have succeeded in [START_REF] Baum | An optimal algorithm for multiplication in F 256 /F 4[END_REF] to construct effective optimal algorithms of type Chudnovsky in the elliptic case.

Recently in [START_REF] Ballet | Curves with many points and multiplication complexity in any extension of F q[END_REF], [START_REF] Ballet | Low increasing tower of algebraic function fields and bilinear complexity of multiplication in any extension of F q[END_REF], [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF], [START_REF] Ballet | On an application of the definition field descent of a tower of function fields[END_REF], [START_REF] Ballet | On the existence of non-special divisors of degree g and g -1 in algebraic function fields over F q[END_REF], [START_REF] Ballet | On the bounds of the bilinear complexity of multiplication in some finite fields[END_REF] and [START_REF] Ballet | On the tensor rank of the multiplication in the finite fields[END_REF] the study made by M.A. Shokrollahi has been generalized to algebraic function fields of genus g.

Let us recall that the original algorithm of D.V. and G.V. Chudnovsky introduced in [START_REF] Chudnovsky | Algebraic complexities and algebraic curves over finite fields[END_REF] leads to the following theorem: Theorem 1.1. Let q = p r be a power of the prime p. The tensor rank µ q (n) of multiplication in any finite field F q n is linear with respect to the extension degree; more precisely, there exists a constant C q such that:

µ q (n) ≤ C q n.
Moreover, one can give explicit values for C q :

Proposition 1.2. The best known values for the constant C q defined in the previous theorem are:

C q =                      if q = 2 then 54 [2] else if q = 3 then 27 [2] else if q = p ≥ 5 then 3(1 + 4 q-3 ) [5] else if q = p 2 ≥ 25 then 2(1 + 2 √ q-3 ) [5] else if q = p 2k ≥ 16 then 2(1 + p √ q-3 ) [3] else if q ≥ 16 then 3(1 + 2p q-3 ) [9], [7] and [6] else if q > 3 then 6(1 + p q-3 ) [3].
In order to obtain these good estimates for the constant C q , S. Ballet has given in [START_REF] Ballet | Curves with many points and multiplication complexity in any extension of F q[END_REF] some easy to verify conditions allowing the use of the D.V. and G.V. Chudnovsky algorithm. Then S. Ballet and R. Rolland have generalized in [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF] the algorithm using places of degree one and two.

Let us present the last version of this algorithm, which is a generalization of the algorithm of type Chudnovsky introduced by N. Arnaud in [START_REF] Arnaud | Évaluations dérivées, multiplication dans les corps finis et codes correcteurs[END_REF] and M. Cenk and F. Özbudak in [START_REF] Cenk | On multiplication in finite fields[END_REF]. This generalization uses several coefficients in the local expansion at each place P i instead of just the first one. Due to the way to obtain the local expansion of a product from the local expansion of each term, the bound for the bilinear complexity involves the complexity notion M q (u) introduced by M. Cenk and F. Özbudak in [START_REF] Cenk | On multiplication in finite fields[END_REF] and defined as follows: Definition 1.3. We denote by M q (u) the minimum number of multiplications needed in F q in order to obtain coefficients of the product of two arbitrary u-term polynomials modulo

x u in F q [x].
Let us recall that for all prime powers q, we trivially have M q (2) ≤ 3. Now we introduce the generalized algorithm of type Chudnovsky described in [START_REF] Cenk | On multiplication in finite fields[END_REF].

Theorem 1.4. Let • q be a prime power, • F/F q be an algebraic function field, • Q be a degree n place of F/F q , • D be a divisor of F/F q , • P = {P 1 , . . . , P N } be a set of N places of arbitrary degree, • u 1 , . . . , u N be positive integers. We suppose that Q and all the places in P are not in the support of D and that: a) the map

Ev Q : L(D) → F q n F Q f -→ f (Q) is onto, b) the map Ev P : L(2D) -→ F q deg P 1 u 1 × F q deg P 2 u 2 × • • • × F q deg P N u N f -→ ϕ 1 (f ), ϕ 2 (f ), . . . , ϕ N (f )
is injective, where the map ϕ i is defined by

ϕ i : L(2D) -→ F q deg P i u i f -→ f (P i ), f (P i ), . . . , f (u i -1) (P i ) with f = f (P i ) + f (P i )t i + f (P i )t 2 i + . . . + f (k) (P i )t k i + .
. ., the local expansion at P i of f in L(2D), with respect to the local parameter t i . Note that we set f (0) = f . Then

µ q (n) ≤ N i=1 µ q (deg P i ) M q deg P i (u i ).
First of all, note that we can define the map Ev Q since Q is not in the support of D. Indeed, for such a place Q, we have L(D) ⊆ O Q , so Ev Q is the restriction of the projection π : O Q → F Q . Moreover, the application Ev P can be defined since L(2D) ⊆ O P i for all integers i ∈ {1, . . . , n}, so the local expansion of f ∈ L(2D) at any place P i ∈ P exists from [START_REF] Niederreiter | Algebraic Geometry in Coding Theory & Cryptography[END_REF] (1.4). Indeed, this follows from the fact that the intersection P ∩ supp D is empty, so v P i (f ) ≥ 0 and the coefficients of the local expansion of f at P i can be defined inductively.

Let us remark that the algorithm given in [START_REF] Chudnovsky | Algebraic complexities and algebraic curves over finite fields[END_REF] by D.V. and G.V. Chudnovsky is the case deg P i = 1 and u i = 1 for i = 1, . . . , N . The generalization introduced here is useful: it allows us to use certain places many times, thus less places are necessary to get the injectivity of Ev P . In particular, we have the following results, obtained by N. Arnaud in [START_REF] Arnaud | Évaluations dérivées, multiplication dans les corps finis et codes correcteurs[END_REF].

Corollary 1.5. Let • q be a prime power, • F/F q be an algebraic function field, • Q be a degree n place of F/F q , • D be a divisor of F/F q , • P = {P 1 , . . . , P N 1 , P N 1 +1 , . . . , P N 1 +N 2 } be a set of N 1 places of degree one and N 2 places of degree two, • 0 ≤ l 1 ≤ N 1 and 0 ≤ l 2 ≤ N 2 be two integers. We suppose that Q and all the places in P are not in the support of D and that: a) the map

Ev Q : L(D) → F q n F Q is onto, b) the map Ev P :    L(2D) → F N 1 q × F l 1 q × F N 2 q 2 × F l 2 q 2 f → f (P 1 ), . . . , f (P N 1 ), f (P 1 ), . . . , f (P l 1 ), f (P N 1 +1 ), . . . , f (P N 1 +N 2 ), f (P N 1 +1 ), . . . , f (P N 1 +l 2 ) is injective. Then µ q (n) ≤ N 1 + 2l 1 + 3N 2 + 6l 2 .
Proof. Up to reindexing the places, the result follows from Theorem 1.4 applied with

N = N 1 + N 2 , deg P i = 1 for i = 1, . . . , N 1 , deg P i = 2 for i = N 1 + 1, . . .

, N , and

u i = 2, if 1 ≤ i ≤ l 1 or N 1 + 1 ≤ i ≤ N 1 + l 2 , 1, else.
Recall that for all prime powers q, we have µ q (2) = 3 and M q (2) ≤ 3.

Then applying Theorem 1.4, we get:

µ q (n) ≤ l 1 i=1 µ q (1) M q (2) + N 1 i=l 1 +1 µ q (1) M q (1) + N 1 +l 2 i=N 1 +1 µ q (2) M q 2 (2) + N i=N 1 +l 2 +1 µ q (2) M q 2 (1) ≤ 3l 1 + N 1 -l 1 + 9l 2 + 3(N 2 -l 2 ) = N 1 + 2l 1 + 3N 2 + 6l 2 .
Moreover, from the last corollary applied on Garcia-Stichtenoth towers, N. Arnaud obtained the two following bounds.

Theorem 1.6. Let q = p r ≥ 4 be a prime power. Then

(i) µ q 2 (n) ≤ 2   1 + p q -3 + (p -1) 1 -1 q+1   n, (ii) µ q (n) ≤ 3   1 + 2p q -3 + 2(p -1) 1 -1 q+1   n.
1.4.2. Asymptotic bounds for the extensions of F 2 . From the asymptotic point of view, let us recall that I. Shparlinski, M. Tsfasman and S. Vladut have given in [START_REF] Shparlinski | Curves with many points and multiplication in finite fields[END_REF] many interesting remarks on the algorithm of D.V. and G.V. Chudnovsky. In particular, they considered the following asymptotic bounds for the bilinear complexity

M q = lim sup k→∞ µ q (k) k and m q = lim inf k→∞ µ q (k) k .
In [START_REF] Shparlinski | Curves with many points and multiplication in finite fields[END_REF], they claim that M 2 ≤ 27, but it is possible to obtain easily a better bound for M 2 from one of the bounds of N. Arnaud. Indeed, by using Bound (ii) of Theorem 1.6, we obtain:

Proposition 1.7. M 2 ≤ 297 13 ≈ 22.85.
Proof. For all m ≥ 1, we have

µ q (n) ≤ µ q (mn) ≤ µ q (m) • µ q m (n).
Thus for q = 2 and m = 2 we get

µ 2 (n) ≤ µ 2 (2) • µ 4 (n).
Remembering that µ 2 (2) = 3 and applying Bound (ii) of Theorem 1.6, we obtain

µ 2 (n) ≤ 3 • 3 1 + 4 1 + 2 1 -1 5 n = 297 13 n.
Remark: Using Bound (i) from Theorem 1.6, we obtain M 2 ≤ 38. Indeed, for all m ≥ 1, we have

µ q (n) ≤ µ q (mn) ≤ µ q (m) • µ q m (n).
Thus for q = 2 and m = 4 we get µ 2 (n) ≤ µ 2 (4) • µ 16 (n). Remembering that µ 2 (4) ≤ 9 and applying Bound (i) of Theorem 1.6, we obtain

µ 2 (n) ≤ 9 • 2 1 + 2 2 -1 5 n = 38n.
1.5. New results established in this paper. Our main result concerns an improvement of the asymptotic bound for the tensor rank of multiplication in any extension of F 2 . More precisely, we prove that:

M 2 ≤ 477 26 ≈ 18.35.
This result comes from a new bound for the tensor rank of multiplication in any extension of F 2 that we also obtain in this paper, namely:

µ 2 (n) ≤ 477 26 n + 45 2 .
In Section 2, we recall some results about a modified Garcia-Stichtenoth tower [START_REF] Garcia | A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound[END_REF] studied in [START_REF] Ballet | Low increasing tower of algebraic function fields and bilinear complexity of multiplication in any extension of F q[END_REF], [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF], [START_REF] Ballet | On an application of the definition field descent of a tower of function fields[END_REF] and [START_REF] Ballet | On the bounds of the bilinear complexity of multiplication in some finite fields[END_REF]. Specially, we present the descent of the definition field of this Garcia-Stichtenoth tower on the field F 2 obtained in [START_REF] Ballet | Families of curves over any finite field attaining the generalized Drinfeld-Vladut bound[END_REF] and study some of its properties which will be useful in Section 3. In Section 3, we specialize the generalized algorithm of type Chudnovsky by using places of degree one, two and four with derivative evaluations. In order to obtain new bounds for the bilinear complexity, we apply this specialized algorithm to suitable steps of the tower presented in Section 2. In particular, in Section 4 these new bounds lead to an improvement of known results on the asymptotic tensor rank of multiplication in the extensions of F 2 .

2.

A good sequence of function fields defined over F 2

In this section, we present a sequence of algebraic function fields defined over F 2 constructed and studied in [START_REF] Ballet | Families of curves over any finite field attaining the generalized Drinfeld-Vladut bound[END_REF], which will be used to obtain the new bounds for the tensor rank of multiplication in the extensions of F 2 .

2.1. Definition of Garcia-Stichtenoth towers. First, we present a modified Garcia-Stichtenoth tower (cf. [START_REF] Garcia | A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound[END_REF], [START_REF] Ballet | Low increasing tower of algebraic function fields and bilinear complexity of multiplication in any extension of F q[END_REF], [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF]) having good properties. Let us consider a finite field F q 2 with q = p r , for p a prime number and r an integer. Let us consider the Garcia-Stichtenoth elementary abelian tower T 0 over F q 2 constructed in [START_REF] Garcia | A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound[END_REF] and defined by the sequence (F 1 , F 2 , . . .) where

F k+1 := F k (z k+1 )
and z k+1 satisfies the equation:

z q k+1 + z k+1 = x q+1 k with x k := z k /x k-1 in F k (for k ≥ 1).
Moreover F 1 := F q 2 (x 0 ) is the rational function field over F q 2 and F 2 the Hermitian function field over F q 2 . Let us denote by g k the genus of F k in T 0 /F q 2 , we recall the following formulae:

(3)

g k = q k + q k-1 -q k+1 2 -2q k-1 2 + 1 if k ≡ 1 mod 2, q k + q k-1 -1 2 q k 2 +1 -3 2 q k 2 -q k 2 -1 + 1 if k ≡ 0 mod 2.
If r > 1, we consider the completed Garcia-Stichtenoth tower

T 1 /F q 2 = F 1,0 ⊆ F 1,1 ⊆ • • • ⊆ F 1,r = F 2,0 ⊆ F 2,1 ⊆ • • • ⊆ F 2,r = F 3,0 ⊆ • • • considered in [3] such that F k ⊆ F k,s ⊆ F k+1 for any integer s such that s = 0, . . . , r, with F k,0 = F k and F k,r = F k+1 .
Let us denote by g k,s the genus of F k,s /F q 2 in T 1 /F q 2 and by N i (F k,s /F q 2 ) the number of places of degree i of F k,s /F q 2 in T 1 /F q 2 . Recall that each extension F k,s /F k is Galois of degree p s wih full constant field F q 2 . Moreover, we know by [START_REF] Ballet | On an application of the definition field descent of a tower of function fields[END_REF] that the descent of the definition field of the tower T 1 /F q 2 from F q 2 to F q is possible. More precisely, there exists a tower T 2 /F q defined over F q given by a sequence:

T 2 /F q = G 1,0 ⊆ G 1,1 ⊆ • • • ⊆ G 1,r = G 2,0 ⊆ G 2,1 ⊆ • • • ⊆ G 2,r = G 3,0 ⊆ • • •
defined over the constant field F q and related to the tower T 1 /F q 2 by F k,s = F q 2 G k,s for all k and s,

namely F k,s /F q 2 is the constant field extension of G k,s /F q .
2.2. Descent of the definition field of a Garcia-Stichtenoth tower on the field F 2 . Now, we are interested to search the descent of the definition field of the tower T 1 /F q 2 from F q 2 to F p if it is possible.

In fact, one cannot establish a general result but one can prove that it is possible in the case of characteristic 2 which is given by the following result obtained in [START_REF] Ballet | Families of curves over any finite field attaining the generalized Drinfeld-Vladut bound[END_REF]. Note that in order to simplify the presentation, we are going to set the results by using the variable p and to give the proofs to be self-contained.

Proposition 2.1. Let p = 2. If q = p 2 , the descent of the definition field of the tower T 1 /F q 2 from F q 2 to F p is possible. More precisely, there exists a tower T 3 /F p defined over F p given by a sequence:

T 3 /F p = H 1,0 ⊆ H 1,1 ⊆ H 1,2 = H 2,0 ⊆ H 2,1 ⊆ H 2,2 = H 3,0 ⊆ • • •
defined over the constant field F p and related to the towers T 1 /F q 2 and T 2 /F q by F k,s = F q 2 H k,s for all k and s = 0, 1, 2, G k,s = F q H k,s for all k and s = 0, 1, 2, namely F k,s /F q 2 is the constant field extension of G k,s /F q and H k,s /F p and G k,s /F q is the constant field extension of H k,s /F p .

Proof.

In the proof, we use p = 2. Let x 1 be a transcendent element over F 2 and let us set

H 1 = F 2 (x 1 ), G 1 = F 4 (x 1 ), F 1 = F 16 (x 1 ).
We define recursively for k ≥ 1

(1)

z k+1 such that z 4 k+1 + z k+1 = x 5 k , (2) t k+1 such that t 2 k+1 + t k+1 = x 5 k (or alternatively t k+1 = z k+1 (z k+1 + 1)), (3) x k+1 = z k+1 /x k , (4) H k,1 = H k,0 (t k+1 ) = H k (t k+1 ), H k+1,0 = H k+1 = H k (z k+1 ), G k,1 = G k,0 (t k+1 ) = G k (t k+1 ), G k+1,0 = G k+1 = G k (z k+1 ), F k,1 = F k,0 (t k+1 ) = F k (t k+1 ), F k+1,0 = F k+1 = F k (z k+1 ).
By [START_REF] Ballet | On an application of the definition field descent of a tower of function fields[END_REF], the tower 

T 1 = (F k,i ) k≥1,
H k /F p ⊆ H k,s /F p ⊆ H k+1 /F p with H k,0 = H k and H k,2 = H k+1 , 2) g(H k,s /F p ) ≤ g(H k+1 /Fp) p 2-s + 1 with g(H k+1 /F p ) = g k+1 ≤ q k+1 + q k , 3) N 1 (H k,s /F p ) + 2N 2 (H k,s /F p ) + 4N 4 (H k,s /F p ) ≥ (q 2 -1)q k-1 p s .

Proof.

The property 1) follows directly from Proposition 2.1. Moreover, by Theorem 2.2 in [START_REF] Ballet | Low increasing tower of algebraic function fields and bilinear complexity of multiplication in any extension of F q[END_REF], we have g(F k,s ) ≤ g(F k+1 ) p 2-s + 1 with g(F k+1 ) = g k+1 ≤ q k+1 + q k . Then, as the algebraic function field F k,s is a constant field extension of H k,s , for any integers k and s the algebraic function fields F k,s and H k,s have the same genus. So, the inequality satisfied by the genus g(F k,s ) is also true for the genus g(H k,s ). Moreover, the number of places of degree one N 1 (F k,s /F q 2 ) of F k,s /F q 2 is such that N 1 (F k,s /F q 2 ) ≥ (q 2 -1)q k-1 p s . Then, as the algebraic function field F k,s is a constant field extension of H k,s of degree 4, it is clear that for any integers k and s, we have

N 1 (H k,s /F p ) + 2N 2 (H k,s /F p ) + 4N 4 (H k,s /F p ) ≥ (q 2 -1)q k-1 p s .

Some preliminary results.

Here we establish some technical results about genus and number of places of each step of the tower T 3 /F 2 defined in Section 2.2. These results will allow us to determine a suitable step of the tower to apply the algorithm on. In order to simplify the presentation, we still use the variables p and q. Lemma 2.3. Let q = p 2 = 4. We have the following bounds for the genus of each step of the tower T 3 /F p : i)

g k > q k for all k ≥ 4, ii) g k ≤ q k-1 (q + 1) - √ qq k 2 , iii) g k,s ≤ q k-1 (q + 1)p s for all k ≥ 1, s = 0, 1, 2, iv) g k,s ≤ q k (q+1)-q k 2 (q-1) p 2-s
for all k ≥ 2, s = 0, 1, 2.

Proof.

i) According to Formula (3) recalled in Section 2.1, we know that if k ≡ 1 mod 2, then

g k = q k + q k-1 -q k+1 2 -2q k-1 2 + 1 = q k + q k-1 2 (q k-1 2 
-q -2) + 1.

Since q = 4 and k ≥ 4, we have q k-1 2

-q -2 > 0, thus g k > q k . Else if k ≡ 0 mod 2, then

g k = q k +q k-1 - 1 2 q k 2 +1 - 3 2 q k 2 -q k 2 -1 +1 = q k +q k 2 -1 (q k 2 - 1 2 q 2 - 3 2 q-1)+1.
Since q = 4 and k ≥ 4, we have

q k 2 -1 2 q 2 -3 2 q -1 > 0, thus g k > q k .
ii) It follows from Formula (3) since for all k ≥ 1 we have 2q k-1 2

≥ 1 which works out for odd k cases and 3 2 q k 2 + q k 2 -1 ≥ 1 which works out for even k cases. Recall that 1 2 q = √ q here. iii) If s = 2, then according to Proposition 2.2, we have

g k,s = g k+1 ≤ q k+1 + q k = q k-1 (q + 1)p 2 .
Else, s < 2 and Proposition 2.2 says that g k,s ≤ g k+1 p 2-s + 1. Moreover, since q k+2 2 ≥ q and 1 2 q k+1 2 +1 ≥ q, we obtain g k+1 ≤ q k+1 + q k -q + 1 from Formula (3). Thus, we get g k,s ≤ q k+1 + q k -q + 1 p 2-s + 1 = q k-1 (q + 1)p s -p s + p s-2 + 1 ≤ q k-1 (q + 1)p s + p s-2 ≤ q k-1 (q + 1)p s since 0 ≤ p s-2 < 1 and g k,s ∈ N.

iv) It follows from ii) since Proposition 2.2 gives g k,s ≤ g k+1 p 2-s + 1, so g k,s ≤

q k (q+1)- √ qq k+1 2 p 2-s + 1 which gives the result since p 2-s ≤ q k 2 for all k ≥ 2. Lemma 2.4. Let q = p 2 = 4. For all k ≥ 1 and 0 ≤ s ≤ 2, we set D k,s := p s+1 q k-1 . Then we have i) ∆g k,s := g k,s+1 -g k,s ≥ D k,s , ii) N 1 (H k,s /F p ) + 2N 2 (H k,s /F p ) + 4N 4 (H k,s /F p ) > 2D k,s .
Proof. i) From Hurwitz Genus Formula, we know that g k,s+1 -1 ≥ p(g k,s -1) for any integer k ≥ 1 and s = 0, 1, so g k,s+1 -g k,s ≥ (p -1)(g k,s -1). Applying s more times Hurwitz Genus Formula, we get g k,s+1 -g k,s ≥ (p -1)p s (g k -1) thus for k ≥ 4 we have g k,s+1 -g k,s ≥ (p -1)p s q k because g k > q k according to Lemma 2.3 i).

ii) It is obvious since q 2 -1 > p 2 and since from Proposition 2.2 we have

N 1 (H k,s /F 2 ) + 2N 2 (H k,s /F 2 ) + 4N 4 (H k,s /F 2 ) ≥ (q 2 -1)q k-1 p s .
Lemma 2.5. Let q = p 2 = 4 and N i (k, s) := N i (H k,s /F p ). For all k ≥ 1 and s = 0, 1, 2, we have

sup n ∈ N | 2n ≤ N 1 (k, s)+2N 2 (k, s)+4N 4 (k, s)-2g k,s -7 ≥ 5 2 q k-1 - 7 2 .
Proof. From Proposition 2.2 and Lemma 2.3 iii), we get

N 1 (k, s) + 2N 2 (k, s) + 4N 4 (k, s) -2g k,s -7 ≥ (q 2 -1)q k-1 p s -2q k-1 (q + 1)p s -7 = p s q k-1 (q + 1)(q -3) -7 thus we have sup n ∈ N | 2n ≤ N 1 (k, s) + 2N 2 (k, s) + 4N 4 (k, s) - 2g k,s -7 ≥ 1 2 p s q k-1 (q + 1)(q -3) -7
2 and we get the result since q = 4 and s ≥ 0.

Lemma 2.6. Let n be an integer ≥ 2. Then there exists a step H k,s /F 2 of the tower T 3 /F 2 introduced in Section 2.2 such that both following conditions are verified:

(1) there exists a place of degree n in

H k,s /F 2 , (2) N 1 (H k,s /F 2 ) + 2N 2 (H k,s /F 2 ) + 4N 4 (H k,s /F 2 ) ≥ 2n + 2g k,s + 7.
Moreover, the first step for which both conditions are verified is the first step for which (2) is verified.

Proof. Let q = p 2 = 4. Fix n ≥ 28. We first show that for all integers k such that 2 ≤ k ≤ 1 4 (n -12), we have

2g k,s + 1 ≤ p n-1 2 (p 1 
2 -1) for any s ∈ {0, 1, 2}, so Condition (1) is verified according to Corollary 5.2.10 in [START_REF] Stichtenoth | Algebraic Function Fields and Codes[END_REF]. Indeed for such an integer k, we have 6 ≤ n 2 -2k i.e. p 6 ≤ p 

2g k,s + 1 ≤ 2 q k (q + 1) -q k 2 (q -1) p 2-s + 1 = 2 q k-1 (q + 1) -q k 2 q -1 q p s + 1 = 2q k-1 (q + 1)p s -2q k 2 q -1 q p s + 1 ≤ 2q k-1 (q + 1)p s since 2q k 2 q -1 q p s ≥ 1 = 2p 2(k-1) (p 2 + 1)p s = 5p 2k-1 p s since p = 2
which gives the result since p s ≤ p 2 . We prove now that for k ≥ 1 2 log p 4 5 (2n + 6) , Condition ( 2) is verified. Indeed, for such an integer k, we have 2n + 6 ≤ 5 4 p 2k , so 2n + 6 ≤ 5 4 p 2k p s for s = 0, 1, 2. Since p = 2, we have 5 4 p 2k p s = p 4 -1 -p(p 2 + 1) p 2k-2 p s , so we get [START_REF] Ballet | On the tensor rank of the multiplication in the finite fields[END_REF] 2n + p 2k-1 (p 2 + 1)p s + 6 ≤ (p 4 -1)p 2k-2 p s .

Recall that we got 2g k,s + 1 ≤ p 2k-1 (p 2 + 1)p s in the first part of the proof, so 2n + 2g k,s + 7 ≤ 2n + p 2k-1 (p 2 + 1)p s + 6 and (4) gives the result since we know from Proposition 2.2 that N 1 (H k,s /F p ) + 2N 2 (H k,s /F p ) + 4N 4 (H k,s /F p ) ≥ (q 2 -1)q k-1 p s . Finally, we have proved that for any integers n ≥ 28 and k ≥ 2 such that 1 2 log p 4 5 (2n + 6) ≤ k ≤ 1 4 (n -12), both Conditions (1) and (2) are verified. Note that for any n ≥ 28, we have 1 2 log p 4 5 (2n + 6) > 2. Moreover the size of the interval 1 2 log p 4 5 (2n + 6) ; 1 4 (n -12) is bigger than 1 as soon as n ≥ 28, and this size increases with n. Hence, for any integer n ≥ 28, we know that there is an integer k > 2 in this interval and so there exists a corresponding step H k,s . Moreover, the first step H k,s , that is to say the smallest couple of integers (k, s), for which both Conditions (1) and ( 2) are verified, is the first step for which Condition (2) is verified, since for all integers k ≤ 1 4 (n -12) there is a place of degree n in H k,s /F 2 . To conclude, we complete the proof by computing, for the first steps of the tower, the number of places of degree one, two, four and n for n < 28. Using the KASH packages [START_REF] Daberkow | KANT V4[END_REF], we obtain the following results:

a) g(H 1 /F 2 ) = 0, N 1 (H 1 /F 2 ) = 3, N 2 (H 1 /F 2 ) = 1 and N 4 (H 1 /F 2 ) = 3.
Hence Condition (2) holds for all n ≤ 5; moreover we check that

N 3 (H 1 /F 2 ) > 0 and N 5 (H 1 /F 2 ) > 0.
So for any integer n ≤ 5, the first step that verifies both Conditions (1) and ( 2) is

H 1 /F 2 . b) g(H 1,1 /F 2 ) = 2, N 1 (H 1,1 /F 2 ) = 3, N 2 (H 1,1 /F 2 ) = 1 and N 4 (H 1,1 /F 2 ) = 7.
Hence Condition (2) holds for all n ≤ 11; moreover we check that N i (H 1,1 /F 2 ) > 0 for all integers i such that 6 ≤ i ≤ 11. So for any integer n such that 6 ≤ n ≤ 11, the first step that verifies both Conditions (1) and ( 2)

is H 1,1 /F 2 . c) g(H 2 /F 2 ) = 6, N 1 (H 2 /F 2 ) = 3, N 2 (H 2 /F 2 ) = 1 and N 4 (H 2 /F 2 ) = 15.
Hence Condition (2) holds for all n ≤ 23; moreover we know that

N i (H 2 /F 2 ) > 0 for all integers i such that 12 ≤ i ≤ 23 since we have 2g(H 2 /F 2 ) + 1 ≤ 2 i-1 2 ( √ 2 -1). Indeed 2g(H 2 /F 2 ) + 1 = 13 and 2 i-1 2 ( √ 2 -1) ≥ 2 12-1 2 ( √ 2 -1)
≥ 18 for all integers i such that 12 ≤ i ≤ 23. So for any integer n such that 12 ≤ n ≤ 23, the first step that verifies both Conditions (1) and ( 2) is

H 2 /F 2 . d) g(H 2,1 /F 2 ) = 23, N 1 (H 2,1 /F 2 ) = 4, N 2 (H 2,1 /F 2 ) = 1 and N 4 (H 2,1 /F 2 ) = 28. Hence Condition (2) holds for all n ≤ 32; more- over we know that N i (H 2 /F 2 ) > 0 for all integers i such that 24 ≤ i ≤ 27 since we have 2g(H 2,1 /F 2 ) + 1 ≤ 2 n-1 2 ( √ 2 -1). Indeed 2g(H 2,1 /F 2 ) + 1 = 47 and 2 i-1 2 ( √ 2 -1) ≥ 2 24-1 2 ( √ 2 -1) 
≥ 1199 for all integers i such that 24 ≤ i ≤ 27. So for any integer n such that 24 ≤ n ≤ 27, the first step that verifies both Conditions (1) and ( 2) is H 2,1 /F 2 . Note that, as in the first part of the proof, we have to use the step (k, s + 1) because Condition (2) is not verified for the step (k, s).

Finally, we establish the following lemma which ensures us that given a finite set of places P and a divisor D, up to equivalence we can suppose that the support of D does not contain any place in P.

Lemma 2.7. Let F/F q be an algebraic function field and P := {P 1 , . . . , P N } be a set of places of arbitrary degrees in F/F q . For any divisor D, there exists a divisor D such that D and D are equivalents and P ∩ supp D = ∅.

Proof. Let us consider the integers n 1 , . . . , n N defined by n i = 0 if P i / ∈ supp D and n i = -ord P i D if P i ∈ supp D. According to Strong Approximation Theorem (cf [START_REF] Stichtenoth | Algebraic Function Fields and Codes[END_REF], Theorem 1.6.5), there exists an element x ∈ F/F q such that for all integers i ∈ {1, . . . , N }, v P i (x) = n i and for any place P / ∈ P, v P (x) ≥ 0. Thus we have for all integers i ∈ {1, . . . , N }, ord P i D + (x) = ord P i D + n i = 0 i.e. the intersection P ∩ supp D + (x) is empty, so D := D + (x) is a suitable D-equivalent divisor.

3. New bounds for the tensor rank 3.1. Adapted algorithm of type Chudnovsky and associated complexity. In this section, we use places of degree one, two and four to obtain new results for the tensor rank of multiplication in any extension of the finite field F 2 .

First of all, we specialize the general algorithm presented in Theorem 1.4 for places of degree one, two and four by using first derivative evaluations, i.e. with u i ≤ 2 for i = 1, . . . , N . Proposition 3.1. Let • q be a prime power, • F/F q be an algebraic function field, • Q be a degree n place of F/F q , • D be a divisor of F/F q , • P = {P 1 , . . . , P N 1 , P N 1 +1 , . . . , P N 1 +N 2 , P N 1 +N 2 +1 , . . . , P N 1 +N 2 +N 4 } be a set of N 1 places of degree one, N 2 places of degree two and N 4 places of degree four. • 0 ≤ l 1 ≤ N 1 , 0 ≤ l 2 ≤ N 2 and 0 ≤ l 4 ≤ N 4 be three integers. We suppose that Q and all the places in P are not in the support of D and that: a) the map

Ev Q : L(D) → F q n F Q is onto, b) the map Ev P :        L(2D) → F N 1 q × F l 1 q × F N 2 q 2 × F l 2 q 2 × F N 4 q 4 × F l 4 q 4
f → f (P 1 ), . . . , f (P N 1 ), f (P 1 ), . . . , f (P l 1 ), f (P N 1 +1 ), . . . ,

f (P N 1 +N 2 ), f (P N 1 +1 ), . . . , f (P N 1 +l 2 ), f (P N 1 +N 2 +1 ), . . . , f (P N 1 +N 2 +N 4 ), f (P N 1 +N 2 +1 ), . . . , f (P N 1 +N 2 +l 4 ) is injective. Then µ q (n) ≤ N 1 + 2l 1 + 3N 2 + 6l 2 + µ q (4) N 4 + 2l 4 ).
Proof. Up to reindexing the places, the result follows from Theorem 1.4 applied with

N = N 1 + N 2 + N 4 , deg P i = 1 for i = 1, . . . , N 1 , deg P i = 2 for i = N 1 + 1, . . . , N 1 + N 2 , deg P i = 4 for i = N 1 + N 2 + 1, . . . , N and u i =    2, if 1 ≤ i ≤ l 1 , or N 1 + 1 ≤ i ≤ N 1 + l 2 , or N 1 + N 2 + 1 ≤ i ≤ N 1 + N 2 + l 4 , 1, else.
Recall that for all prime powers q, µ q (2) = 3 and M q (2) ≤ 3. Applying Theorem 1.4, we get:

µ q (n) ≤ l 1 i=1 µ q (1) M q (2) + N 1 i=l 1 +1 µ q (1) M q (1) + N 1 +l 2 i=N 1 +1 µ q (2) M q 2 (2) + N 1 +N 2 i=N 1 +l 2 +1 µ q (2) M q 2 (1) + N 1 +N 2 +l 4 i=N 1 +N 2 +1 µ q (4) M q 4 (2) + N i=N 1 +N 2 +l 4 +1 µ q (4) M q 4 (1) ≤ 3l 1 + N 1 -l 1 + 9l 2 + 3(N 2 -l 2 ) + 3µ q (4)l 4 + µ q (4)(N 4 -l 4 ) = N 1 + 2l 1 + 3N 2 + 6l 2 + µ q (4)(N 4 + 2l 4 ).

Remark:

Note that if l 1 , l 2 and l 4 are three integers such that the map Ev P is injective, then for any other integers L 1 , L 2 and L 4 such that l

1 ≤ L 1 ≤ N 1 , l 2 ≤ L 2 ≤ N 2 and l 4 ≤ L 4 ≤ N 4 the
injectivity of the map is still valid but we obtain a bigger bound for the bilinear complexity. Consequently, we will try to use the optimal integers l 1 , l 2 and l 4 , that is to say the smallest integers for which the map Ev P is injective. In particular, if l 1 = l 2 = l 4 = 0 is a suitable choice, then we can multiply in F q n without using derivative evaluations. Theorem 3.2. Let q be a prime power. Let F/F q be an algebraic function field of genus g and N i be a number of places of degree i in F/F q . Let l 1 , l 2 , l 4 be three integers such that 0 ≤ l

1 ≤ N 1 , 0 ≤ l 2 ≤ N 2 and 0 ≤ l 4 ≤ N 4 . If i) N n > 0 (or 2g + 1 ≤ q n-1 2 (q 1 2 -1)), ii) N 1 + l 1 + 2(N 2 + l 2 ) + 4(N 4 + l 4 ) > 2n + 2g + 6, then µ q (n) ≤ µ q (4) 2 n + g + 5 + µ q (4)l 4 .
In particular,

µ 2 (n) ≤ 9 2 n + g + 5 + 9l 4 .
Proof. Let Q be a place of degree n in F/F q , which exists since i). We can build a divisor D such that the map Ev Q defined previously is onto. Indeed from Corollary 3.4 in [START_REF] Ballet | On the existence of dimension zero divisors in algebraic function fields defined over F q[END_REF], there exists a zero dimensional divisor R of degree g-5. Let D be a divisor such that D 

∼ K + Q -R,
-Q) = 4 since i(D -Q) = dim(K -D + Q) = dim R = 0. Moreover, by Riemann- Roch Theorem we get dim D ≥ n + 4. Consequently, Ev Q is onto since the dimension of its image verifies dim Im(Ev Q ) = dim D -dim(D -Q) ≥ n.
Let us set N := N 1 + l 1 + 2(N 2 + l 2 ) + 4(N 4 + l 4 ). According to ii), we know that N > 2n + 2g + 6 so without any loss of generality we can assume that N = 2n + 2g + 7 + with = 0, 1, 2, 3. Let P be a set of N 1 places of degree one, N 2 places of degree two and N 4 places of degree four. According to Lemma 2.7, we can suppose that no place in P is in the support of D. Note that we can apply Proposition 3.1 with the set of places P by using l 1 derivative evaluations on places of degree one, l 2 derivative evaluations on places of degree two and l 4 derivative evaluations on places of degree four. Indeed, let us denote by A the divisor

A := N 1 +N 2 +N 4 i=1 P i + l 1 i=1 P i + l 2 i=1 P N 1 +i + l 4 i=1 P N 1 +N 2 +i
, then we have deg A = N , so deg(2D -A) < 0 by ii) and ker Ev P = L (2D -A) is trivial. Thus, we get µ q (n) ≤ N 1 + 2l 1 + 3N 2 + 6l 2 + µ q (4)(N 4 + 2l 4 ) by Proposition 3.1. Now let us remark that this bound depends on the number of places of each degree we use in the second evaluation: the higher the degrees are, the bigger the bound is. Consequently, we must consider that N 1 = N 2 = 0 corresponding to the worst case. Then we obtain µ q (n) ≤ µ q (4)( N 4 + l 4 ), which gives the result since N 4 ≤ 2n+2g+10 4 = 1 2 (n + g + 5). In particular, for q = 2 we get µ 2 (n) ≤ 9 2 n + g + 5 + 9l 4 since µ 2 (4) = 9.

3.2.

Tensor rank in any extension of F 2 . Now we apply the results of the preceding section to the tower of Garcia-Stichtenoth T 3 /F 2 presented in Section 2.2. We obtain two kinds of results: one which uses derivative evaluations and an other which does not. We will see later that we obtain a better bound for M 2 using derivative evaluations but this utilization is more complicated in practice and leads to an increase of linear complexity which can be inconvenient; so we present both techniques. Moreover, although the best results are obtained using derivative evaluations, we still get an improvement of the best known bound for M 2 using simple evaluations. so case b) gives a better bound for the bilinear complexity, and 2(x -n k,s 0 ) + < 2D k,s ≤ M k,s for = 0, 1, 2, 3, so we can proceed as in case b) since there are enough places of each degree to use derivative evaluations on l 1 places of degree one, l 2 places of degree two and l 4 places of degree four with l 1 + 2l 2 + 4l 4 = 2(n -n k,s 0 ) + . We define the function Φ for all x ≥ 0 as the minimum of the functions Φ k,s for which x is in the domain of Φ k,s . This function is piecewise linear with two kinds of pieces: those which have slope 9 2 and those which have slope 9. Moreover, since the y-intercept of each piece grows with k and s, the graph of the function Φ lies below any straight line that lies above all the points n k,s 0 + D k,s -4, Φ(n k,s 0 + D k,s -4) , since these are the vertices of the graph. Let X := n k,s 0 + D k,s -4, then Φ(X) = 9 2 (X + g k,s+1 + 5) = 9 2 1 + g k,s+1 X X + 45 2 .

We want to give a bound for Φ(X) which is independent of k and s. Lemmas 2.3 iii) and 2.5 give g k,s+1 X ≤ q k-1 (q + 1)p s+1 5 2 q k-1 -7 2 + p s+1 q k-1 -4 = q + 1 

New asymptotic bounds for the tensor rank

Without using derivative evaluation, we obtain from Theorem 3.3 the following bound for M 2 : M 2 ≤ 22.5, which is better than the best known bound recalled in Proposition 1.7.

n 2 -

 2 2k . Since 5p

7 2 ≤

 2 p 6 , we get 5p

7 2 ≤ p n 2 - 1 2 1 2 (p 1 2

 22111 2k or equivalently 5p 2k+1 ≤ p n--2 , which leads to 5p 2k+1 ≤ p n--1). Now, let us show that 2g k,s + 1 ≤ 5p 2k+1 . According to Lemma 2.3 iv), since k ≥ 2 we have for s = 0, 1, 2:

  with K a canonical divisor. According to Lemma 2.7, we can choose D such that Q / ∈ supp D. Such a divisor D verifies deg D = n + g + 3 and by Riemann-Roch Theorem, we have dim(D

  i=0,1 is the densified Garcia-Stichtenoth tower over F 16 and the two other towers T 2 and T 3 are respectively the descent of T 1 over F 4 and over F 2 . Now, we recall different properties concerning the tower T 3 /F 2 .Proposition 2.2. Let q = p 2 = 4. For any integers k ≥ 1 and s ∈ {0, 1, 2}, the algebraic function field H k,s /F p in the tower T 3 /F p has a genus g(H k,s /F p ) = g k,s with N 1 (H k,s /F p ) places of degree one, N 2 (H k,s /F p ) places of degree two and N 4 (H k,s /F p ) places of degree 4 such that: 1)
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3.2.1.

Bound for the tensor rank without using derivative evaluation. First of all, we apply the bound of Theorem 3.2 on the tower T 3 /F 2 with l 1 = l 2 = l 4 = 0. Theorem 3.3. For any integer n ≥ 2, we have µ 2 (n) ≤ 45 2 n + 85.5.

Proof.

Let q = p 2 = 4 and let us consider the sequence of algebraic function fields

For any integer n, we know by Lemma 2.6 that there exists a step of the tower T 3 on which we can apply Theorem 3.2. Let H k,s /F 2 be the first step of the tower that suits the hypothesis of Theorem 3.2 with l 1 = l 2 = l 4 = 0. According to Lemma 2.6, this step is determined by the smallest integers k and s such that 2n ≤ M k,s -2g k,s -7, so 2n > M k,s-1 -2g k,s-1 -7. For any integer k ≥ 1 and for any integer s = 0, 1, 2, we have g k,s ≤ q k-1 (q + 1)p s by Lemma 2.3 iii). Moreover, since M k,s-1 ≥ (q 2 -1)q k-1 p s-1 by Proposition 2.2, we obtain 2n > (q 2 -2q -3)q k-1 p s-1 -7. Then since q = 4, we have q 2 -2q + 3 = (q + 1)(q -3) = q + 1, which leads to 2np > (q + 1)q k-1 p s -7p ≥ g k,s -7p and it follows that g k,s ≤ 2np + 7p, so

by Theorem 3.2, which gives the result since p = 2.

3.2.2.

Bound for the tensor rank using derivative evaluations. Here, we apply results of Theorem 3.2 with an optimal number of derivative evaluations.

Theorem 3.4. For any integer n ≥ 2, we have

Proof. For any integer n, we know by Lemma 2.6 that there exists a step of the tower T 3 /F 2 on which we can apply Theorem 3.2 with

for any step H k,s /F 2 , with k ≥ 0 and s = 0, 1. Let H k,s+1 /F 2 be the first step of the tower that suits the hypothesis of Theorem 3.2 with l 1 = l 2 = l 4 = 0 i.e. k and s are integers such that M k,s+1 > 2n + 2g k,s+1 + 6 and M k,s ≤ 2n + 2g k,s + 6. We denote by n k,s 0 the biggest integer such that M k,s > 2n k,s 0 + 2g k,s + 6 i.e.

To multiply in F 2 n , we have the following alternative: a) to use the algorithm on the step H k,s+1 . In this case, a bound for the bilinear complexity is given by Theorem 3.2 applied with l 1 = l 2 = l 4 = 0:

Recall that ∆g k,s := g k,s+1 -g k,s . b) to use the algorithm on the step H k,s with derivative evaluations on l 1 places of degree one, l 2 places of degree two and l 4 places of degree four, where l i satisfies l i ≤ N i (H k,s /F 2 ) for i = 1, 2, 4 and M k,s + l 1 + 2l 2 + 4l 4 > 2n + 2g k,s + 6. One can check that this condition is verified as soon as l 1 + 2l 2 + 4l 4 ≥ 2(n -n k,s 0 ), so Theorem 3.2 gives µ 2 (n) ≤ 9 2 n + g k,s + 5 + 9l 4 . Without any loss of generality, we can suppose that l 1 + 2l 2 + 4l 4 = 2(n -n k,s 0 ) + with = 0, 1, 2, 3. Moreover, we must consider that l 1 = l 2 = 0, which corresponds to the worst case.

Thus we have

denoting the floor function, and we obtain the following bound for the bilinear complexity:

Thus, if the integers l i such that l 1 + 2l 2 + 4l 4 = 2(n -n k,s 0 ) + with = 0, 1, 2, 3,

2 (x -n k,s 0 ) + 9 2 (n k,s 0 + g k,s + 5 + ∆g k,s ) else.

Recall that D k,s was defined in Lemma 2.4 as p s+1 q k-1 . Note that if x -n k,s 0 + 4 < D k,s , then according to Lemma 2.4 we have both

x -n k,s 0 + 4 < ∆g k,s , However, it follows from Theorem 3.4 that we obtain a better bound for M 2 by using derivative evaluations, namely: