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Chapitre 10

Constitutive equation gap

10.1. Introduction

In this chapter we examine the concept of constitutive equation gap (CEG) as a
tool for the identification of parameters associated with behavior models for solid
materials. The concept of CEG is based, in its simplest form (small strain hypothesis,
equilibrium, linear elastic constitutive behavior) on cost-functions of the form

E(v, τ ,B) =
1

2

∫
Ω

(τ −B :ε[v]) :B−1 : (τ −B :ε[v]) dV

(where v is a displacement field, τ a stress field, and B a possibly-heterogeneous
elasticity tensor), expressing a quadratic gap in the verification of the constitutive law.
Weighting by the tensor B confers units of energy to the CEG.

The concept of CEG was initially proposed for error estimation in the finite ele-
ment method [LAD 83]. It then turned out to be also a powerful tool for identification,
especially with many applications in model updating. Essentially equivalent concepts
have been proposed in other contexts for solving inversion problems, such as the elec-
trostatic energy functionals of Kohn and Vogelius [KOH 84, KOH 90]. Two important
characteristics of CEG functionals are (i) their strong and clear physical meaning, and
(ii) their additive character with respect to the structure, allowing the definition of
local error indicators over substructures.

As will be discussed in this chapter for different situations, the minimization of a
constitutive equation gap is in principle applicable to any identification problem for
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2 Utilisation de la classe ouvrage-hermes

which overdetermined data are available. In particular, the latter need not necessarily
consist of field measurements. In fact, many applications of the CEG concern struc-
tural model updating from vibrational data (see Section 10.5). The CEG method is
nonetheless well suited to the exploitation of field measurements.

Initially, we will focus on the identification of heterogeneous linear elastic pro-
perties under static (i.e. equilibrium) conditions and within the small-strain assump-
tion (Section 10.2). An extension of this formulation to the identification of hete-
rogeneous elastoplastic constitutive parameters is then described (section 10.3). The
algorithms presented in these two sections exploit kinematic field measurements in a
plane, and assume either plane-strain or plane-stress conditions. The remainder of the
chapter will be devoted to a more succinct discussion of the possibilities offered by
the construction of ERC functionals based on Legendre-Fenchel error density (Sec-
tion 10.4), and a synthetic presentation of CEG formulations suitable for structural
dynamics and vibrations (section 10.5).

10.2. CEG in the linear elastic case : heterogeneous behavior and full-field mea-
surement

The equilibrium of a generic elastic solid Ω of boundary ∂Ω is governed by three
sets of equations, namely the equilibrium equations{

divσ = 0 in Ω,

σ.n = T̄ on Sf ,
(10.1)

the kinematic compatibility conditions ε[u] =
1

2

(
∇u+∇tu

)
in Ω,

u = ū on Su
(10.2)

and the constitutive equation
σ = A(x) :ε[u]. (10.3)

where u is the in-plane displacement, ε[u] the linearized strain tensor associated with
u, σ the Cauchy stress tensor, and n the outward unit normal on ∂Ω. Quantities ū and
T̄ appearing in the boundary conditions (10.1) and (10.2) denote prescribed displace-
ments and tractions, respectively. Surfaces Su and Sf are such that Su ∪ Sf = ∂Ω
and Su ∩ Sf = ∅, so as to define well-posed boundary conditions. The elasticity ten-
sor A may be constant (homogeneous material) or space-dependent (heterogeneous
material). If the elastic properties are isotropic, they are described in terms of two in-
dependent moduli, such as Lamé constants λ, µ, or Young’s modulus E and Poisson’s
ratio ν.
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The usual problem, often referred to as direct, consists of computing fields u,σ
knowing the geometry Ω of the solid, the elasticity tensor A and well-posed boundary
data ū, T̄ . Exact solutions are limited to very specific classes of geometries and boun-
dary conditions ; the forward problem is usually solved numerically, most often using
the finite element method (FEM).

The identification of constitutive parameters is another type of problem, referred
to as inverse. Incomplete knowledge of the tensor-valued function A(x), or of moduli
used in the definition of A, must be offset by overdetermined data. In other words, the
boundary data ū, T̄ appearing in (10.1) and (10.2) must be supplemented by experi-
mental information. Such additional data can take various forms.

In this chapter the focus is on situations where field measurements are available
either in Ω or on ∂Ω. The three most frequently encountered situations are then :

1) Measurements û of the displacement fieldu and complete well-posed boundary
data ū, T̄ are available. The strain tensor components are then obtained by differen-
tiating the displacement field and are therefore regarded as known.

2) Measurements û of the displacement field u and boundary data ū are avai-
lable, together with only incomplete static boundary data ; e.g. only resultant forces
associated with T̄ are known.

3) Overdetermined boundary data are available (for example, T̄ known on Sf and
ū known on ∂Ω), with displacement and strain fields inside the solid remaining to be
determined.

This chapter focuses on situations of type 1) or 2) above. Case 3) is touched upon in
Section 10.5, and also corresponds to a data structure suitable for the reciprocity gap
method [AND 92, AND 96] (see Chapter 13).

The constitutive equation gap (CEG) measures the distance between a stress field
τ and another stress field resulting from the application of a constitutive model to
a displacement field v. The CEG between τ and v, under the assumption of linear
elastic behavior characterized by the (possibly heterogeneous) elasticity tensor B, is
defined by

E(v, τ ,B) =
1

2

∫
Ω

(τ −B :ε[v]) :B−1 : (τ −B :ε[v]) dV. (10.4)

The presence of the compliance tensor B−1 in the integral confers units of energy to
E(v, τ ,B). It can actually be shown that

E(v, τ ,B) = P(v,B) + P?(τ ,B), (10.5)

with P and P? respectively denoting the potential energy and complementary energy.

The usefulness of the concept of CEG is emphasized by the following remarks :



4 Utilisation de la classe ouvrage-hermes

1) For a well-posed boundary value problem such as that defined by equa-
tions (10.1), (10.2), (10.3) (ū, T̄ ,A known, u, ε,σ unknown), spaces C of kinema-
tically admissible displacement fields and S of statically admissible stress fields are
defined by :

C(ū, Su) =
{
v|vi ∈ H1(Ω),v = ū on Su

}
, (10.6a)

S(T̄ , Sf ) =
{
τ ∈ Hdiv(Ω), div τ = 0 in Ω, and τ .n = T̄ on Sf

}
, (10.6b)

where the space Hdiv(Ω) of tensor-valued fields is defined by

Hdiv(Ω) =
{
τ |τij = τji, τij ∈ L2(Ω) , τij,j ∈ L2(Ω)

}
.

The solution (u,σ) of the boundary value problem is then characterized by

(u,σ) = arg min
(v,τ )∈C×S

E(v, τ ,A) et E(u,σ,A) = 0. (10.7)

2) For a constitutive parameter identification problem for which (for instance) the
elasticity tensor A is unknown, the definitions (10.6a) and (10.6b) of spaces of admis-
sible fields can be modified to include all available experimental information on the
displacements and stresses. The elasticity tensor A can then be identified by minimi-
zing the constitutive equation gap :

A = arg min
B

E(B) with E(B) = min
(v,τ )∈C×S

E(v, τ ,B) (10.8)

This minimization problem is the essence of the constitutive equation gap method
(CEGM). It consists of an alternating directions method for which a partial minimiza-
tion with respect to (v, τ ) is followed by a partial minimization with respect to B.

Two variants of the CEGM will now be described. Both require the availability of
a measurement ū∈

(
H1(Ω)

)2
, Ω⊂R2 of the displacement field u.

10.2.1. First variant : exact enforcement of kinematic measurements

In this variant, the measured displacement field ū is introduced directly into the
CEG functional. In addition, the values gi of linear observation functionals Li of the
traction vector τ .n (where n is the outward normal vector) are assumed to be known :

L1(τ .n) = g1 sur Γ1, . . . , LN (τ .n) = gN sur ΓN , (10.9)

where Γi ⊂ ∂Ω. In order to exploit experimental data, two instances of such functio-
nals occur commonly :
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(i) L(τ .n) ≡ τ .n = g (in particular g = 0 for the stress-free part of the boun-
dary),

(ii) L(τ .n) ≡
∫

Γ
τ .n dl = R (R is the known resultant load associated with a

distributed loading over a part Γ of the boundary).

All this leads us to seek A as a solution to the minimization problem

A = arg min
B∈A
E(B) with E(B) = min

τ∈S
E(ū, τ ,B). (10.10)

In this case, the space of admissible stress fields is defined as

S(T̄ , Sf ) =
{
τ ∈ Hdiv(Ω),div τ = 0 in Ω,

L1(τ .n) = g1, . . . , LN (τ .n) = gN

}
(10.11)

instead of (10.6b). Each functional Li :
(
H−1/2(Γi)

)2 → Ei is linear and continuous
(where Ei in a Banach space). S is assumed to be nonempty (from an abstract point
of view, an open question is to find suitable conditions on the data g1, . . . , gN in such
a way that this assumption be satisfied).

Two possible simple choices may be considered for the space of admissible elasti-
city (stiffness or compliance) tensors A

A1 =
{
B ∈ R3×3;Bij = Bji,Bx :x ≥ α|x|2, α > 0,∀x,

Bx :y ≤M |x||y|,M > 0,∀x,y
}
,

A2 =
{
Bij piecewise linear ;Bij = Bji,Bx :x ≥ α|x|2, α > 0,∀x,

Bx :y ≤M |x||y|,M > 0,∀x,y
}
.

The most general choice would be

A3 =
{
B ∈ (L∞(Ω))3×3 ; Bij = Bji,Bx :x ≥ α|x|2, α > 0,∀x,

Bx :y ≤M |x||y|,M > 0,∀x,y
}
.

With these notations, the following relations can be established for the CEG func-
tional E(ū, ., .) : S×A → R

Proposition 1 The following properties for the CEG functional hold true

(a) E(ū, τ ,B) ≥ 0, ∀(τ ,B) ∈ S×A,
(b) E(ū, τ ?,B?) = 0 if and only if (10.3) is true with σ = τ ? and A = B?.
(c) Functional E(ū, ., .) is convex on S×A.
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Proof Properties (a) and (b) are obvious, since the elasticity tensor B belongs to space
A. The convexity of E(ū, ., .) remains to be established. To this end, the CEG func-
tional is first rewritten as

E(ū, τ ,B) =

∫
Ω

{1

2
ε[ū] :B :ε[ū] +

1

2
τ :B−1 :τ − τ :ε[ū]

}
dV (10.12)

and the convexity of function ψ(τ ,B) := 1
2τ : B−1 : τ on S ×A is investigated. A

first-order Taylor expansion yields

ψ(τ ,B) = ψ(τ 0,B0) + ψ′(τ 0,B0; τ − τ 0,B −B0) + ψ(τ −B :B−1
0 :τ 0,B),

where ψ′(τ 0,B0; τ ,B) = − 1
2τ 0 : (B−1

0 : B : B−1
0 ) : τ 0 + τ : B−1

0 : τ 0. The desired
convexity property follows from the non-negativity of ψ by virtue of the definition of
the set A. �

Algorithm 1 (Alternate direction method) The functionalE(ū, ., .) is minimized on
S×A using an alternate direction method :∣∣∣∣∣∣∣∣∣∣∣∣

• Initialization of the algorithm with (σ0,A0)

• For (σn,An) known, find σn+1 and An+1 by successively solving

step 1 : E(ū,σn+1,An) ≤ E(ū, τ ,An), ∀τ ∈ S
step 2 : E(ū,σn+1,An+1) ≤ E(ū,σn+1,B), ∀B ∈ A

• Convergence test.

In Step 1, the stress solution σn+1 is constrained by the equilibrium equations (10.1)
and the linear observations (10.9). Several methods can be used for this purpose, and
three possible representations of σn+1 will be presented next.

Partial minimization of E(ū, .,An) with respect to the admissible stress
First possibility : stress-based method using Q1 element. Minimization is performed
by using a Q1 finite element interpolation of the admissible stress fields. For a plane-
stress problem, the unknowns at step n + 1 are

(
σn+1
xx , σn+1

yy , σn+1
xy

)
at each node.

Enforcing the equilibrium equations and resultant load measurements contributing to
the definition of S via Lagrange multipliers leads to the solution of the variational
problem

inf
τ∈Hdiv(Ω)

sup
γ,λi

E(ū, τ ,B) +

∫
Ω

γ.div τ dV +
N∑
i=1

λi [Li(τ .n)− gi] . (10.13)

The fact that Lagrange multipliers are involved leads to a substantial increase in the
size of the governing linear system to be solved for the computation of the stresses,
and a deterioration of its condition number. Instead, the computation of the stresses
can be made more direct by resorting to an Airy stress function.
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Second possibility : Airy function. This formulation is naturally equilibrated [GER 86].
On each element of the mesh, the Airy function is assumed to be a third-degree poly-
nomial with respect to each coordinate :

ϕ(x, y) =
3∑
i=0

3∑
j=0

aijx
iyj . (10.14)

Consistent with this choice, the three stress components can be directly derived from
this potential :

τxx(x, y) = ϕ
,yy

=
3∑
i=0

3∑
j=2

j(j − 1)aijx
iyj−2,

τyy(x, y) = ϕ
,xx

=
3∑
i=2

3∑
j=0

i(i− 1)aijx
i−2yj , (10.15)

τxy(x, y) = −ϕ,xy = −
3∑
i=1

3∑
j=1

ijaijx
i−1yj−1.

Whatever the choice of coefficients aij , div τ = 0. The variational problem is similar
to (10.13) without the term enforcing local equilibrium. At each node, the unknowns,
formulated in terms of the stress function, are

(
ϕ, ϕ,x, ϕ,y, ϕ,xy

)
.

The present choice (10.14) of a bicubic potential enables a sufficiently rich re-
presentation of the stresses, since they are at least piecewise linear functions of each
Cartesian coordinate. Note that this special interpolation method does not achieve
inter-element stress continuity :

– the stress component σn+1
xx is continuous only along the axis Ox,

– the stress component σn+1
yy is continuous only along the axis Oy,

– the stress component σn+1
xy is continuous.

Stress continuity can also be imposed, for example using Lagrange multipliers.

Third possibility : displacement-based representation. Stress fields are represented in
the form σn+1 = An : ε[w] in terms of displacement fields w (built using a finite
element interpolation), and constraints on σn+1 involved in the definition of S are
enforced via a weak formulation associated with the finite element basis.

Partial minimization of E(ū,σn+1, .) over the admissible elasticity tensors
The minimization of E(B) is explicit. In the examples in this chapter, material

properties are assumed to be constant in each element of the mesh. The capability
of grouping elements into subsets ωi with constant material properties has also been
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implemented. This possibility is particularly interesting when large subregions made
of some specific material exist in Ω (as with e.g. coarse-grained polycrystalline steels,
composite materials. . . ). In such situations, the components of the elasticity tensor are
given by very simple, explicit, formulae.

Two cases will be studied here, depending on whether we are considering (in
the framework of plane elasticity) elastic behavior with cubic symmetry (three inde-
pendent parameters) or isotropic symmetry (two independent parameters). The iden-
tification of parameters for cubic elasticity will be presented first, isotropic elasticity
then being a special case. Similar explicit expressions are also available for three-
dimensional elasticity [CON 95].

Elasticity with cubic symmetry. For elastic behavior with cubic symmetry, in plane
stress, the elasticity tensor A can be written in terms of three parameters as

A =

a1 a2 0
a2 a1 0
0 0 a3

 , (10.16)

with a1 = E/1− ν2, a2 = −νa1, a3 = 2G and E, ν,G respectively denoting the
Young’s modulus, Poisson’s ratio and shear modulus. The determination of E, ν,G is
made simple by expressing tensors ε[ū] and σ in the principal directions of the elasti-
city tensor. The CEG functional then takes a simple form, and for each subdomain ωi
the entries of A (directly linked to Ei, νi, Gi) are found to be given by

2ai1 =

√∫
ωi

(τxx + τyy)2 dV∫
ωi

(εxx + εyy)2 dV
+

√∫
ωi

(τxx − τyy)2 dV∫
ωi

(εxx − εyy)2 dV
, (10.17a)

2ai2 =

√∫
ωi

(τxx + τyy)2 dV∫
ωi

(εxx + εyy)2 dV
−

√∫
ωi

(τxx − τyy)2 dV∫
ωi

(εxx − εyy)2 dV
, (10.17b)

2ai3 =

√∫
ωi
τ2
xy dV∫

ωi
ε2
xy dV

. (10.17c)

Isotropic elasticity. For isotropic elastic behavior, parameters E and ν can be de-
termined using a technique identical to that previously developed, noting that now
a3 = a1 − a2. The two independent entries of A are obtained as

2ai1 =

√∫
ωi

(τxx + τyy)2 dV∫
ωi

(εxx + εyy)2 dV
+

√∫
ωi

(τxx − τyy)2 + τ2
xy dV∫

ωi
(εxx − εyy)2 + ε2

xy dV
, (10.18a)

2ai2 =

√∫
ωi

(τxx + τyy)2 dV∫
ωi

(εxx + εyy)2 dV
−

√∫
ωi

(τxx − τyy)2 + τ2
xy dV∫

ωi
(εxx − εyy)2 + ε2

xy dV
. (10.18b)
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For identification purposes, one advantage of isotropic elasticity over cubic elasticity
appears in the previous system of equations : the identification of all elastic coefficients
on each subdomain ωi does not require the shear strain to be locally nonzero.

10.2.2. Second variant : enforcement of measurements by kinematic penalization

It is not necessarily desirable to impose exactly the kinematic measurements, par-
ticularly if they are corrupted by measurement noise. For this reason, it is interesting
to consider the variant based on the functional

F (v, τ ,B) = αE(v, τ ,B) +
β

2
‖v − ū‖2, (10.19)

where α and β are positive weighting coefficients [CAL 02]. In (10.19) the distance
‖v − ū‖ must be defined such that the two terms of F have comparable magnitudes.
For example, ‖w‖2 = E

∫
Ω
ε[w] :ε[w] dV if we focus on cases where A is isotropic

(i.e. defined in terms of Young’s modulus E and Poisson’s ratio ν), or ‖w‖2 = γw.w
with a coefficient γ to be chosen appropriately.

In line with previous work on CEG-based approaches for model updating, such
as [REY 90, DER 02], the two partial minimizations are carried out successively. The
first minimization (location step) gives (u,σ) with σ ∈ S , with S again defined
by (10.11). Numerically, the stress fields are obtained using one of the previously-
discussed representations. As with the first variant, the partial minimization ofE(v, τ ,B)
with respect to B (correction step) is then explicit (provided that the coefficient β does
not depend on B).

Functionals F of the form 10.19 are convex over C × S × A. As explained in
[GEY 02, GEY 03], another family of functionals F̃ (v, τ ,S), separately convex over
C×S and A, can be defined from (10.19) in terms of the compliance tensor S =B−1

rather than the stiffness tensor B :

F̃ (v, τ ,S) = F (v, τ ,S−1), (v, τ ,S) ∈ C×S×A. (10.20)

10.2.3. Comments

Remark 1 The works [KOH 84, KOH 90] on conductivity imaging are based on a
CEG-type functional adapted to electrostatic constitutive behavior. They also consider
specific situations of overdetermined complete data on the boundary (potential and
flux both known over the whole boundary ∂Ω), and proceed by minimizing the energy
gap between Dirichlet and Neumann solutions associated with a given conductivity
field. A similar approach is followed for the identification of elastic moduli fields in
[CON 95].
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Remark 2 Functionals of the form (10.19) correspond to the modified CEG pre-
viously introduced for model updating (see references in §10.5). They have the ad-
vantage of being applicable to arbitrary, possibly quite scarce, data (introduced via the
second term of (10.19)).

Remark 3 Reference [AVR 07] proposes an interpretation of the minimization of the
CEG as a particular form of the virtual fields method.

Remark 4 The authors of [CHA 99], considering the problem of identification of he-
terogeneous moduli in terms of the classical minimization approach for a cost function
J(v) expressing the L2-norm of the misfit between the experimental displacement
data and their simulation v (i.e. defined as the second term of the functional (10.19)),
proposed to include the constraint defined by the model equations in the form of a pe-
nalty via the sum P+P? of the potential and complementary energies, whose optimal
value (zero) is known beforehand. Given relation (10.5), this led them to propose the
penalized formulation

A = lim
η→0

arg min
v∈C,τ∈S,B∈A

(
J(v) +

1

η
E(v, τ ,B)

)
,

wherein the functional used is equal (up to a multiplication factor and for a fixed value
of the penalty parameter η) to F (v, τ ,B) as defined by (10.19). This observation
thus gives a useful interpretation of the latter, and in particular of the compromise
parameter β.

Remark 5 An original application of the CEG, proposed by [AND 06, AND 08],
concerns data completion, i.e. the reconstruction of data on the boundary, given ill-
posed boundary conditions of Cauchy type (simultaneous knowledge of displacements
and tractions on part of the boundary, no boundary data on another part). An optimal
control type of approach, based on the minimization of a CEG cost function (energy
norm of the difference between Dirichlet and Neumann solutions) leads to a comple-
tion algorithm whose convergence is much faster than alternating methods such as that
of Kozlov, Maz’ya, Fomin [KOZ 91].

10.2.4. Some numerical examples

The algorithm is illustrated by three examples ; the first two are scalar problems
while the last one is a vectorial case. The first two problems are solved with algo-
rithm 1 with the functional F̃ defined by (10.20).

Example 1 (identification of a conductivity field). To test the performance of algo-
rithm 1, we consider a scalar problem with “perfect measurements” on the unit square
Ω = (0, 1)× (0, 1) discretized with square elements. For instance, the solution to this
conductivity problem is important in hydrology and has been solved in [KOH 88].
At the nodal points, the values of the measured field u? = x + y + 1

3 (x3 + y3),
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f = −div(∇u?/aex) are assumed to be known, where aex = 1/(1 + y2) is the in-
verse of the conductivity. On the boundary, the given surface force is g = (∂nu

?)/aex.
We assume that E = E1 and L1(σ.n) ≡ σ.n = g on all sides of the square
Ω. The observed convergence for the functional F̃ is ‖an − aex‖L2 ∼ O(h0.57) and
F̃ (σn, an) ∼ O(h1.16), where h is the characteristic diameter of a finite element. By
applying the algorithm to F , the same type of convergence is obtained. Figure 10.1
shows plots of ã− aex, a− aex and ã− a, where ã and a respectively result from the
minimization of F̃ and F .
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Figure 10.1. a− aex (left), ã− aex (middle) et a− ã (right), computed using
400 quadrangular finite element, convergence threshold εc = 10−6

Example 2 (problem with a singularity). This second example tests the ability of
algorithm 1 to capture local singularities or diffuse damage. Situations where the true
conductivity inverse aex is either aex = 1/(ε+(y−1/2)2), with ε a positive constant
(local singularity case), or aex = 1/(1−D)(1+y2), withD ∈ (0, 1) (diffuse damage
case), are thus considered. As in example 1, Ω is the unit square discretized with square
elements. Algorithm 1 was found to require more iterations as ε decreases, and in fact
failed to converge for ε ≤ 0.005 (cf. figure 10.2) ; improved results for ε = 0.005
were obtained using a refined mesh. Figure 10.2 shows plots of ã − aex, a − aex and
ã−a. Finally, concerning the diffuse damage case, the number of iterations was found
to increase as D gets closer to 1 (10 iterations for D = 0, 12 for D = 0.5 and 86 for
D = 0.999).

Example 3 (Tensile test). A comparison of different identification methods has been
undertaken as a joint effort by several research groups [AVR 08]. This comparison
concerns in particular the results obtained in identifying elastic parameters in various
experimental situations. The simplest of these situations is a simple tensile test on a
2024 aluminum alloy. The specimen is a bar of section 4.8× 4.8 mm. Two elastic
parameters are identified, Young’s modulus E and Poisson’s ratio ν. For this test, the
displacement fields were provided by F. Hild of LMT Cachan. The images were taken
by means of an 8-bit camera (1008×1016 pixels) equipped with a long-distance mi-
croscope. A 2×2mm region of interest was observed. A series of 21 images was taken
while an increasing load was applied to the specimen. In addition to the displacement
fields and force measurements, reference elastic properties were provided. They were
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Figure 10.2. Identified values of aex for different values of ε : 0.1, 0.01 and
0.005 (400 quadrangular elements, convergence threshold εc = 10−6)
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Figure 10.3. a− aex (top left), ã− ãex (top right) and a− ã (bottom),
computed using 400 quadrangular elements, convergence threshold εc = 10−6

obtained by a linear regression on all the tensile tests using strain gage measurements,
as Eref = 76± 0.5 GPa, νref = 0.33± 0.01.

For the last image, corresponding to the maximum (2003 N) of the applied load, the
displacement field is shown in Figure 10.4. The components ux and uy respectively
show the stretching of the bar and the contraction of its section. The fields are given
at 15×15 points ; they are consistent with the identification method.

The results for the identified elastic parameters are given in Figure 10.5. For each
image i, a set of parameters (Ei, νi) is identified, whose values are then compared
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Figure 10.5. Values of identified elastic coefficients

to the reference values. For low load levels, the identified parameters are not very
close to the reference parameters, but the identification improves as the applied force
increases. More generally, for low strain amplitudes (in the linear elastic range) the
signal-to-noise ratio improves with the load level.
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By averaging the last 5 results (i = 17, . . . , 21), the following identified values are
obtained : Eid = 78.3 GPa, νid = 0.343. Comparing these values with the reference
values, the relative discrepancies found are 3% for the Young modulus and 4% for
the Poisson ratio. The obtained values are satisfactory and we see that it is advisable
for this type of test to use a large number of image-force couples. Indeed, from one
image to another, the identified elastic coefficients may vary significantly. This varia-
bility is associated here with experimental noise, which corrupts the data and hinders
identification.

To conclude this test, homogeneous properties were identified from a simple ten-
sile test. A comparison of different identification methods (in particular the virtual
fields method and finite element method updating) was conducted as part of the bench-
mark organized by members of the GdR 2519 consortium. Identified values using
other methods were in the 70–75 GPa range for the Young modulus, and in the 0.3–
0.36 range for the Poisson ratio. Overall, a good agreement between the results obtai-
ned by all methods was thus reached. This experiment did not enable the demonstra-
tion of the main advantages of the identification method developed in this chapter, for
instance its ability to yield both a stress field and a distribution of material properties.
Situations that better exploit this potential are considered next.

10.3. Extension to elastoplasticity

10.3.1. Formulation

In this section, identification assumes elastic-plastic constitutive properties obeying
the linear kinematic hardening model of Prager. Naturally, this simple model cannot
reproduce all the complexity of the development of plasticity. It is expressed in terms
of two plastic parameters : a yield stress σ0 and a constant hardening modulus k.

The objective here is to develop a method to identify local parameters of this model
and characterize its performance for identification. The use of models which are more
representative of the actual behavior of metallic materials is possible, but will not be
discussed in this section. The chosen model may be defined synthetically by the four
equations :

σ = A(ε− εP), (10.21a)

f(σ,X) = (σ −X)eq − σ0 ≤ 0, (10.21b)

ε̇P = γ̇
∂f

∂σ
, (10.22a)

Ẋ =
2

3
kε̇P, (10.22b)

where A is the elasticity tensor, εP the plastic part of the strain tensor, γ the plastic
multiplier, f the yield function andX the backstress tensor.

The above-described Prager model can be recast in incremental form using an
implicit time discretization [SIM 98]. In what follows, subscripts n and n+ 1 indicate
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values at the initial and final instants of the current, n + 1-th, time step. For a plastic
step for which the initial hardening is zero (i.e.Xn = 0 and εP

n = 0), we can establish
an explicit formula for the elastoplastic secant tensor As

p [SIM 98] :

σn+1 =
[
As
p

]
n+1

:εn+1,
[
As
p

]
n+1

=

[
A−1 − 3∆γ(σ0)

3 + 2k∆γ(σ0)
P

]−1

(10.23)

where ∆γ is the plastic multiplier increment and P is a mapping matrix. In other
cases, the relationship between σn+1 and εn+1 is not available in explicit form, but
an elastoplastic tangent tensor At

p can be defined such that
[
At
p

]
n+1

= dσ/dε|n+1.

We will consider two kinds of formulation for the mechanical problem : a standard
formulation and an incremental formulation. The former is associated with a global
load step for which the strain is obtained between an undeformed reference state and
a deformed state. The latter is associated with a load increment for which the strain is
computed between two successive deformed states.

The elastic identification problem thus consists of finding the elasticity tensor As

and the stressσ which satisfy the equilibrium equation (10.24a), the constitutive equa-
tion (10.24b) and the global equilibrium (10.24c) for a load step during which no har-
dening occurs. Plastic identification consists of finding, during a plastic evolution, the
elastoplastic tangent stiffness tensor At

p and the stress increment ∆σ so as to verify
the governing equations (10.25a), 10.25b and (10.25c) of the incremental problem,
applied to a plastic increment :

Standard formulation :

div σ= 0 dans Ω, (10.24a)

σ=As :ε[ū] dans Ω, (10.24b)

Li(σ.n) = gi sur Γi. (10.24c)

Incremental formulation :

div ∆σ= 0 dans Ω, (10.25a)

∆σ=At :ε[∆ū] dans Ω, (10.25b)

Li(∆σ.n) = ∆gi sur Γi. (10.25c)

Within the elastic domain, the behavior is described by an elastic stiffness tensor
A, which can be obtained from either the “standard formulation” or the “incremental
formulation”. In theory, A = As = At. In practice, in order to use data for identifi-
cation with an optimal signal-to-noise ratio, a secant formulation for the identification
of elastic parameters is chosen.

Similarly to what was done for the elastic case, it is possible to write the CEG
E(ū, τ ,Bs) for the standard formulation, and the CEG E(ū,∆τ ,Bt) for the incre-
mental formulation. Stress and stress increment fields respectively belong to spaces S
and ∆S, defined similarly to (10.6b). The results given in Proposition 1 are still valid
in both cases.
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10.3.2. Numerical method

The minimization of the CEG functional with respect to stress fields is carried
out analogously to the elastic case [LAT 07, LAT 08]. The computation of material
property distributions remains to be addressed.

10.3.2.1. Plastic detection

Given the impossibility of identifying locally more than three parameters simulta-
neously, the identification of elastic parameters and plastic parameters are performed
separately, with plastic parameters identified only after the elastic parameters are de-
termined. The first loading step must therefore be assumed to be purely elastic. The
elastic parameters identified are then considered as “reference” parameters, denoted
Ar. Among the following loading steps, a distinction must be made between purely
elastic and plastic steps. To detect that a step is plastic, elastic identification is perfor-
med, in order to compare the elastic tensor A thus obtained with the reference elastic
tensor Ar. The step is then deemed plastic whenever this difference is too large. It is
possible to compare tensors obtained after either the complete loading or just one load
increment.

10.3.2.2. Computation of plastic material properties

Concerning the determination of plastic material properties, two cases may arise
depending on whether a secant or tangent problem is addressed. Both situations also
involve the elastic parameters. Both types of plastic problem are described next, ai-
ming at the determination of two plastic unknowns : the hardening modulus k and the
yield stress σ0.

Secant problem.. For the secant problem, we seek to determine the elastoplastic se-
cant tensor Bsp, which is possible when the backstress tensorXn is zero :[

Bsp
]
n+1

=

[
A−1 − 3∆γ(σ0)

3 + 2k∆γ(σ0)
P

]−1

. (10.26)

Just as with the elastic tensor, the plastic secant tensor can be written (assuming plane
stress conditions) in a form similar to the elastic tensor :

Bsp =

bps1 bps2 0
bps2 bps1 0

0 0 bps3

 . (10.27)

Equation (10.26) allows each of the three independent entries of Bsp to be written in
terms of k and σ0. Upon diagonalizing Bsp and enforcing the stationarity of E(ū, τ )
with respect to the eigenvalues of Bsp, the three equations obtained involve a plastic
variable Kp(k, σ0, τ ). The induced coupling between k and σ0 thus does not allow
their simultaneous determination by considering only the secant problem associated
with the first plastic step.
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Tangent problem.. The tangent problem can be written for a plastic loading incre-
ment, knowing the backstress Xn computed at the previous step. For incremental
plasticity, the elastoplastic tangent tensor is given by (10.23). The expression of this
tensor is not simple enough to provide the proof that the three plasticity equations are
dependent. However, in simple situations (e.g. uniaxial tension), a numerical calcu-
lation enables us to plot the functional associated with the tangent problem, whose
minimization yields the sought plastic parameters (see Figure 10.6 for the case of a
tensile test on a steel sample whose properties are E = 200 GPa, ν = 0.3, k = 10
GPa and σ0 = 300 MPa). For this situation, the functional has an elongated valley
which prevents the identification of the parameter σ0, whereas the hardening modulus
k can be identified.

σ
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Figure 10.6. Values of the functional E(ū,∆τ ,Bt) for a tensile test

To identify both coefficients k and σ0, it is thus necessary to consider two succes-
sive plastic loading steps, denoted n and n+ 1. Both steps are schematically depicted
in Figure 10.7, with the tangent and secant moduli used for each step. The first plastic
step n is best exploited by means of a secant problem, which allows larger strains to
be considered than for the tangent problem, and thus to enjoy a better signal-to-noise
ratio for identification purposes. Since the yield threshold is reached during this first
step, the yield stress σ0 is to be identified from a secant formulation associated with
the CEG functional Es defined by

Es(ū, τ , σ0, k) = E(ū, τ ,Bsp(τ , σ0, k)). (10.28)

Then the second plastic step n + 1 is used to identify the hardening modulus k, a
tangent problem associated with the CEG functional Et defined by :

Et(ū,∆τ , σ0, k) = E(ū,∆τ ,Btp(τ , σ0, k)). (10.29)
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Figure 10.7. Curve σ − ε

The fact that the tangent and secant elastoplastic tensors depend on the stress tensor
(or stress increment) somewhat complicates the resulting algorithm, given next.

Algorithm 2 Two-step plastic algorithm, with enforce kinematic measured ū :∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

• Plastic initialization of the algorithm
σ0

0 = (σn−1)II
k0 estimated from an elastic tangent computation
Et(ū,∆σn, σ

0
0 , k

0) ≤ Et(ū,∆τ , σ0
0 , k

0), ∀∆τ ∈ ∆S
• (For known σin,∆σ

i
n+1, σ

i
0, k

i), successively determine
(σi+1
n ,∆σi+1

n+1, σ
i+1
0 , ki+1) by solving :

step 1 : plastic computation step n+ 1, incremental formulation
Et(ū,∆σ

i+1
n+1, σ

i
0, k

i) ≤ Et(ū,∆τ , σi0, ki), ∀∆τ ∈ ∆S
Et(ū,∆σ

i+1
n+1, σ

i
0, k

i+1) ≤ Et(ū,∆σi+1
n+1, σ

i
0, κ), ∀κ

step 2 : plastic computation step n, standard formulation
Es(ū,σ

i+1
n , σi0, k

i+1) ≤ Es(ū, τ , σi0, ki+1), ∀τ ∈ S
Es(ū,σ

i+1
n , σi+1

0 , ki+1) ≤ Es(ū,σi+1
n , s0, k

i+1), ∀s0

• Convergence test.

10.4. Formulations based on the Legendre-Fenchel transform

The formulation developed in Section 10.3 for elastoplastic identification is based
on an incremental version of the linear elastic CEG. A generalization to non-linear
behavior of the linear elastic CEG, which is more consistent from a theoretical point
of view but so far seldom exploited for identification purposes, exploits the Legendre-
Fenchel transform. For example, for non-linear elastic behavior defined by the convex
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free energy density ψ(ε), we set

E(v, τ , ψ) =

∫
Ω

(
ψ(ε[v]) + ψ?(τ )− τ :ε[v]

)
dV, (10.30)

where the potential ψ?(τ ), given by

ψ?(τ ) = sup
ε

(
τ :ε− ψ(ε)

)
, (10.31)

is the complementary energy density, i.e. the Legendre-Fenchel transform of ψ(ε).
Defining the Legendre-Fenchel gap e(ε, τ ) by

e(ε, τ ) = ψ(ε) + ψ?(τ )− τ :ε, (10.32)

classical convex analysis results yield

e(ε, τ ) ≥ 0 (pour tous ε, τ ) ;e(ε, τ ) = 0⇐⇒ τ =
∂ψ

∂ε
.

The choice made in (10.30) to use e(ε[v], τ ) as CEG density is thus fully justified, the
latter quantity being non-negative and vanishing when τ and ε are linked by the (non-
linear elastic) constitutive model. Of course, choosing the potential ψ(ε) as quadratic
and convex gives the linear elastic CEG (10.4).

The definition of the CEG functional using the Legendre-Fenchel density can be
generalized to standard generalized constitutive models [HAL 75, GER 83], defined
by means of a free energy density ψ and a dissipation potential ϕ. This approach
is used in [MOË 99] for error estimation in finite element calculations in non-linear
conditions. The CEG functional associated with a standard generalized elastic-plastic
model is defined by

E(v, εP, p, τ , R;θ) =

∫
Ω

{[
ψ(ε[v]−εP, p) + ψ?(τ , R)− τ : (ε[v]−εP)

]
t=T

+

∫ T

0

[
ϕ(εP, ṗ) + ϕ?(σ,R)− τ : ε̇P +Rṗ

]
dt
}

dV, (10.33)

where εP is the plastic part of the strain, p is the cumulative plastic strain, R is the
yield stress, and θ is a vector of (possibly heterogeneous) constitutive parameters.

The identification of θ can then be formulated as

ϑ = arg min
θ

E(θ),

where E(θ) is defined by a partial minimization of the CEG functional (10.33) :

E(θ) = min
(v,εP ,ṗ)∈CEP, (τ,R)∈SEP

E(v, εP, ṗ, τ , R;θ)
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and the admissible spaces CEP,SEP are defined in terms of the spaces C and S of
kinematically and statically admissible fields by

CEP =
{
v, εP, p

∣∣v ∈C, εP :1 = 0,
√

(2/3)εP :εP = ṗ
}
,

SEP =
{
τ , R

∣∣ τ ∈S, ‖τ‖eq−R−R0 ≤ 0
}
.

For isotropic elastic-plastic behavior defined by an initial yield stress R0, the von
Mises criterion, an associated flow rule and linear isotropic hardening h, we have
θ = (µ, ν,R0, h) and the CEG functional is given (with A = A(µ, ν) and εE[v] =
ε[v]−εP) by

E(v, εP, p, τ , R;θ) =

∫
Ω

{[1

2
(τ −A :εE[v]) :A−1 : (τ −A :εE[v])

+
1

2h
(R−hp)2

]
t=T

+

∫ T

0

[
R0ṗ−σ : ε̇P +Rṗ

]
dt
}

dV.

A different approach, also based on a gap built from the Fenchel-Legendre trans-
form, is proposed in [HAD 07a, HAD 07b] to address situations where overdetermi-
ned measurements of the boundary are available. The proposed functional measures
the difference between two solutions, defined for the same constitutive model and
respectively associated with kinematic or static boundary data. The authors have pri-
marily focused on the identification of viscoelastic constitutive parameters. The nu-
merical implementation of this approach demonstrates in particular the improvement
of local convexity (in the constitutive parameter space) of the proposed functional
compared to a least squares functional measuring the boundary displacement misfit.

10.5. Suitable formulations for dynamics or vibration

Applications of the concept of constitutive equation gap to identification problems
initially focused on model updating using vibrational data (experimental information
on natural frequencies and modal displacements, possibly after processing the measu-
red time response). This is partly motivated by the fact that many structures in ope-
rational conditions are subjected to dynamic loading or vibrations. Early work in this
direction, carried out at LMT (ENS Cachan), includes the thesis [REY 90].

Formulation in the frequency domain. Model updating using the CEG in the fra-
mework of conservative dynamic vibrations is typically based on a functional of the
form

E(A, ρ) = min
v,τ,γ

∑
ω̂ mesuré

{
Eω̂(v, τ ,γ,A, ρ) +

β

2

∫
D

a(v− ū,v− ū) dV
}
, (10.34)
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defined by the partial minimization of a modified CEG functional

Eω̂(v, τ ,γ,A, ρ) =
α

2

∫
Ω

(τ −A :ε[v]) :A−1 : (τ −A :ε[v]) dV

+
1− α

2

∫
Ω

1

ρω̂2
‖γ+ρω̂2v‖2 dV.

This functional in fact considers two constitutive equations : relation σ = A : ε of
linear elasticity, and γ = −ρω2u, linking the acceleration quantity density γ to the
displacement u. The dynamic admissibility constraint reads, in weak form :

R(τ ,γ;w) :=

∫
Ω

(τ :ε[w] + γ.w) dV = 0 (∀w ∈ V)

and can be combined with Eω̂(v, τ ,γ,A, ρ) using a Lagrangian L = Eω̂ − R. The
stationarity equations for L are

0 = α

∫
Ω

ε[w] :A :ε[ũ] dV −
∫

Ω

ρω̂2wũ dV + β

∫
D

a(u− ū, ũ) dV (∀ũ ∈ V),

(10.35a)

0 =

∫
Ω

[
ε[u− 1

α
w] :A :ε[w̃]− ρω̂2

(
u+

1

(1− α)
w
)
w̃

]
dV (∀w̃ ∈ V),

(10.35b)

σ = Aε[u− 1

α
w], (10.35c)

γ = −ρω̂2
[
u+

1

(1− α)
w
]
. (10.35d)

Equations (10.35a), (10.35b) lead to a coupled system for the unknowns u,w, with
σ,γ given explicitly by (10.35a), (10.35b). The CEG densities associated with the
elastic and kinetic constitutive relations are given by

1

α
ε[w] :A :ε[w], ρ‖w‖2.

Many numerical experiments [REY 90, BEN 95, LAD 99, BUI 00, DER 01, DER 02]
have emphasized an important property of CEG densities, namely their tendency to
reach their largest values in “incorrectly modeled areas” whose material properties
present a discrepancy ∆ρ,∆A with respect to the assumed values A, ρ, especially if
their spatial size is small compared to the analyzed structure (defects).

Concerning the identification of constitutive parameters under dynamic conditions,
a “relaxed” version of the constitutive equation gap has been more recently proposed
for transient dynamic conditions [FEI 06, NGU 08]. The idea is to avoid the exact en-
forcement (via admissible spaces C,S) of kinematic and dynamic data, which may be
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very noisy in dynamic tests. With reference to e.g. Hopkinson split bar dynamic tes-
ting, simultaneous experimental knowledge of all forces and velocities on the sample
boundary is assumed. The principle of this relaxed approach (explained here in a static
framework for simplicity) is then based on the definition of C,S in terms of fictitious
data (displacements and forces) ξ,ϕ :

C(ξ, ∂Ω) = {v | vi ∈H1(Ω), v= ξ sur ∂Ω},

S(ϕ, ∂Ω) = {τ ∈Hdiv(Ω), τ .n=ϕ sur ∂Ω}.

Considering for clarity the identification of elastic moduli, a modified CEG functional
H(A) is defined as

H(A) = min
(ξ,ϕ)

(
min

(v∈C(ξ,∂Ω),τ∈S(ϕ,∂Ω))
H(v, τ , ξ,ϕ,A)

)
(10.36)

with

H(v, τ , ξ,ϕ,A) =
1

2

∫
Ω

(τ −A :ε[v]) :A−1 : (τ −A :ε[v]) dV

+

∫
S

(A
2
‖ū− ξ‖2U +

B

2
‖T̄ −ϕ‖2T

)
dS,

Coefficients A and B ensure the dimensional consistency of the functionalH and en-
able the two types of data to be weighted according to their expected quality. This
approach implicitly performs a smoothing of noisy data ū, T̄ . Numerical experiments
in dynamic identification [FEI 06, NGU 08] have shown that this approach can ope-
rate satisfactorily for high levels of data noise, for which the performance of other
functionals (including least squares misfit functionals acting directly on the boundary
data) markedly deteriorates.

10.6. Conclusions

The identification of parameters featured in constitutive laws is an interesting and
nontrivial problem. Indeed, the experimentalist measures certain “outputs” correspon-
ding to certain “inputs”. Before the advent of kinematic field measurements, expe-
riments were generally designed in such a way that the mechanical state could be
assumed homogeneous in the region of interest where gauges are applied. For homo-
geneous isotropic materials, such experiments allow the identification of the Young
modulus and of the Poisson ratio. For general homogeneous anisotropic materials the
identification of all elastic constants needs a more sophisticated analysis.

Over the last two decades, completely new experimental techniques enabling the
measurement of displacement fields have appeared. Such techniques are particularly
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interesting when multiaxial loading along two or three perpendicular directions is ap-
plied and strain field heterogeneity occurs. Indeed, in such situations, a displacement
field measurement is needed to check and quantify the heterogeneity of the strain
field. The identification methods presented in this chapter use the vast amount of in-
formation contained in these field measurements. We have particularly emphasized
the identification problem in heterogeneous linear elastic conditions, illustrating this
approach with both academic examples and a case study with available experimental
data. The identification algorithm used has been presented and discussed in detail to
facilitate its subsequent use by the reader. An interesting aspect of local identification
is the study of the sensitivity to contrasts of material properties. As expected, errors
in the identification increase with the contrast, because of strong gradients induced in
the stress and strain fields, which must then be approximated with the highest possible
accuracy by the identification method.

The CEG elastic identification procedure also enables us to establish energy ba-
lances in polycyclic fatigue. Stress fields are identified over a mechanical cycle so as
to estimate the mechanical energy locally supplied during a fatigue cycle. The origi-
nality of this method is to consider small variations in a secant elastoplastic stiffness
tensor, mainly due to microplasticity mechanisms, as small variations in an elastic
stiffness tensor. The latter is determined for each loading step during the mechani-
cal cycle, and locally since no assumption is made about constitutive homogeneity.
The spatial and temporal variability of material behavior is described as accurately as
possible. The method allows the identification of stress fields associated with a hete-
rogeneous material. A preliminary study involving this type of energy balance in the
context of fatigue is presented in Chapter 16.

Kinematic measurements using digital image correlation enable data to be obtai-
ned on in-plane displacement fields. CEG-based identification methods have there-
fore so far been mostly developed for configurations for which the assumption of
plane stress can be applied, the material properties also being identified in a two-
dimensional domain. The identification of three-dimensional heterogeneous proper-
ties is an interesting extension of the methods presented in this chapter. Kinematic
field measurements in the entire volume are in fact made possible by tomography
techniques, which are beginning to be used for mechanical tests but remain difficult
to implement. Meanwhile, it is also important to note that the CEG (especially in its
“modified” form) can be used with data obtained using other measurement methods.

Finally, the case of elastoplasticity has been considered using different CEG-based
approaches. The first approach, an incremental version of the linear elastic CEG, raises
some issues when the plastic zones evolve rapidly during loading. In an interesting
extension of the identification method, the identification of hardening laws with more
parameters, such as those involving an exponential term accounting for the observed
saturation of hardening steels, could be considered. The second approach, based on
the Legendre-Fenchel transformation, should help to overcome these difficulties. It is
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more consistent from a theoretical standpoint, but its practical implementation remains
to be achieved. The formalism and the underlying theoretical framework should give
rise to yet other interesting generalizations of the concept of CEG.
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