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Public transport reliability and commuter strategy

Guillaume Monchamberta,∗, André de Palmaa,b

aEcole Normale Supérieure de Cachan
bEcole Polytechnique

Abstract

We consider the modeling of a bi-modal competitive network involving a public transport mode, which
may be unreliable, and an alternative mode. Commuters select a transport mode and their arrival
time at the station when they use public transport. The public transport reliability set by the public
transport firm at the competitive equilibrium increases with the alternative mode fare, via a demand
effect. This is reminiscent of the Mohring effect. The study of the optimal service quality shows
that often, public transport reliability and thereby patronage are lower at equilibrium compared to
first-best social optimum. The paper provides some public policy insights.
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1. Introduction

Despite increasing pollution and congestion in cities, cars remain the most popular mode of trans-
port. Therefore, improving alternative modes of transport and making them attractive is essential in
an urban context. Even if travel time is presented as the main determinant of trip characteristics,
Beirao and Cabral (2007) have shown that increasing the service quality remains an important deter-
minant of public transport demand. Several studies strongly suggest that reliability (understood as
punctuality) of public transport is crucial to leverage the demand (Bates et al., 2001; Hensher et al.,
2003; Paulley et al., 2006; Coulombel and de Palma, 2014), and in their qualitative review, Redman
et al. (2013) claim that reliability is the most important quality attribute of public transport for users.

Although there is a long literature about road reliability, a sensitive lack of research is observed in
public transport field (Bates et al., 2001). Some studies highlight a valuation of road reliability (Bates
et al., 2001; Fosgerau and Karlström, 2010), others underline the importance of public transport
comfort (de Palma et al., 2013) or punctuality (Jensen, 1999), but only few deal with reliability in
analytical way. A meeting of two persons has been analyzed in the context of game theory by Fosgerau
et al. (2014). Public transport imposes specifications that will be exploited here.

This paper focuses on the two-way implication between punctuality level of public transport and
commuter behavior. On one hand, the transportation lack of punctuality plays an important role
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in the modal shift as commuters may incur extra-cost due to waiting time, arriving late or missing
the bus. On the other hand, Mohring (1972) has pointed out that scheduled urban public transport
is characterized by increasing returns to scale. According to the Mohring Effect, as transportation
patronage increases, the operator tends to improve the frequency of service and to provide external
benefits due to reduced waiting times and denser transit network. Demand is also influential in the
service quality offered, and the bus company may adapt its punctuality to the level of potential demand.
We show that some users may decide to arrive late at the bus stop when punctuality is low. As a
consequence, the bus company itself may become less strict as far as the punctuality. In a nutshell, this
means that user behavior (punctuality of users) is influenced by the punctuality of public transport.
These mechanisms may generate a vicious circle: lateness of some agents calling for lateness of the
other agents.

In this paper, we study three situations: (i) the reaction of the bus company when it faces a higher
price of the alternative mode, (ii) the gap between the bus punctuality at equilibrium and at optimum
and (iii) the equilibrium versus optimal modal split when punctuality matters. In particular, we show
that when the alternative mode fare raises, the resulting increase in bus patronage makes the bus
operator improve the bus punctuality. This mechanism can be considered as an application of the
“Mohring Effect”.

We consider a duopoly which symbolizes a modal competition between public transport and another
mode, which we call taxi. The attention is focused on the monetary impacts of punctuality. We
simplify aspects related to engineering. A duopoly is used because determinants of demand for public
transport are related to the demand for private transport (Balcombe et al., 2004). Usually, the public
transport firm is not profit maximizing because it is regulated and because it receives subsidies. Some
intermediary cases arise when the firm receives fixed subsidies and wishes to maximize its revenues
and minimize its costs. In order to guarantee good enough quality of service, the subsidy may depend
on the quality of service offered. Such incentives are more generally used when public resources are
scarce. Two different types of variables are observed in the model: the public transport punctuality
level, which is selected by the bus company and the prices set by the bus and taxi companies. Both
have a substantial influence on demand for public transport (Paulley et al., 2006). Unreliability has a
strong negative impact as it implies excessive waiting time and uncertainty (Wardman, 2004; Paulley
et al., 2006).

We insist on the fact that even if along the paper we consider the alternative mode as a taxi
company, the analysis may easily be extended to the private car. In fact, one has to only consider the
taxi fare as an exogenous variable which stand for the variable cost of using a car. An increase in taxi
fare can also be interpreted as a rise in gas prices.

Considering commuting trips, preferences can be analyzed with the dynamic scheduling model. In
this model, individuals’ preferences reflect agents’ tradeoff between travel time, early schedule and late
schedule delays. Commuters may choose different strategies to minimize their trip cost. This theory
has been first introduced by Vickrey (1969) and then renewed by Arnott et al. (1990). Such analysis
is usually specific to road analysis (Fosgerau and Karlström, 2010); here we introduce waiting time to
extend this model to public transport. Incidentally, note that the French State-owned railroad (SNCF)
suggests to reschedule work arrival and departure times in order to reduce congestion (Steinmann,
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Figure 1: The route from home to CBD

2013).
Commuters are differentiated by their preferred arrival time at workplace and by their residential

location, which is measured as the time to travel to their destination when using the alternative mode.
Two different preferred arrival times are considered, and the location is uniformly distributed among
commuters.

The analysis for the model proceeds in three steps. The first step consists in finding out the
modal choice of commuters depending on prices and punctuality for the public transport and the
alternative mode. The second step determines which price and punctuality levels are set by companies
at equilibrium given the behavior of commuters identified in step one. The third step is to assess the
prices and the punctuality level that minimize the total social cost and to compare these results with
the ones derived in step two.

Our model is here applied to road modes, but it can be generalized to other transport modes which
face delays, such as inter-city rail or air transport. More generally, the modeling approach is relevant
for any service concerned with reliability.

The paper is organized as follows. Section 2 describes the model and the commuter’s strategies.
Section 3 considers equilibrium and its properties. The gain due the transition from equilibrium to
optimum is analyzed in Section 4. A numerical application is provided in Section 5 to illustrate our
results and to present some public policy insights. In Section 6, we propose an extension by assuming
that a second bus arrives shortly after the first one. The final section concludes and provides directions
for further research.

2. Punctuality in public transport

We consider an unique route from an origin A to a destination B with households living alongside
this route. Every morning, all commuters have to reach the point B which can be viewed as the CBD of
a city.The route is measured in time units and is ∆ hours long. A unique bus line and a taxi company
serve the CBD by using this route and bus stations are uniformly distributed alongside this route.

As both modes are road modes, they endure the same traffic conditions. Therefore, we do not take
into account congestion on the road. Moreover, the road congestion has no impact on the modal split.
Thus, both modes have the same speed, and we refer to a bus stop located at δ hours from the CBD as
“bus stop δ”. For example, the bus stop ∆ is located at the border of the city. Similarly, all commuters
live along the route, and we refer to commuters who need δ hours to reach the CBD, whether they use
the bus service or the taxi service, as “commuters δ”. For each δ ∈ [0;∆], all commuters δ live at the
same place (see Figure 1).

The commuters are divided into two groups according to their preferred arrival times: the first type
of commuters (referred to as GroupA, which includes a part θ of the population) would rather arrive
at time T , and the second one (referred to as GroupB) at time T + x (see Figure 2). This reflects the
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Figure 2: Distribution of taxi trip time in GroupA and GroupB

fact that even though a majority of commuters wishes to arrive at work place at the same time, not
all commuters have the same preferred arrival time. Commuters locations are uniformly distributed
among each group in the same manner (Figure 2) and the distribution is assumed to have a support
[0;∆] so that F (0) = 0 and F (∆) = 1.

For analytical tractability, we consider a single bus. However, this model can be easily adapted to
other modes of public transport that run on a schedule. The bus is scheduled to arrive at the CBD
at a given time, but it may be late. The probability of lateness is not random: the bus company
selects its quality service level and applies it in the same manner along the route. Thus, when the bus
company chooses to be late, it is late along the whole journey, and its lateness is constant over time.
Commuters are aware of the punctuality level and adapt their behavior accordingly. In particular,
they might arrive at the bus stop after the scheduled time even if there is a risk to miss the bus by
doing so. This late arrival can occur rationally because there is a waiting cost for users. Commuters
optimize their tradeoffs between cost of waiting time, schedule delay, and a cost corresponding to the
use of alternative mode, which in our model is the taxi. A commuter may either select taxi ex ante or
use the taxi if he misses the bus.

It should be stressed that the taxi service represents all private transport modes. From user
perspective, the taxi fare is not different than the variable cost of his own car.

Table 1 introduces notations used in this paper and their numerical values that will be used in
Section 2, 5 and 6.We first characterize the network and then the commuter behavior. Finally, we
characterize the modal split.

2.1. Transport supply

Bus stops are uniformly distributed between 0 and ∆. The bus is scheduled to arrive at its
destination, the CBD, at time T . As there is no road congestion, it is also scheduled to serve the bus
stop δ at time T − δ and to leave at time T − δ i.e there is no transfer cost.1 The bus company may
choose that the bus is late and arrives at CBD time T + x. In this case, the bus stops at every bus
stop δ at time T + x− δ. The bus arrives at the CBD at time T with probability P and at time T + x

with probability 1 − P . Whatever the bus lateness, the total bus trip time is constant and equals to
∆. The potential lateness is also constant and equals to x.

1The loading time is assumed to be set to zero without loss of generality.
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Parameter Comment Suggested value
T Scheduled arrival time -
x Lateness 10/60 (hour)

P ∈
[
1
2 ; 1
]

Probability of the bus being on time -
tp ∈ {T ;T + x} Arrival time at the bus stop of the bus -

δ ∈ [0;∆] Taxi (or bus) trip time (hour)
∆ Maximal taxi trip time 35/60 (hour)

t∗ ∈ {T ;T + x} Preferred arrival time of users -
ta ∈ {T ;T + x} Arrival time at the bus stop of the user -

θ ∈
[
1
2 ; 1
]

Share of population in GroupA -

αbus In-bus time cost per unit of time 15 ($/hour)
αtaxi In-taxi time cost per unit of time 4 ($/hour)
η Waiting time cost per unit of time 20 ($/hour)
β Early delay cost per unit of time 10 ($/hour)
γ Late delay cost per unit of time 30 ($/hour)

κ Bus fare ($)
τ Taxi fare ($/hour)

c Cost of punctuality (bus) ($)
d Operating cost per unit of time (taxi) 40 ($/hour)

Table 1: Parameters values

The probability of the bus being on time is endogenous: the bus company sets its level. It does not
depend on traffic conditions, number of passengers or loading time. The worst quality of service occurs
when the bus has the same probability of being on time and being late. We assume that a regulator
imposes this constraint to assure a consistent timetable2. The “punctuality level” corresponds to the
probability of the bus being on time.

Assumption 1. The probability P of the bus being on time satisfies the following inequality:

1

2
≤ P ≤ 1.

We assume that there is no capacity constraint in the bus. The bus fare, priced by the bus company,
is κ for each passenger.

Commuters have an access to an alternative mode of transport. In our model we consider this
option as a taxi service, but it can also be walking or personal car use. The taxi company sets a fare
τ which corresponds to the price charged per minute of travel.

2Minimal value of P is 1/2, otherwise we would face another schedule than the expected one. Indeed, if P is lower
than 1/2, then the bus is more often late than on time. Commuters may also consider that the bus becomes more
punctual according to a new “unofficial” timetable where the bus is supposed to arrive at time T + x.
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2.2. Demand for bus and taxi

Commuters are assumed to incur a schedule delay cost if they arrive at time t ̸= t∗, t∗being their
preferred arrival time. There is no transfer cost: commuters do not incur a cost by reaching the bus
stop as the bus stops are assumed to be uniformly distributed along the route where the commuters
live.

A commuter has a choice between catching the bus and using the taxi service. However, he may
miss the bus, and then, he has to use the taxi service. We assume the headway is so long that all
users who miss the bus prefer to use the taxi service3. If he tries to catch the bus, the commuter δ

uses the bus stop δ because it minimizes his transfer cost. A commuter δ choosing to catch the bus
bears the following schedule delay cost function that is assumed to depend on the bus arrival time at
the station, denoted ta ∈ {T − δ;T − δ + x}, the arrival time of the bus at the bus station, denoted
tp ∈ {T − δ;T − δ + x}, its most preferred trip time, denoted t∗ ∈ {T ;T + x} as well as on the arrival
time at destination of the bus, denoted td ∈ {T ;T + x} :

CCbus =

κ+ δαbus + η(tp − ta) + β [t∗ − td]
+
+ γ [td − t∗]

+ if (ta ≤ tp),

δ (αtaxi + τ) + γ [td − t∗]
+ if (ta > tp),

with [x]
+

= x if x ≥ 0 and 0 if x < 0, κ the bus fare, αbus the in-bus time cost, η the waiting time
cost, β the early delay cost, γ the late delay cost, αtaxi the in-taxi time cost, τ the taxi fare and δ the
trip time of commuter δ.

If a commuter chooses to use the taxi service from the start, he incurs the following cost:

CCtaxi = δ (αtaxi + τ) ,

with αtaxi the taxi travel time value, τ the taxi fare and δ the taxi trip time.
By considering that for all δ ∈ [0;∆], the value of time in bus δαbus is incurred by commuter δ

whatever is its choice, we can normalize the cost functions to:

CCbus =

κ+ η(tp − ta) + β [t∗ − td]
+
+ γ [td − t∗]

+ if (ta ≤ tp),

δ (α̌+ τ) + γ [td − t∗]
+ if (ta > tp),

(1)

CCtaxi = δ (α̌+ τ) , (2)

with α̌ = αtaxi − αbus.

Assumption 2. The cost of waiting one minute for a bus, η, is lower than the cost of being one
minute late, γ, and higher than the cost of being one minute early, β:

γ ≥ η ≥ β.

This assumption is consistent with literature valuations (Wardman, 2004).

3This restriction is removed in the extension presented in Section 6.
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2.3. Commuters’ strategies

Commuters dispose of three different strategies to minimize the cost of a trip. A strategy is defined
by an arrival time at the bus stop. Arriving at the bus stop at time T corresponds to Strategy O

(On-time at the bus stop), arriving at time T +x to Strategy L (Late at the bus stop) and Strategy T

(Taxi) embodies the decision to use the taxi. If a commuter chooses Strategy O, he waits until the bus
arrives; if he chooses Strategy L, he uses the taxi service only in the case he misses the bus. Strategy T
corresponds to the choice of the taxi cab at the beginning of the trip.

As a convention, we assume that a commuter who is indifferent between two strategies has a
preference for maximizing its chance to get the bus. The commuter also chooses:
Strategy O (arrive at time T ) if EC (O) ≤ EC (T ) and EC (O) ≤ EC (L);
Strategy L (arrive at time T + x) if EC (L) < EC (O) and EC (L) ≤ EC (T );
Strategy T (choose the taxi) if EC (T ) < EC (O) and EC (T ) < EC (L),
where EC (i) represents the expected cost of strategy i.

Proposition 1. Under Assumption 1 and Assumption 2, the commuter δ in GroupA selects:

Strategy O (time T ) if δ ≥ δAT,O,
Strategy T (taxi) if δ < δAT,O,

where δAT,O ≡ [κ+ (1− P ) (η + γ)x] / (α̌+ τ).

Proof. See AppendixA.

For a commuter wishing to arrive at time T , Strategy L is never selected. A commuter chooses
Strategy L instead of Strategy T if he prefers a late bus trip over a taxi trip. However such a commuter
prefers an on time bus trip over taxi trip and consequently, he will choose Strategy O.

Proposition 2. Under Assumption 1 and Assumption 2, the commuter δ in GroupB selects:

Strategy O (time T ) if δ ≥ δBL,O,
Strategy L (time T + x) if δBT,L ≤ δ < δBL,O,

Strategy T (taxi) if δ < δBT,L,

where δBL,O ≡
[
κ+

(
1−P
P η + β

)
x
]
/ (α̌+ τ) and δBT,L ≡ κ/ (α̌+ τ).

Proof. See AppendixB.

Strategy L is selected by some commuters from GroupB unlike commuters from GroupA. It can
be explained by the fact that for GroupB, Strategy L corresponds to a possibility of the bus arriving
on time without extra waiting time. A commuter who prefers an on-time bus trip over a taxi trip, and
prefers a taxi trip over an early-arrival bus trip, chooses Strategy L.

The share of commuters choosing Strategy T is independent of the probability of the bus being
on time. P has no influence in the arbitrage between Strategy L and Strategy T . For commuters
in GroupB, choosing Strategy L is equivalent to choosing Strategy T except that they take the bus
when it is late. Consequently, Strategy L is preferred to Strategy T as long as the cost of taking the
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GroupA GroupB

Figure 3: Share of commuter choosing Strategy O and Strategy L as a function of P , the probability of the bus being
on time (κ = 8, τ = 50)

bus when it is late is lower than the cost of taking a taxi. Then, this arbitrage is independent of the
probability of the bus being on time.

When the punctuality decreases, the share of commuters arriving late at the bus stop increases.
The cut in the service quality makes the cost of Strategy O higher (because of A.2) and the cost of
Strategy L smaller (except for commuters living so close to the CBD that a taxi trip is still cheaper
than a bus trip, but we do not take account of these commuters because they still prefer Strategy T ).
Then, among the commuters who chose Strategy O before the service quality falls, those living the
closest to the CBD are the most indifferent between both strategies, and switch from Strategy O to
Strategy L. Moreover, the bus company itself may become less strict, and generate a vicious circle.

When the taxi fare, τ , increases, more commuters choose to arrive at the bus stop at T , and
less commuters choose Strategy L and Strategy T . This is due to the fact that on the one hand
some commuters have a bigger interest to minimize the probability of taking the taxi by shifting from
Strategy L to Strategy O and from Strategy T to Strategy L. On the other hand, the shift from
Strategy L to Strategy O is larger than the one from Strategy T to Strategy L.

Figure 3 illustrates these results. Other things being equal, the share of commuters arriving at T

(and by doing so they are sure to catch the bus) among GroupA increases from around 48% when
P = 1/2 to almost 65% when P = 1. The share of commuters in GroupB choosing to arrive late
at the bus stop (Strategy L) depends inversely on the probability of the bus being on time. If the
bus arrives later, some users switch from Strategy O to Strategy L which leaves the bus company no
incentive to restore the service quality.

Assumption 3. The maximum cost of the taxi use, priced at the operating cost, is higher than the
cost of the bus use, when priced at zero and when the bus arrives on time with probability 1/2:

∆(α̌+ d) ≥ 1

2
(η + γ)x.

Once the commuters’ strategies are defined, shares of commuters who are at the bus stop at time
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T or T + x are known. Demands are described by

Dbus = θ

(
1−

δAT,O

∆

)
+ (1− θ)

[
1−

δBL,O

∆
+ (1− P )

δBL,O − δBT,L

∆

]
, (3a)

Dtaxi = θ
δAT,O

∆
+ (1− θ)

[
P
δBL,O − δBT,L

∆
+

δBT,L

∆

]
. (3b)

Thus, the bus (and taxi) patronage depends on the probability of the bus being on time4. GroupA

is more sensitive to the service quality than GroupB (see also Figure 3). This is due to the fact that
commuters from GroupA incur late arrival costs while commuters from GroupB incur early arrival
costs and, as seen in Assumption 2, the penalty for lateness is much higher than the penalty for arriving
early at the destination.

3. Competition between bus and taxi companies

In this section, we explore equilibrium pricing and punctuality level in a duopoly competition. We
assume that following condition holds:

∆(α̌+ τ) ≥ κ+
1

2
(η + γ)x. (4)

ition assures an interior solution.We will check if it holds once the equilibrium values of τ and κ

are solved.
Some situations where one mode takes over the whole patronage are worth considering. They

are characterized by corner solutions and Condition (4) does not hold. We identify three potentials
elements that may cause such situations. First, if the bus fare is too high, even commuters living the
farthest from the center choose the taxi. Second, commuters use the taxi service when the potential
late arrival of the bus is too costly. This may be due to a very large delay or to a very high valuation of
scheduling costs by commuters. If commuters attach importance to be on time without wasting time,
then they give priority to the most punctual mode, the taxi service. Finally, when the cost associated
to the taxi travel with respect to the bus journey is too high, no one will use the taxi service. These
three arguments might help to explain why, in some cities, one specific transport mode is predominant.

Both companies incur a cost. The cost incurred by the bus company only depends on the punctual-
ity level and is assumed to be quadratic. It is a sunk cost in the sense of being unrecoverable (Sutton,
1991). The cost of the taxi company linearly depends on the total travel time and can be viewed as
an operating cost:

Costbus =
c

2
P 2, (5a)

Costtaxi = d ∗ TTT , (5b)

with c the punctuality cost, d being the cost per hour traveled, and TTT the total travel time of the
taxi company. Note that the bus company cost does not depend on the travel time. As the travel time

4We assume perfect information concerning the service quality. Otherwise, the service would be an experience based
good involving learning and the user’s level of risk aversion should be taken into account.
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is constant, the linked cost does not matter in the objectification process. The punctuality is a costly
component because being punctual implies on the one hand a high pressure on bus drivers to make
them arrive on time, and on the other the set-up of an efficient organization to pick up and drop off
the commuters.

The bus company chooses the bus fare κ and the punctuality level P , so as to maximize its profit
like a classical firm. From equations (3a) and (5a), the bus company profit can be written as

Πbus = κDbus −
c

2
P 2.

There exists a unique solution5 satisfying the first-order conditions ∂Πbus/∂κ = 0 and ∂Πbus/∂P =

0, given by

κe =
1

2

(
△̌e − Γex

)
, (6)

P e =


1
2 if c > ce2,

κeη̌x

c△̌e if c ∈ [ce1; c
e
2]

1 if c < ce1,

, (7)

where ∆̌e = ∆(α̌+ τ e), Γe = (1− P e) η + (1− θ)P eβ + θ (1− P e) γ, η̌ = η − (1− θ)β + θγ, ce1 ≡
κeη̌x/∆̌e and where ce2 ≡ 2ce1.

The price of an hour traveled in a taxi, τ , is set by the taxi company to maximize its profit. From
equations (3b) and (5b), taxi profit is given by

Πtaxi = (τ − d)

[
θ

ˆ δAT,O

0

δf(δ)dδ

+(1− θ)

(ˆ δBT,L

0

δf(δ)dδ + P

ˆ δBL,O

δBT,L

δf(δ)dδ

)]
.

The level of price satisfying the first-order condition6 ∂Πtaxi/∂τ = 0 is

τe = α̌+ 2d. (8)

Condition (4) requires △̌e ≥ κe + 1
2 (η + γ)x and yet

∆(α̌+ d) ≥ {Pη − (1− θ)Pβ + [1− θ (1− P )] γ}x/2. It holds according to Assumption 3.
Note that the probability of the bus being on time defined in (7) is continuous.
The core component of the bus fare corresponds to the average taxi trip cost cut by the average

schedule and waiting time costs incurred by commuters. The bus company takes account of its service
quality to remain attractive regarding the alternative mode. As expected, the punctuality decreases

5Second-order conditions are satisfied as ∂2Πbus/∂κ
2 = −2/△̌ and ∂2Πbus/∂P

2 = −c/△̌. The Hessian matrix of
second partial derivatives is also negative definite, and the solution is a global maximum. It satisfies all conditions
regarding this maximization problem.

6Second-order condition requires that 4α̌− 2τe + 6d ≥ 0 or τe ≤ 2α̌+ 3d. All conditions are satisfied.
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when the punctuality cost c increases. Since the punctuality level decreases with the maximal taxi
trip time, ∆, a high scatter of commuters’ locations makes the service quality regress (see equation
(7)). In addition, the longer is the route where commuters live, the higher is the mark-up for the bus
company. The taxi fare is independent of the bus company choices. It only depends on the values of
taxi and bus travel time and operating cost. Ceteris paribus when d increases, both bus and taxi fares
become higher.

There is a unique simultaneous Nash equilibrium which is given by equations (6), (7) and (8).

Proposition 3. At equilibrium, P e, the probability of the bus being on time and κe, the bus fare,
increase with τ , the taxi fare.

Proof. See AppendixC.

Consider an initial rise in taxi fare, τe, for example due to an increase in the taxi operating cost or
in the gas price if the alternative mode is viewed as the private car. This increase leads to a standard
modal shift from taxi service to bus service, other things being equal (see Propositions 1 and 2).
Consequently, the cost of the bus punctuality per user decreases. The bus company will therefore have
an incentive to increase the punctuality level when τ rises. By doing so, the bus company attracts
additional commuters. In a nutshell, an increase in bus patronage improves the service quality of the
bus. This can be viewed as an extension of the Mohring Effect (Mohring, 1972) according to which
the service quality measured as the frequency increases when the demand for public transport rises.

The increase in the bus fare is explained by two aspects: on the one hand the service quality has
been improved, and on the other hand, the rises in the taxi fare increase the average taxi trip cost
and, therefore, the bus fare. This relationship has already been observed, and we refer the reader to
some cases where the bus operator has increased the bus fare in response to a rise in gas price (Ya’ar,
2011 and Mohapatra, 2013). There is no strategic complementarity because the taxi company does
not take into account the bus fare and service quality.

4. Welfare analysis

The social planner maximizes the welfare defined as the sum of the aggregate commuters’ and
companies’ surpluses. Since a cost function is used instead of a surplus function to study the commuter
strategies, the social welfare function is defined as the opposite of the social cost function SC, which is
the difference between aggregate commuter costs and firm profits. From equations of commuter cost
(1) and (2), of demand (3a) and (3b), and of companies cost (5a) and (5b), the social cost function
can be written as

SC =
∆αbus

2
+ θACCA + (1− θ)ACCB −Πbus −Πtaxi, (9)

where ACCi=A,B is the aggregate cost incurred by commuters from Group i such as

ACCA = (α̌+ τ)

ˆ δAT,O

0

δf(δ)dδ

+ {κ+ [(1− P ) (η + γ)]x}
ˆ ∆

δAT,O

f(δ)dδ,
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and

ACCB = (α̌+ τ)

ˆ δBT,L

0

δf(δ)dδ

+

ˆ δBL,O

δBT,L

[(1− P )κ+ P (α̌+ τ) δ] f(δ)dδ

+ {κ+ [(1− P ) η + Pβ]x}
ˆ ∆

δBL,O

f(δ)dδ.

The first term in the social cost formula, ∆αbus/2, is an unavoidable commuter cost associated to the
journey time, recall the normalization we use α̌ = αtaxi − αbus leading to Equations (1) and (2).

The social planner chooses the punctuality level P , the bus fare κ and taxi fare τ so as to minimize
social cost. The first-order conditions for the socially optimal bus and taxi prices are given by

κo = 0, (10)

τo = d. (11)

As expected, optimal bus and taxi fares equal to the marginal costs incurred by bus and taxi companies.
Indeed, as there is no variable cost for the bus, the optimal bus fare is null. The optimal taxi fare is
lower than the equilibrium one, meaning that taxi travel should subsidized. This is in line with Arnott
(1996) who showed that thanks to economies of density, doubling trips and taxis by means of subsidy
reduces the waiting time and increases the social surplus.

The expression of the optimal punctuality level P o is not explicit in the general case because the
equation to solve is a cube root i.e it has three solutions with only one real.

P o = argmin
P∈[ 12 ;1]

SC. (12)

However, in the extreme case where θ = 1, there exists a unique solution7 satisfying ∂SCθ=1/∂P =

0. By using (10) and (11), we obtain, for GroupA

P o
θ=1 =


1
2 if c > co2;θ=1

[△̌o−(η+γ)x](η+γ)x

c△̌o−[(η+γ)x]2
if c ∈

[
co1;θ=1; c

o
2;θ=1

]
1 if c < co1;θ=1,

(13)

where ∆̌o = ∆(α̌+ τo), co1;θ=1 ≡ (η + γ)x ,
co2;θ=1 ≡

[
2△̌o − (η + γ)x

]
(η + γ)x/△̌o and where co1;θ=1 < co2;θ=1. Note that the probability of the

bus being on time when θ = 1 is continuous.
We generalize the above result to the other extreme case where θ = 0 in the following conjecture.

Conjecture 1. For GroupB (θ = 0), the punctuality level of the bus P o
θ=0 weakly decreases when the

7Second-order condition is verified as c△̌o ≥ [(η + γ)x]2.
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cost of reliability c increases. There are two critical values of c, co1;θ=0 and co2;θ=0 with co1;θ=0 ≤ co2;θ=0

such that:

P o
θ=0 =

 1
2 if c > co2;θ=0,

1 if c < co1;θ=0.
(14)

with co1;θ=0 < co2;θ=0.

Equations (10), (11) and (12) provide the values at optimum in the general case. Equations (14)
and (13) point out the optimal punctuality level in extreme cases.

The optimal probability of the bus being on time has the same properties we describe in Section
3: it decreases when the punctuality cost c or the travel time of the commuter living the farthest ∆

increases. The important observation is that the optimal probability of the bus being on time does not
necessarily equal to 1. It may be lower than 1 and even equal to 1/2 under some conditions. Critical
values co1;θ=0 and co2;θ=0 are expected because P o

θ=0 ∈ [1/2; 1]. The above conjecture is illustrated in
Figure 4.

From now on, as the expression of P o is not explicit and P o = θP o
θ=1 + (1− θ)P o

θ=0, properties of
the optimal probability of the bus being on time will be addressed separately according to the structure
of the population. The two extreme cases θ = 1 and θ = 0 are highlighted, even if θ ≥ 1/2 is assumed.

Proposition 4. For GroupA (θ = 1), the punctuality level of the bus is higher at optimum than at
equilibrium.

Proof. See AppendixE.

Commuters in GroupA want to arrive at T ; therefore, the later bus arrives, the more cost com-
muters incur. The bus company wishes to maximize the probability of the bus being on time at
equilibrium, as the social planner does at optimum, while taking into account the punctuality cost per
user incurred by the bus company. The difference between equilibrium and optimum bus punctuality
is mainly explained by a price-effect. The gap between the bus fare relative to the taxi fare is much
higher at equilibrium than at optimum. Thus, other things being equal, the bus company attracts
less customers at equilibrium than at optimum. Consequently, the bus company has to reduce the bus
punctuality at equilibrium more than the social planner does at optimum to keep the punctuality cost
per user small enough. This result is summarized in Proposition 4.

As there is no explicit expression for P o and P o
θ=0, a discussion with a figure is provided in Section

5.

Proposition 5. For GroupA (θ = 1), if the taxi operating cost d is higher than dc1, the bus patronage
is higher at optimum than at equilibrium.
When d ≤ dc1, the bus patronage is higher at optimum than at equilibrium if and only if the cost of
punctuality for the bus company is small enough (c ≤ cc1).8

8The critical value of the taxi operating cost d is dc1 =
3(η+γ)x

8∆
− α̌. The critical value of the punctuality cost cc1 is

defined as the unique solution of Do
θ=1 = De

θ=1.
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Proof. See AppendixF.

As the expression of P o
θ=0 is not explicit, the analysis is more difficult for GroupB. However, we

formulate a proposition as well as a conjecture.

Proposition 6. For GroupB (θ = 0), if the taxi operating cost d is lower than dc2 (higher than dc3,
resp.), the bus patronage is lower (resp. higher) at optimum than at equilibrium.9

Proof. See AppendixG.

We conjecture the variations in demand for GroupB when d ∈ [dc2; d
c
3].

Conjecture 2. For GroupB, when d ∈ [dc2; d
c
3], the bus patronage is higher at optimum than at

equilibrium if the punctuality cost for the bus company is small enough (c > cc2).10

This conjecture is discussed in AppendixH. The basic idea in Propositions 5 and 6 and in Con-
jecture 2 is that when the taxi operating cost is small, the bus company tends to under-price, which
consequently attracts too many customers. As the taxi operating cost is high, the bus company
overprices. This is due to the fact that the bus fare highly depends on the taxi fare (see equation (6)).

The equilibrium modal split meets the optimal modal split under two conditions. First, the taxi
operating cost d has to be included between the two critical values we defined. Then the punctuality
cost incurred by the bus company c has to be equal to a critical value. If the taxi operating cost
is higher than the interval defined by critical values, the optimal modal split is reached by a partial
commuters shift from taking a taxi to taking a bus. This shift can also be in the opposite direction if
the taxi operating cost is smaller than the critical interval. This reflects the fact that the bus company
under-provides quality relative to the social optimum when c is small.

The taxi operating cost corresponds to the traditional costs as fuel or insurance, but it may also be
viewed as an extra tax set by the planner to account for the externalities such as pollution or noise.11

In this sense, the operating cost trend should be growing, and in the long run, the bus patronage would
increase at the expense of the taxi service.

5. Numerical application

We develop an applied case to illustrate previous theoretical findings. Numerical results are ob-
tained with values specified in Table 1. In the studied case, the bus has a probability P of being on
time and a probability 1−P of being 10 minutes late at departure. Commuters living the farthest from
their trip destination have a taxi trip time equal to 35 minutes. We consider a uniform distribution
of the taxi trip time. The operating taxi cost d is constant and equal to 40 $/hour. Lastly, cost
parameters αbus, αtaxi, η, β and γ are equal to 15, 4, 20, 10 and 30 $/hour, resp. Each variable is
drawn depending on the reliability cost for the bus c. Used values are consistent with results from
Wardman (2004).

9The critical values of the taxi operation cost d are dc2 = −
(
1
2
η − 7

2
β
)
x/2∆−αtaxi and dc3 = (2η + β)x/2∆−αtaxi,

with dc2 < dc3.
10The critical value of reliability cc2 is supposed to be the unique solution of Do

θ=0 = De
θ=0. We do not prove the
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GroupA(θ = 1) GroupB(θ = 0)

Figure 4: Probability of the bus being on time as a function of the punctuality cost c

A reminder to the readers, P e and P o are respectively the probability of the bus being on time at
equilibrium and at optimum. As expected, the probability of the bus being on time decreases when
the reliability cost increases (see Figure 4). The more expensive the punctuality is, the less interesting
is the reliability for both the bus company and the social planner.

As indicated in Proposition 4, the probability of the bus being on time when θ = 1 is higher at
optimum than at equilibrium. The opposite extreme case where θ = 0 is more complex as P o is not
continuous. It seems that the probability of the bus being on time is higher at optimum than at
equilibrium when c is small, and that after a critical value of c this relation is inverted. Probabilities
of the bus being on time are higher when θ = 1 rather than when θ = 0. This is due to the fact that
users from GroupA are more sensitive to unreliability because when the bus is late they incur a late
delay cost which is higher than the waiting time cost incurred by commuters from GroupB. Thus
when θ = 1, the bus company needs to maintain a better level of service than when θ = 0 in order to
keep their patrons. An important observation is that the optimal punctuality may be very low and
even equal to 1/2, which is the worst reliability level. Indeed, since the reliability cost is not too high,
the social planner makes the bus company increase the punctuality of the bus to minimize the cost
born by users. However, if the punctuality cost for the bus is too high, it is socially better to share
cost with users by making or allowing the bus to be late.

Two points are especially interesting in Figure 5. First, the bus patronage is weakly decreasing
when the punctuality cost increases. This drop is higher at optimum than at equilibrium. Along
with Figure 4 we note that the punctuality has a strong effect on demand. The variations of the bus
patronage corresponds to the variations of the bus punctuality. When the bus punctuality is stable,
the split between the bus and the taxi is constant. Secondly, note that the demand for the bus is
higher at optimum than at equilibrium in both extreme cases. Regarding Proposition 5, this exam-
ple illustrates the common case where the bus patronage is higher at optimum than at equilibrium.

monotonicity of Do
θ=0 −De

θ=0, but the study of the boundary cases (c small and c large) illustrates this conjecture.
11We refer the reader to Proost and Van Dender (2001) for an evaluation of alternative fuel efficiency, environmental

and transport policies regarding atmospheric pollution.
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GroupA(θ = 1) GroupB(θ = 0)

Figure 5: Bus patronage as a function of the punctuality cost c

Variable Equilibrium First-best Decentraliz. Second-best
Optimum Optimum

Probability of the 0.72 0.88 0.88 0.88bus being on time
Bus fare 16.4$ 0 16.9$ 0
Taxi fare 70$/hour 40$/hour 70$/hour 70$/hour

Bus patronage 47% 98% 50% 96%
Social gain - 42.1% -13% 41.3%

Table 2: Values of main variables when c = 5 and θ = 0.75

The bus patronages is sub-optimal at equilibrium. Too much commuters use the taxi service because
catching the bus is too expensive, and the bus is not reliable enough.

Table 2 provides the values of main variables when c = 5 and θ = 0.75 at equilibrium, first-best
optimum, decentralized optimum and second-best optimum. The optimum is reached by increasing
the reliability and decreasing prices if possible. Consequently, the bus patronage becomes much higher,
and the social gain is about 42%.

Usually, the public transport infrastructure has large fixed costs. This leads the social planner to
subsidize the operator activity. As the equilibrium probability of the bus being on time is not optimal,
one needs an incentive contract between the social planner and the transport operator such as the
subsidy depends on the service quality. In particular, from (7) we set

c =

[
∆̌e − (η + θγ − P eη̌)x

]
η̌x

2∆̌P e
and c′ =

[
∆̌e − (η + θγ − P oη̌)x

]
η̌x

2∆̌P o
.

The "optimal" subsidy, so, is such as the punctuality is the same at equilibrium and at optimum.
Then,

so ≡
[
∆̌e − (η + θγ)x

]
η̌x

2∆̌

(
P o − P e

P oP e

)
P 2

2
.

The insufficient provision of reliability due to some monopoly power has been taken into account by
the social planner (see column 4 in Table 2). However, there is here a social loss due to the subsidy.
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Figure 6: Relative social gains compared to equilibrium as a function of the cost of punctuality c when θ = 0.75.

Since subsidy induces the public transport operator to improve the probability of the bus being on
time, the bus fare is also raised. There is a transfer of the punctuality cost from the bus company to
the social planner and to the users via the subsidy. In this case, the bus company extracts much of
the rent and the decentralization is sub-optimal.

The second-best optimum is reached when the taxi service is not optimally priced while the bus
company fare and punctuality are. The probability of the bus being on time at equilibrium equals to
0.72 (note that this measure is consistent with observed average lateness in Paris Area (STIF, 2013a)).
The bus fare may seem high, but it is not surprising as we do not take into account subsidies which are
important in the public transport sector (Ponti, 2011). For example in Paris Area in 2010, monetary
public transport revenues equal to 29.7% of total operating cost (STIF, 2013b). Even if the social
planner cannot affect the taxi fare, a second-best optimum may be reached by optimizing both the
probability of the bus being on time and the bus fare. The bus patronage is higher than the first-best
optimal one because the taxi fare is higher than its optimal value. However, the difference in patronage
is small, and the social planner efficiency is not much altered by the competitive taxi fare.

The relative social gains drawn in Figure 6 are computed as the ratio of the absolute gain, due to
the transition from equilibrium to optima, to the absolute social cost at equilibrium (see Figure 6).
Such curves allow to determine when the gain is high enough to justify public intervention: the lower
the punctuality cost is, the more useful is public intervention. When c is high (see equations 7, 13
and 14), punctuality at equilibrium and at optimum is almost the same. The only difference between
equilibrium and optima is the modal split, but the gain due to this difference is gradually offset by
the growing punctuality cost. Here, once more the difference between first and second-best optima is
small but increases with c.

The brief application in this section illustrates that the effectiveness of public intervention varies
according to the punctuality cost but that the potential gain is still significant. We note that the gap
between second-best and first-best optima is very small. It means that the social planner does not
need to control the taxi service to be efficient.
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6. Extension: A second bus is available

So far it has been assumed that commuters missing the bus leave the bus stop to use the taxi service.
However, it seems reasonable to envisage that commuters missing the first bus have the possibility to
wait for the next bus. It is now assumed that a second bus arrives “on average” at time T + h, with
h > x. Suppose then that commuters missing the first bus wait for the next one and that by doing
so do not use taxis. It means, as before, that commuters have the choice between bus and taxi at the
beginning of the journey. However here, a person missing the bus waits for the next bus and does
not need, as before, to take a taxi in this case. In this extension, both buses belong to the same bus
company which acts as a monopoly. This hypothesis seems realistic as in most urban areas, an unique
operator is in charge of the same line. This means that the bus company sets an unique fare for both
buses.

6.1. Demand for buses and taxi

Three strategies are still available: a commuter may choose the taxi (Strategy T ) or arrive on time
at the bus stop (Startegy O) as before, and he may arrive late at the bus stop and wait for the next
bus if he misses the first one (Strategy L). The generalized costs linked to Strategy O and T remain
unchanged from Section 2. Only the cost of choice of Strategy L is changed. The choices of commuters
depend on h, the time gap between the two buses. If this gap is huge, no-one will take the risk to miss
the bus and to wait a very long time for the next one.

Proposition 7. The commuter δ in GroupA selects:

Strategy O (time T ) if δ ≥ δAT,O,
Strategy T (taxi) if δ < δAT,O,

where δAT,O ≡ [κ+ (1− P ) (η + γ)x] / (α̌+ τ).

Proof. See AppendixI.

Proposition 7 is identical to Proposition 1. This is not surprising as users from GroupA have no
interest to arrive late at the bus stop because this guarantees lateness for them.

Proposition 8. The commuter δ in GroupB selects:

Strategy O (time T ) if δ ≥ δBT,O andh > hc,
Strategy L (time T + x) if δ ≥ δBT,L andh ≤ hc,

Strategy T (taxi) if

δ < δBT,O andh > hc,

δ < δBT,L andh ≤ hc,

where δBT,O ≡ [κ+ (1− P ) ηx+ Pβx] / (α̌+ τ),
δBT,L ≡ [κ+ P (γ + η) (h− x)] / (α̌+ τ) and
hc ≡ [1 + ((1− P ) η/P + β) / (η + γ)]x.

Proof. See AppendixJ.
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GroupA GroupB

Figure 7: Strategies spaces as a function of P , the probability of the bus being on time.

Among GroupB, some commuters choose to arrive late at the bus stop, provided that the next
bus does not arrive too late. These commuters are living close to the city center.

In this extension, the share of commuters choosing Strategy T is the taxi patronage and com-
plementarity commuters choosing Strategy O or Strategy L are bus users. Figure 7 illustrates both
strategy and patronage shares in GroupsA and B, depending on the probability of the bus being on
time. There is no surprise for GroupA: the bus patronage increases with the reliability and reaches
its highest level when P = 112. The analysis for GroupB is quite similar. The bus patronage first
decreases linearly with the punctuality, and when the punctuality comes above a threshold value, the
bus patronage increases. This threshold embodies the level of punctuality which is the most costly for
users. Below this threshold, commuters arrive late at the bus station, and above, they arrive on time.

The bus company still chooses the probability of the bus being on time, P , and the price of the
ticket, κ. h is assumed exogenous. By setting the punctuality level relatively to h, the bus company
decides if users from GroupB arrive on time or late at the bus station. Figure 8 shows which values
of P allow the bus company to induce users to arrive on time (or late) at the bus stop. The bus
company is not able to make all users arriving at the bus station at time T + x because h has to be
higher than x and P higher than 1/2. There are three different situations depending on h. When
h ≥ [1 + (η + β) / (η + γ)]x, the second bus arrives too late to be a credible alternative, so all users
arrive on time at the bus station to be sure of not missing the first bus, regardless of the punctuality.
In the same vein, if h ≤ [1 + β/ (η + γ)]x, then users from GroupB arrive late at the bus stop. Indeed,
by doing so, they incur no schedule or waiting cost if they manage to get the first bus, and if they
miss it, the next one arrives so early that the incurred costs are negligible. When h is between this
two extreme cases, the bus company chooses to induce users from GroupB to arrive on time or late
by setting the level of the probability of the bus being on time. This strategy maximizes its profit.
The strategies defined above give the demand functions.

12If a probability lower than one half had been considered, the analysis would have been different. When the punctuality
is getting close to its lowest level (P = 0), the bus patronage increases again. This reflects the fact that when the bus is
almost always late, it is in fact more regular to the commuters.
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Figure 8: Map of commuter’s strategies depending on the probability of the bus being on time, P , and the arrival time
of the next bus, h, where (I,J) is strategy of GroupA (I) and strategy of GroupB (J).

The expression of the demands for buses and for taxi depend on the value of h:

Dbuses =

1− θδAT,O+(1−θ)δBT,O

∆ if h > hc

1− θδAT,O+(1−θ)δBT,L

∆ if h ≤ hc
, (15a)

Dtaxi =


θδAT,O+(1−θ)δBT,O

∆ if h > hc

θδAT,O+(1−θ)δBT,L

∆ if h ≤ hc
. (15b)

Note that the demand for buses is linear with the bus fare whereas the taxi patronage is convex
depending on the taxi fare.

6.2. Competition

The cost production functions are still defined by Equations (5a) and (5b). The expressions of
profit are different in this extension from those of the main model, because commuters missing the
first bus take the second bus instead of using taxi. From Equations (15a) and (15b), taxi and bus
company profit function are given by

Πtaxi

τ − d
=

θ
´ δAT,O

0
δf(δ)dδ + (1− θ)

´ δBT,O

0
δf(δ)dδ if h > hc,

θ
´ δAT,O

0
δf(δ)dδ + (1− θ)

´ δBT,L

0 δf(δ)dδ if h ≤ hc,
(16)

Πbus = κDbus −
c

2
P 2, (17)

where δAT,O, δBT,O, δBT,L and hc are defined in Propositions 7 and 8.
The taxi company decides about the optimal fare so as to maximize its profit. The first-order
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condition gives13

τe = α̌+ 2d. (18)

The optimization of the bus company profit needs to be treated in two distinct cases according to the
position of h with respect to hc. We present the detailed results in AppendixK. The equilibrium bus
fare has the same structure than the one described in Equation (6). It corresponds to the average taxi
trip cost cut by the average schedule and waiting time costs incurred by commuters. The probability
of the bus being on time equals to 1 when c is smaller than a low threshold, 1/2 when c is above
an upper threshold. Between these two thresholds, the probability is continuous and decreasing with
respect to c.

When hc ≤ h, the results and properties of the equilibrium are the same than the ones displayed
when only one bus was available (see Section 3). When h is small, the reliability is a decreasing
function of h. Until a critical arrival time of the next bus (beyond which all users are punctual),
when h increases, users become more captive to the first bus, and then, the reliability of this bus may
deteriorate.

Proposition 9. At equilibrium, P e, the probability of the bus being on time and κe, the bus fare,
increase with τ , the taxi fare.

Proof. See AppendixM.

When h ∈ [x; [1 + β/ (η + γ)]x] ∪ [[1 + (η + β) / (η + γ)]x;∞], the bus company has no influence
in the type of strategy chosen by bus users. However, when h ∈ ]x; [1 + β/ (η + γ)]x[, it may set the
bus fare and punctuality such as users in GroupB choose Strategy O or Srategy L. This decision
maximizes the bus company’s profit.14.

6.3. Welfare analysis

The optimal situation is obtained by minimizing the social cost function described in equation (9).
The first-order condition for this problem is

κo = 0, (19)

τo = d. (20)

Equations (19) and (20) are standard results stating that optimal prices must equal marginal cost
of production.The optimization of the reliability level must be treated in two separate cases depending
on the value of h relative to the critical value hc. We display the detailed results in AppendixL. Once
h is higher than hc, the service quality does not depend on h anymore, because all users are captive
to the first bus. In both cases punctuality decreases with the punctuality cost, c, and the travel time
of the commuter living farthest, ∆.

13Second-order condition is verified for any value of h.
14We do not focus on this issue because on the one hand, the interval is very small (equal to η/ (η + γ)), and, on the

other hand, it has no effect on the main results.
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c = 4 and θ = 0.5 c = 3 and θ = 0.25

Figure 9: Probability of the bus being on time as a function of the next bus arrival time h.

Proposition 10. When h ∈ [x; [1 + β/ (η + γ)]x]∪ [[1 + (η + β) / (η + γ)]x;∞], the punctuality level
of the bus is higher (lower, resp.) at optimum than at equilibrium when c > cc(c ≤ cc, resp.)15.

Proof. See AppendixN.

The intuition behind this proposition is that sometimes, when the punctuality cost is small, then
the bus company sets a higher level of punctuality than at optimum to raise the patronage for buses.
The increase in cost is more than offset by the increase in revenue due to the higher patronage. However
in most cases, the punctuality is too low at equilibrium because as users living far from the city center
are somehow captive of bus, the level of punctuality may be deteriorated. The increase of patronage
due to a service quality improvement does not offset the increase in cost.

We use the values of parameters defined in Table 1 to draw Figure 9. Both graphs show variations
of the punctuality depending on the time gap between buses. In the first situation, when h is small,
users from GroupB arrive late at the bus station. The bus company gives priority to them by setting
a very low level of punctuality. At the time h goes over hc, the punctuality increases because all users
arrive on time at the bus station. This graph is a typical case where the optimal service quality is
still higher than the equilibrium one. The second graph points out a more paradoxical case where the
two curves cross. Commuters from GroupB are three times more than from GroupA. This explains
why both curves are drown to the bottom when users from GroupB arrive late at the station. When
h is higher, the optimal punctuality equals to 1 whereas the equilibrium service quality remains low.
A degraded service is not so penalizing for users from GroupB who are the majority. When h stands
below the threshold, the punctuality is higher at equilibrium than at optimum.

To summarize, this extension strengthens our main findings, in particular the Mohring Effect which
arises once again. Moreover, we show that the frequency matters as it makes users punctual or not at
the bus station.

15The critical value of the bus punctuality cost cc is defined in AppendixN.
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7. Conclusion

The modeling of the bus punctuality reported here has provided an improved understanding of the
two-way implication between punctuality level of public transport and customer public transport use.
Commuters develop adaptive strategies to fit the transport system. Thus, a rise in the fare of one
mode decreases the patronage for this mode. In particular, an increase in the taxi fare rises the share
of commuters arriving on time at the bus stop because they wish to minimize the probability of missing
the bus. Moreover, when the bus company becomes less strict as regards punctuality, more bus users
will prefer to arrive late at the bus stop. Then, the bus company is not incited to maintain a high level
of reliability. This can generate a vicious circle. We also appreciate the efficiency of the punctuality
when it is viewed as an instrument of service quality that can be adapted to fit and regulate the public
transport patronage. We propose an extension to overcome a restrictive hypothesis. This allows us
to apprehend the importance of service frequency in the commuters strategies. A new market share
of commuters is assailable with a reasonable effort in terms of service quality. Compared with the
optimum, buses are very often too late at equilibrium. Commuters bear the cost of this extra-lateness,
because they have to wait too much for the bus or take the taxi which is expensive. However, it does
not mean that the bus should not be late. Indeed if the cost of the punctuality is too high relative to
the cost of the alternative mode, a late bus is socially preferable. Finally, we find that the sign and the
amplitude of the gap between the equilibrium and the optimal modal split first depends on the cost of
the alternative mode and secondly on the punctuality cost incurred by the bus company. Nevertheless,
in the more general and realistic case the bus patronage seems under-optimal.

Several elements remain to be addressed. Risk averse users would change users’ strategies and
affect the punctuality. It should be interesting to include congestion on road networks and in the bus.
Congestion on the road would make the taxi journey longer and unpredictable, whereas congestion in
the bus (understood as crowding) would accentuate the cost incurred by users. Finally, introducing
the bus punctuality in a bus transit line with several stops and several buses (de Palma and Lindsey,
2001) will improve the modeling by introducing a snowball effect: if a bus is late, its lateness increases
along its journey.
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AppendixA. Proof of Proposition 1

We wish to compare expected costs of StrategysA, B and O, denoted EC (O), EC (L) and EC (T )

respectively, to define a choice rule for a commuter in GroupA. From equations (1) and (2), we can
write:

EC (O) = κ+ (1− P ) (η + γ)x,
EC (L) = Pδ (α̌+ τ) + (1− P ) (κ+ γx),
EC (T ) = δ (α̌+ τ).

Therefore we have

EC (O) ≤ EC (L) iff δ ≥
κ+

(
1−P
P

)
ηx

α̌+ τ
≡ δAL,O, (A.1)

EC (T ) < EC (L) iff δ <
κ+ γx

α̌+ τ
≡ δAT,L, (A.2)

EC (T ) < EC (O) iff δ <
κ+ (1− P ) (η + γ)x

(α̌+ τ)
≡ δAT,O. (A.3)

We use Assumption.1 and Assumption.2 to rank δAL,O, δAT,L and δAT,L:

(i) δAT,L ≥ δAL,O ⇐⇒ γ ≥
(
1−P
P

)
η ⇐⇒ γ

η ≥ 1−P
P which is true since γ

η > 1 ≥ 1−P
P by Assumption.1

and Assumption.2.

(ii) δAT,L ≥ δAT,O ⇐⇒ γ ≥ (1− P ) (η + γ) ⇐⇒ P ≥ 1 − γ
(η+γ) which is true since γ

(η+γ) > 1
2 by

Assumption.2.

(iii) δAT,O ≥ δAL,O ⇐⇒ η + γ ≥ 1
P η ⇐⇒ P ≥ η

(η+γ) which is true since η
(η+γ) <

1
2by Assumption.2.

Therefore δAL,O ≤ δAT,O ≤ δAT,L.
StrategysB is chosen if and only if δ < δAL,O and δ ≥ δAT,L. As δAL,O ≤ δAT,L, StrategysB is

dominated and never chosen by commuter in GroupA. Figure A.10 summarizes results of the proof.

Figure A.10: Strategy choice of a commuter in GroupA depending on the taxi trip time δ.

AppendixB. Proof of Proposition 2

We wish to compare expected costs of StrategysA, B and O, denoted EC (O), EC (L) and EC (T )

respectively, to define a choice rule for a commuter in GroupB. From equations (1) and (2), we can
write:

EC (O) = κ+ [(1− P ) η + Pβ]x,
EC (L) = Pδ (α̌+ τ) + (1− P )κ,
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EC (T ) = δ (α̌+ τ).

Therefore we have

EC (O) ≤ EC (L) iff δ ≥
κ+

(
1−P
P η + β

)
x

α̌+ τ
≡ δBL,O, (B.1)

EC (T ) < EC (L) iff δ <
κ

α̌+ τ
≡ δBT,L, (B.2)

EC (T ) < EC (O) iff δ <
κ+ [(1− P ) η + Pβ]x

α̌+ τ
≡ δBT,O. (B.3)

We use Assumption.1 and Assumption.2 to rank δBL,O, δBT,L and δBT,L:

(i) δBT,L ≤ δBL,O ⇐⇒ 0 ≤
(
1−P
P η + β

)
which is true.

(ii) δBT,L ≤ δBT,O ⇐⇒ 0 ≤ (1− P ) η + Pβ which is true.

(iii) δBT,O ≤ δBL,O ⇐⇒ (1− P ) η + Pβ ≤ 1−P
P η + β ⇐⇒ 1 ≥ 1

P which is true since 1
P ≥ 1 by

Assumption.1.

Therefore δBT,L ≤ δBT,O ≤ δBL,O. Figure B.11 summarizes results of the proof.

Figure B.11: Strategy choice of a commuter in GroupB depending on the taxi trip time δ.

AppendixC. Proof of Proposition 3

We wish to show that P e, the probability of the bus being on time at equilibrium, and κe, the bus
fare, increase with τ the taxi fare. We first show that ∂P e/∂τ ≥ 0 (i) and that ∂κe/∂τ ≥ 0 (ii). Then
we check that boundaries of interval, ce1 (iii) and ce2 (iv), increase with τ . Let us recall expressions of
equilibrium variables (see equations (6) and (7)):

κe =
1

2

{
△̌e − [(1− P e) η + (1− θ)P eβ + θ (1− P e) γ]x

}
,

P e =


1
2 if c > ce2,
κeη̌x

c△̌e if c ∈ [ce1; c
e
2] ,

1 if c < ce1,
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where △̌e = ∆(α̌+ τe), η̌ = η − (1− θ)β + θγ, ce1 ≡ κeη̌x/△̌e and where ce2 ≡ 2ce1. By substituting
κe in P e, we obtain

P e =


1
2 if c > ce2,
[△̌e−(η+θγ)x]η̌x

2c△̌e−(η̌x)2
if c ∈ [ce1; c

e
2] ,

1 if c < ce1,

where ce1 =
[
△̌e − (1− θ)βx

]
η̌x/2△̌e and where ce2 =

(
△̌e − η̌x

)
η̌x/2△̌e. We now derive P e, κe, ce1

and ce2 on τe.
(i) ∂P e

∂τe = ∆η̌x 2c(η+θγ)x−(η̌x)2

[2c△̌e−(η̌x)2]
2 so ∂P e

∂τ ≥ 0 if c ≥ (η̌x)2

2(η+θγ)x . Let us substitute c by ce1 the minimal

value of the interval [ce1; ce2]. Thus

ce1 −
(η̌x)

2

2 (η + θγ)x
=

η̌x
[
△̌e − (η + θγ)x

]
(1− θ)βx

2△̌e (η + θγ)x
.

Yet η̌x(1−θ)βx

2△̌e(η+θγ)x
≥ 0 and △̌e − (η + θγ)x ≥ 0 by Assumption.3. We therefore have ∂P e

∂τ ≥ 0;

(ii) ∂κe

∂τe = ∆
2 + ∂P e

∂τe
η̌x
2 ≥ 0 by Assumption.2,

(iii) ∂ce1
∂τe = (1−θ)βxη̌x

2∆(αtaxi+τe)2
≥ 0,

(iv) ∂ce2
∂τe = (η̌x)2

2∆(αtaxi+τ)2
≥ 0.

P e, the probability of the bus being on time at equilibrium, and κe, the bus fare, increase well with
τe the taxi fare.

AppendixD. Optimal bus and taxi fare

The social planner chooses the punctuality level P , the bus fare κ and taxi fare τ so as to minimize
social cost. The first-order conditions for the socially optimal bus and taxi prices are given by

∂SC

∂κ
=

κ (α̌+ d)− (τ − d) Γx

∆(α̌+ τ)
2 = 0, (D.1a)

∂SC

∂τ
=

(τ − d)A− κ (α̌+ d) (κ+ Γx)

∆ (α̌+ τ)
3 = 0, (D.1b)

where Γ = (1− P ) η + (1− θ)Pβ + θ (1− P ) γ, A = κΓx+ χ and
χ = θ [(1− P ) (η + γ)x]

2
+ (1− θ)P

[(
1−P
P η + β

)
x
]2. Therefore from (D.1a) and (D.1b)

κo =
(τo − d) Γx

(α̌+ d)
, (D.2a)

τo =
κo (α̌+ d) (κo + Γx)

A∆(α̌+ τo)
3 − d. (D.2b)
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By substituting (D.2a) into (D.2b), the first-best optimal bus and taxi prices can be written as16

κo = 0;

τo = d.

AppendixE. Proof of Proposition 4

We wish to show that the probability of the bus being on time is higher in the optimal situation than
in equilibrium when θ = 1. For that, we need to show that the result of P o

θ=1−P e
θ=1 is positive (i) and

that the limits of the variation intervals are well sorted i.e. co1;θ=1 ≥ ce1;θ=1 (ii) and co2;θ=1 ≥ ce2;θ=1(iii):

(i) P o
θ=1 − P e

θ=1 =
c△̌(η+γ)x[△̌−(η+γ)x]

{2c△̌−[(η+γ)x]2}{c△̌−[(η+γ)x]2} ≥ 0 by Assumption.3;

(ii) co1;θ=1 − ce1;θ=1 = △̌(η+γ)x

2△̌ ≥ 0 by Assumption.3;

(iii) co2;θ=1 − ce2;θ=1 =
[2△̌−(η+γ)x](η+γ)x

2△̌ ≥ 0 by Assumption.3.

The probability of the bus being on time well and truly is higher in the optimal situation than in
equilibrium.

AppendixF. Proof of Proposition 5

The idea of the proof is that the difference between optimal demand for the bus and equilibrium
demand for the bus is a function of c, the bus punctuality cost and d the taxi operating cost. Through-
out this proof we consider the extreme case where θ = 1. Let us recall the expression of demand for
the bus function:

Dbus =

ˆ ∆

δAT,O

f(δ)dδ,

where δAT,O = [κ+ (1− P ) (η + γ)x] / (α̌+ τ). We can define

D ≡ Do
bus −De

bus = 1− κo + (1− P o) (η + γ)x

∆(α̌+ τo)

−
(
1− κe + (1− P e) (η + γ)x

∆(α̌+ τ e)

)
,

where κo = 0, τo = d, κe = 1
2 [∆ (α̌+ τe)− (1− P e) (η + γ)x] and τ e = α̌+ 2d. We therefore have

D =
2∆(α̌+ d)− (3 + P e − 4P o) (η + γ)x

4∆ (α̌+ d)
.

16Second-order conditions are satisfied as they require (αtaxi + d) ≥ 0 and A ≥ 0.
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Since P e and P o are functions of c (equations (7) and (13)), we derive D on c. For that, we need
to know the order of ce1, ce2, co1 and co2. We know that ce1 ≤ ce2 and co1 ≤ co2.

co1 − ce2 = (η + γ)x− 2κeη̌x

△̌e
,

⇐⇒ co1 − ce2 = (η + γ)x

[
1− (1− P ) 2κe

△̌e

]
,

⇐⇒ co1 − ce2 = (η + γ)x

[
1− (1− P )

(
1− Γex

△̌e

)]
≥ 0.

We therefore have ce1 ≤ ce2 ≤ co1 ≤ co2 and we distinguish between five sub-cases defined depending on
the position of c relatively to ce1, co1, ce2 and co2. Indeed the expression of the derivative is different
according to the value of c.

(i) Ifc ≤ ce1 then P e = P o = 1 and ∂D/∂c = 0.

(ii) If c ∈ [ce1; c
e
2] then P o = 1 and ∂D/∂c ≥ 0.

(iii) Ifc ∈ [ce2; c
o
1] then P o = 1, P e = 1

2 and ∂D/∂c = 0.

(iv) If c ∈ [co1; c
o
2] then P e = 1

2 and ∂D/∂c ≤ 0.

(v) If c ≥ co2 then P e = P o = 1
2 and ∂D/∂c = 0.

Critical values of D (c) follow:

D (ce1) =
1
2 ,

D (ce2) =
1
2 + (η+γ)x

8∆(α̌+d) ,

D (co2) =
1
2 − 3(η+γ)x

8∆(α̌+d) ,

where ∆̄ = ∆ (αtaxi + d).
The variations of the difference between optimal demand for the bus and equilibrium demand for

the bus are described in Table F.3.
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c 0 ce1 ce2 co1 co2 ∞
∂D
∂c 0 + 0 − 0

D (c)
D (ce2) −→

↗ ↘−→ D (ce1)
D (co2) −→

Table F.3: Variation table of the difference between optimal demand for the bus and equilibrium demand for the bus
depending on the cost of reliability.

We know that D (ce1) ≥ 0 and D (ce1) ≥ D (co1). According to Table F.3, we can distinguish between
two cases where the difference between optimal and equilibrium demand for the bus is positive. First,
if the minimum value of the difference,D (co2) is positive, the difference is positive. Second, if this
minimum value of the difference is negative, then as D (ce2) ≥ 0 and D (c)strictly decreases between co1

and co2, there exists a unique value of c denoted cc for which Do
bus =

c=cc
De

bus. The difference is then
positive if c ≤ cc.

One critical value of the taxi operating cost dc1 may be defined such that

D (co2) ≥ 0 ⇐⇒ 2∆ (α̌+ d)− (3 + P e − 4P o) (η + γ)x ≥ 0,

⇐⇒ d ≥ 3 (η + γ)x

4∆
− α̌ ≡ dc1.

We can now write

D


≥ 0

if d ≥ dc1,

or if d < dc1 and c ≤ cc,

< 0 if d < dc1 and c > cc .

.

AppendixG. Proof of lemma 6

The idea of the proof is that the difference between optimal demand for the bus and equilibrium
demand for the bus is a function of the cost of the bus reliability c and the operating cost of taxi d.
We deal with the case where θ = 0. Let us recall expressions of the demand function:

Dbus = (1− P )

ˆ δBL,O

δBT,L

f(δ)dδ +

ˆ ∆

δBL,O

f(δ)dδ,

where δBL,O =
[
κ+

(
1−P
P η + β

)
x
]
/ (α̌+ τ) and δBT,L = κ/ (α̌+ τ). We therefore have:

D ≡ Do
bus −De

bus =
2∆(α̌+ d) + (4P o

θ=0 − P e
θ=0) (η − β)x− 3ηx

4∆ (α̌+ d)
.

Then

D ≥ 0 ⇐⇒ d ≥ 3ηx− (4P o
θ=0 − P e

θ=0) (η − β)x

2∆
− α̌.
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Considering max (4P o
θ=0 − P e

θ=0) =
7
2 and min (4P o

θ=0 − P e
θ=0) = 1, we can define dc2 and dc3 such as if

d ≤ dc2 then D ≤ 0 and if d ≥ dc3 then D ≥ 0. Consequently we have dc2 = −
(
1
2η − 7

2β
)
x/2∆− α̌ and

dc3 = (2η + β)x/2∆− α̌. We may write:

D

≥ 0 if d ≥ dc3,

≤ 0 if d ≤ dc2.

AppendixH. Discussion of Conjecture 2

With values specified in Table 1, we can draw the curve of the difference between optimal demand
for the bus and equilibrium demand for the bus depending on the operating taxi cost d in Figure H.12.
When c is small, P o = P e = 1 and when c is large, P o = P e = 1/2. The conjecture 2 is illustrated. D

functions are first negative then positive. Moreover they increase with d. The sign of D between dc2

and dc3 depends on the values of P o and P e which depend on c (see Equations (7) and (14)). Therefore
we conjecture that between dc2 and dc3, D is positive when c ≤ cc2 and negative when c > cc2, where cc2

is defined as the unique solution of Do
θ=0 = De

θ=0.

Figure H.12: Difference between optimal demand for the bus and equilibrium demand for the bus depending on operating
taxi cost d for GroupB.

AppendixI. Proof of proposition 7

We wish to compare expected costs of StrategysA, B and O, denoted EC (O), EC (L) and EC (T )

respectively, to define a choice rule for a commuter in GroupA. From equations (1) and (2), we can
write:

EC (O) = κ+ (1− P ) (η + γ)x,
EC (L) = κ+ (1− P ) γx+ P (γh+ ηx),
EC (T ) = δ (α̌+ τ).
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Therefore we have
EC (O) ≤ EC (L) when

ηx

γh+ 2ηx
≤ P . (I.1)

Using A. and A. , we know that ηx
γh+2ηx ≤ 1

2 and that 1
2 ≤ P . Strategy L is also still dominated

by Strategy O and never chosen by commuter in GroupA.

EC (T ) < EC (O) iff δ <
κ+ (1− P ) (η + γ)x

(α̌+ τ)
≡ δAT,O. (I.2)

AppendixJ. Proof of Proposition 8

We wish to compare expected costs of StrategysA, B and O, denoted EC (O), EC (L) and EC (T )

respectively, to define a choice rule for a commuter in GroupB. From equations (1) and (2), we can
write::

EC (O) = κ+ [(1− P ) η + Pβ]x,
EC (L) = κ+ P (γ + η) (h− x),
EC (T ) = δ (α̌+ τ).

Therefore we have

EC (O) ≤ EC (L) iff h ≥

(
1 +

1−P
P η + β

η + γ

)
x ≡ hc, (J.1)

EC (T ) < EC (L) iff δ <
κ+ P (γ + η) (h− x)

(α̌+ τ)
≡ δBT,L′, (J.2)

EC (T ) < EC (O) iff δ <
κ+ [(1− P ) η + Pβ]x

α̌+ τ
≡ δBT,O. (J.3)

We do not need to rankδBT,L and δBT,O because Strategy O and Strategy T dominate each other
depending on h.

AppendixK. Extension: bus and taxi fare at equilibrium

We first solve the case where h is higher than hc and then the case where it is lower.
When h is higher than hc, all bus users arrive at the bus stop at time T . The solutions of the

first-order problem follow

κe =
1

2

(
△̌e − Γex

)
, (K.1)

P e =


1
2 if c > ce2,

κeη̌x

c△̌e if c ∈ [ce1; c
e
2]

1 if c < ce1,

, (K.2)
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where ∆̌e = ∆(α̌+ τ e), Γe = (1− P e) η + (1− θ)P eβ + θ (1− P e) γ, η̌ = η − (1− θ)β + θγ, ce1 ≡
κeη̌x/∆̌e and where ce2 ≡ 2ce1.

When h is lower than hc, then users from GroupB arrive late at the bus stop whereas users from
GroupA still arrive on time. The first-order conditions gives

κe =
1

2

{
∆̌e − (η + γ) [θ (1− P e)x+ (1− θ)P e (h− x)]

}
(K.3)

P e =


1
2 if c > ce2,

κeηh

c∆̌e if c ∈
[
ce1; c

e
2

]
1 if c < ce1,

, (K.4)

where ∆̌e = ∆(α̌+ τe), ηh ≡ (η + γ) [x− (1− θ)h], ce1 ≡ κeηh/∆̌
e and where ce2 ≡ 2ce1.

AppendixL. Extension: bus and taxi fare at optimum

When h is higher than hc, the expression of the optimal level of reliability is

P o =


1
2 if c > co4,

η̌x∆̌o−Θ+(1−θ)(η−β)βx2

c∆̌o−Θ
if c ∈

[
co3; c

o
4

]
1 if c < co3,

, (L.1)

where η̌ = η − (1− θ)β + θγ, ∆̌o = ∆(α̌+ τo),
Θ ≡ θ [(η + γ)x]

2
+ (1− θ) [(η − β)x]

2, co3 ≡
[
∆̌oη̌x+ (1− θ) (η + β)βx2

]
/∆̌o

and where co4 ≡
[
2∆̌oη̌x− θ ((η + γ)x)

2 − (1− θ)
(
η2 − β2

)
x2
]
/∆̌o.

When h is lower than hc, the solution of the optimization problem is

P o =


1
2 if c > co2,

ηh∆̌
o−(η+γ)2θx2

c∆̌o−(η+γ)2[(1−θ)(h−x)2+θx2]
if c ∈

[
co1; c

o
2

]
1 if c < co1,

, (L.2)

where ηh ≡ (η + γ) [x− (1− θ)h], ∆̌o = ∆(α̌+ τo),
co1 ≡

[
∆̌oηh + (η + γ)

2
(1− θ) (h− x)

2
]
/∆̌o

and where co2 ≡
{
2∆̌oηh − (η + γ)

2
[
θx2 − (1− θ) (h− x)

2
]}

/∆̌o.

AppendixM. Proof of Proposition 9

We wish to show that P e, the probability of the bus being on time at equilibrium, and κe, the bus
fare, increase with τ the taxi fare. We already have proved it is true when hc ≤ h (see Appendix). We
now need to prove it when hc > h. As before, we first show that ∂P e/∂τ ≥ 0 (i) and that ∂κe/∂τ ≥ 0

(ii). Then we check that boundaries of interval, ce1′ (iii) and ce2′ (iv), increase with τ . Let us recall
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expressions of equilibrium variables (see equations (6) and (7)):

κe =
1

2

[
∆̌e − (η + γ) [θ (1− P e)x+ (1− θ)P e (h− x)]

]

P e =


1
2 if c > ce2,

κeηh

c∆̌e if c ∈
[
ce1; c

e
2

]
1 if c < ce1,

,

where ∆̌e = ∆(α̌+ τe), ηh ≡ (η + γ) [x− (1− θ)h], ce1′ ≡ κeηh/∆̌
e and where ce2 ≡ 2ce1. By substi-

tuting κe in P e, we obtain

P e =


1
2 if c > ce2′,
[∆̌e−(η+γ)θx]ηh

2c∆̌e−η2
h

if c ∈ [ce1′; ce2′]

1 if c < ce1′,

,

where ∆̌e = ∆(α̌+ τe), ηh ≡ (η + γ) [x− (1− θ)h],
ce1′ ≡

[
∆̌e − (η + γ) (1− θ) (h− x)

]
ηh/2∆̌

e and where
ce2′ ≡

[
2∆̌e − (η + γ) ((2θ − 1)x+ (1− θ)h)

]
ηh/2∆̌

e. We now derive P e, κe, ce1′ and ce2′ on τ e.
(i) ∂P e

∂τe = ∆(η + γ) ηh
2cθx−ηh[x−(1−θ)h]

[2c∆̌e−η2
h]

2 so ∂P e

∂τ ≥ 0 if c ≥ ηh[x−(1−θ)h]
2θx . Let us substitute c by ce1′

the minimal value of the interval [ce1′; ce2′]. Thus

ce1′ −
ηh [x− (1− θ)h]

2θx
=

[
∆̌e − θx (η + γ)

]
(1− θ) (h− x) ηh

2θx∆̌e

Yet [∆̌e−θx(η+γ)](1−θ)(h−x)ηh

2θx∆̌e ≥ 0. We therefore have ∂P e

∂τ ≥ 0;

(ii) ∂κe

∂τe = ∆
2 + ∂P e

∂τe
ηh

2 ≥ 0 by A.2,

(iii) ∂ce1′
∂τe = (η+γ)2(1−θ)η

2∆(α̌+τe)2
≥ 0,

(iv) ∂ce2′
∂τe = (η+γ)((2θ−1)x+(1−θ)h)ηh

2∆(α̌+τe)2
≥ 0.

P e, the probability of the bus being on time at equilibrium, and κe, the bus fare, increase well with
τe the taxi fare.

AppendixN. Proof of Proposition 10

We wish to show that the probability of the bus being on time is higher in the optimal situation
than in equilibrium when c is higher than a critical value cc. For that, we need to show that the sign
of the result of P o

θ=1 − P e
θ=1 depends on c.
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If h > hc,

P o − P e =
c∆̌o

{
2η̌x∆̌o − 4

[
Θ− (1− θ) (η − β)βx2

]
+ (η + θγ) η̌x2

}(
c∆̌o −Θ

) [
2c△̌e − (η̌x)

2
]

−
∆̌o (η̌x)

3
+ η̌xΘ

[
2△̌o − (1− θ)βx

](
c∆̌o −Θ

) [
2c△̌e − (η̌x)

2
]

and if h ≤ hc,

P o − P e =
c∆̌o

[
2ηh∆̌

o − (η + γ) θx [4 (η + γ)x+ ηh]
]{

c∆̌o − (η + γ)
2
[
(1− θ) (h− x)

2
+ θx2

]}{
4c∆̌o − η2h

}
− ∆̌oη3h+{

c∆̌o − (η + γ)
2
[
(1− θ) (h− x)

2
+ θx2

]}{
4c∆̌o − η2h

}
+
ηh (η + γ)

2
{[

2∆̌o − (η + γ) θx
] [

(1− θ) (h− x)
2
+ θx2

]
+ ηhθx

2
}

{
c∆̌o − (η + γ)

2
[
(1− θ) (h− x)

2
+ θx2

]}{
4c∆̌o − η2h

}
We also can define cc such as if c > cc then P o ≥ P e and if c ≤ cc then P o ≤ P e:

cc =


∆̌o(η̌x)3−η̌xΘ(2△̌o−(1−θ)βx)

∆̌o{2η̌x∆̌o−4[Θ−(1−θ)(η−β)βx2]+(η+θγ)η̌x2} if h < hc

∆̌oη3
h−ηh(η+γ)2{[2∆̌o−(η+γ)θx][(1−θ)(h−x)2+θx2]+ηhθx

2}
∆̌o[2ηh∆̌o−4(η+γ)2θx2+(η+γ)θxηh]

if h ≥ hc
, (N.1)

where η̌ = η − (1− θ)β + θγ, ∆̌o = ∆(α̌+ τo), Θ ≡ θ [(η + γ)x]
2
+ (1− θ) [(η − β)x]

2 and ηh ≡
(η + γ) [x− (1− θ)h].
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