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Tomographic Diffractive Microscopy (TDM) is an advanced digital imaging technique, which 
combines the recording of multiple holograms with the use of inversion procedures to retrieve 
quantitative information on the sample. In this review, we discuss the basic theory of TDM in 
the framework of electromagnetism and draw a comparison with conventional widefield 
microscopes. We describe various implementations of TDM, highlighting their power of 
resolution. Finally, we present some research perspectives for increasing the potential of this 
promising new imaging modality. 
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1. Introduction 
The optical microscope has become an invaluable tool for biology thanks to its unique 

capabilities to image living specimens in three dimensions, and over long periods 

(time-lapse microscopy), due to the non-ionizing nature of light. Fluorescence 

techniques are particularly appreciated because they allow for specific labelling of 

cellular structures. However, fluorescent markers may induce unfavourable effects 

like photo-toxicity and they do not permit an overall imaging of the sample. 

As a consequence, among the many techniques which have been developed, 

those permitting to observe a specimen without the need for specific staining have 

known a regain of interest in recent years. One may cite, for example, Second-

Harmonic Generation microscopy (SHG), Coherent Anti-Stokes Raman Spectroscopy 

microscopy (CARS) and conventional transmission microscopy. In transmission 

microscopy (classical, phase-contrast or Differential Interference Contrast (DIC)), the 

image is formed by a complex interaction of the incoherent illuminating light with the 



specimen. The recorded contrast, while very helpful for morphological studies, does 

not yield quantitative information on the opto-geometrical characteristics of the 

sample. In particular, the optical index of refraction distribution within the specimen 

is difficult to reconstruct. 

On the contrary, the use of coherent light illumination, combined with 

interferometric detection, permits to record holograms, which encode both the 

amplitude and phase of the light diffracted by the specimen. Using an adapted model 

of diffraction (typically the first order Born approximation), this so-called holographic 

microscopy allows for the reconstruction of the specimen index of refraction 

distribution. When this technique is combined with a rotation of the specimen or an 

inclination of the illumination wave, the set of recorded holograms represents a 

diffractive tomographic acquisition, which permits 3-D reconstructions of much better 

quality. 

In the last five years, there have been a growing number of papers on novel 

microscopy techniques that combine numerical reconstruction processes and 

sophisticated holographic experimental set-ups to retrieve with a high resolution the 

opto-geometrical parameters of non-fluorescent samples. These approaches are 

known under various names, synthetic aperture microscopy, tomographic phase 

microscopy, optical diffraction tomography, digital holographic microscopy, scanning 

holography microscopy etc. They are dedicated to various applications (3D 

reconstruction of the refraction index of biological samples, profilometry of 

manufactured nanocomponents, rugosimetry, etc). They usually present a higher 

precision and/or resolution standard optical microscopes and/or they allow for the 

retrieval of quantitative information on the sample. This review aims at gathering all 

these emerging digital imaging techniques in a common framework, which we call 



Tomographic Diffractive Microscopy (TDM). We first briefly recall the theoretical 

basis of optical digital imaging, then give an overview of the different techniques that 

pertains to TDM, and finally present some research perspectives. 

2. Basics of diffraction and application to imaging 
Digital imaging techniques rely on inversion algorithms to retrieve the parameters of 

interest of the sample. Hence, they require an accurate modelling of the link between 

the measured data and the sample. In this section, we first recall the basics in wave-

object interaction and give the general principles of Tomographic Diffractive 

Microscopy (TDM). We present a short analysis of its resolution, compared to that of 

wide-field optical microscopes. 

2.1. Basics of diffraction 
The aim of this paragraph is to recall the relationship between the opto-geometrical 

characteristics of an object and its diffracted field. This link is at the core of most 

imaging systems that use waves for probing samples. For the sake of simplicity, we 

restrict the discussion to the scalar approximation. Accounting for the vector nature of 

electromagnetic waves does not change the main lines of the presentation. We refer 

the interested reader willing to complete this rapid introduction to textbooks on 

electromagnetism or wave diffraction, as for example [1]. 

 

We consider in Fig. 1, an object in vacuum defined by its relative permittivity 

ε(r) and illuminated by a monochromatic incident wave, with wavelength λ = 2πc/ω 

stemming from a source S(r). Hereafter, the exp(-iωt) dependence is omitted. The 

total scalar field satisfies the Helmholtz equation: 
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where k0 is the wavenumber 2π/λ, and the contrast of permittivity X = 1-

ε. Ιntroducing the Green function, 

G(r) = -exp(ik0r)/4πr ,     (2) 
we obtain the integral equation for the total field, 
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where Einc is the field generated by S that would exist in the absence of the 

object. The support of the integral in (3) is limited to the geometrical support Ω of the 

object. When the observation point r is far from the object, r’2/λ<<r, with r’ in Ω, the 

diffracted field can be written as, 

Ed (r) = −
exp(ik0r)

4πr
e(k)       (4) 

where the scattered far-field amplitude reads, 
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We now suppose that the incident field is a plane wave with wavevector kinc, 

Einc(r) = Ainc exp(ikinc.r), and that the object is weakly diffracting, so that the field 

inside Ω is close to Einc. Thus, the Born approximation is assumed to be valid [2]. In 

this case, Eq. (5) reduces to,1 

)(~),( incinc XCe kkkk −=       (6) 
where C = 8π3Ainck0

2. Equation (6) provides a one to one correspondence 

between the diffracted far-field amplitude and the Fourier coefficient of the relative 

permittivity of the object. It is at the basis of most far-field imaging technique such as 

X-ray diffraction tomography [3], acoustic tomography [4] and, as will be seen later, 

Tomographic Diffractive Microscopy [5]. Note that an expression similar to Eq. (6) is 

obtained in the vectorial case by replacing C by a vector, whose direction is given by 

the projection of the incident field polarization Ainc onto the plane normal to the 

wavevector k [1]. 
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It is possible to further simplify the relationship between the diffracted field 

and the optical properties of the object under the paraxial configuration by introducing 

the notion of “reflectance” or “transmittance”. We consider an imaging system with a 

transverse plane (xOy) and an optical or axial axis z, Fig. 2. 

 
 

One introduces k|| and kinc|| the projections of the diffracted and incident 

wavevectors onto the transverse (xOy) plane and assumes that the vector components 

kz and kinc,z along the z axis can be approximated by k0. In other terms, the diffracted 

and incident directions are close to the optical axis of the imaging system, which 

amounts to the paraxial approximation. Applying the Born approximation to Eq. (5) 

and splitting the three-dimensional integral into a two-dimensional integral over the 

transverse plane and a one-dimensional integral over z, yields, 

rrkr.rkkkkk diRiee incincinc ).exp()()exp(),(),( ∫ −=≈    (7) 
where the reflectance R(r||) or transmittance T(r||) represent the integral over z. 

Depending on the approximate models that are used for the wave-object interaction, 

different expressions for the reflectance or transmittance, associated to different 

domains of validity, are obtained. For example, if the sample is a homogeneous rough 

surface, the diffracted far-field can be written as a surface integral involving the 

surface currents at [r||,h(r||)] where h is the height of the surface. Using Kirchhoff 

approximation [6] combined with paraxial configuration, one obtains an expression 

for e(k,kinc) similar to Eq. (7) where the reflectance is proportional to exp(2ik0h(r||)). 

Note however that, in all cases, the appearance of the 2-D Fourier transform over the 

transverse plane requires the paraxial approximation. Equation (7) is at the core of 

most synthetic aperture holographic imaging inverse techniques that are applied to 

rough surfaces or phase mask imaging [7,8]. 



From this short analysis of the diffraction process, one observes that if the 

Born approximation or the single scattering approximation is valid, the diffracted field 

is linearly related to the optogeometrical parameters of the object. On the contrary, if 

the sample supports multiple scattering, the inverse problem is non linear and 

necessitates to solve the volume integral equation given by Eq. (3). Most imaging set-

ups in optics assume that the Born approximation or an equivalent single scattering 

approximation is valid. 

2.2. Principles of Tomographic Diffractive Microscopy and analysis of the 
resolution 
Basically, a Tomographic Diffractive Microscopy experiment consists in illuminating 

sequentially a sample by a plane wave with varying wavevector kinc and measuring, 

for each illumination, the far-field diffracted along various directions of observation, 

denoted by the wavevector k. The map of permittivity of the object is then retrieved 

from the set of complex data e(k,kinc). The one-to-one correspondence between 

e(k,kinc) and )(~
incX kk − , which exists under the Born approximation, permits to easily 

evaluate the resolution of such an imaging system. It is given by the three-

dimensional Fourier domain of the permittivity that is accessible with the incident and 

observation angular spans. In the best case, when the illumination and the observation 

are performed all around the sample, the Fourier coefficient of the permittivity can be 

measured within the entire sphere of radius 2k0 depicted in Fig. 3. This sphere is 

known as the Ewald sphere. The permittivity that can be estimated with the imaging 

system is given by, 

gXX estimation ⊗=       (9) 
where the point spread function g indicates that the Fourier transform of X is 

known in a bounded spectral domain only. The Point Spread Function g is the Fourier 

Transform of the low-pass filter that is equal to one in the accessible Fourier domain 



and zero elsewhere. When the accessible Fourier domain is the sphere with radius 2k0, 

one obtains, 

)]2cos(2)2[sin(4)( 0003 rkrkrk
r
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The first zero of this function, which gives the resolution of the imaging set-up 

following the Rayleigh criterion, is obtained for r ≈ 0.35 λ.  

The previous analysis can be easily adapted to the retrieval of reflectance or 

transmittance,which are linked to the diffracted field via Eq. (7). One considers an 

imaging set-up where the transverse incident and observation wavenumbers, k|| and 

kinc||, do not exceed k0sinθ  where θ  is small enough for the paraxial approximation to 

apply. In this case, the Fourier transform of the reflectance is known within a disk of 

radius 2k0 sinθ. The point spread function is then given by: 
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The Rayleigh transverse resolution is about 0.3 λ/NA where the numerical 

aperture NA is defined by sinθ. 

2.3. Comparison between Tomographic Diffractive Microscopy and conventional 
wide-field microscopy 
In this paragraph, we present a short comparison between a Tomographic Diffractive 

Microscopy set-up and a classical wide-field microscope with same numerical 

aperture. To simplify the analysis, we consider the issue of retrieving the two-

dimensional transmittance (instead of the three-dimensional permittivity) of a sample. 

A complete description of the three-dimensional imaging properties of a transmission 

microscope can be found in the paper by Streibl [9]. 

We consider the telecentric system described in Fig. 2. The sample is placed 

before the object focal plane of the objective and the field intensity is recorded on a 

camera placed at the image focal plane of the tube lens. In this mounting, the object 

focal plane of the tube lens merges with the image focal plane of the objective. In 



most wide-field microscopes, the illuminating source is a thermal lamp, which, in 

combination with a so-called condenser, generates a homogeneous illumination that 

can be seen as the sum of incoherent plane waves impinging on the sample with 

different directions. Due to the incoherence properties of the incident field, the 

detected intensity on the camera can be considered as the sum of the field intensities 

obtained for each incident plane wave. Hence, we will first consider the case where 

the object is illuminated by a unique plane wave with transverse wavevector kinc|| and 

amplitude Ainc. 

The formation of the image in a microscope relies on the analogical Fourier 

transform that is performed by the lenses. Indeed, under certain conditions, one can 

show that the field existing at the image focal plane of a lens is proportional to the 

Fourier transform of the field existing at the object focal plane. Hence, in the set-up 

presented in Fig. 4, one verifies that the field existing in the image plane of the tube 

lens, namely the CCD plane, will be equal to that existing at the object focal plane of 

the objective, i. e. very close to the sample, with a magnification equal to the ratio 

between the focal lengths of the tube lens and objective. Yet, the field recovery is 

incomplete due to the loss of information stemming from propagation and the finite 

collection cone of the objective. Hereafter, we call θ  the collection angle of the 

objective and defines the numerical aperture of the microscope through sinθ =NA. For 

the sake of simplicity, we consider a microscope in air with a magnification equal to 

one. The imaging system acts as low-pass filter, symbolized by the pupil placed in the 

Fourier plane of the objective that cuts all the transverse Fourier components of the 

field that are above k0sinθ. More precisely, 

• at the object plane of the objective, the field EO, can be written as a Fourier 
integral, 

krkkkrkr diEiAE incincincO ).exp(),(~).exp()( ∫+=    (12) 



• at the Fourier plane, the field is proportional to )(),(~
incincinc AE kkkk −+ δ  for 

k|| < k0NA and 0 elsewhere; 
• at the image plane, the field EI can be cast in the form: 

krkkkkrkkr diEpiApE incincincincI ).exp(),(~)().exp()()( ∫+=   (13) 

where p(u) indicates the filtering function of the imaging set-up. p(u) is a 

radial function equal to zero if u > k0NA  and one elsewhere. 

From Eq. (12) and Eq. (4) in far-field, and using the stationary phase theorem, 

one shows that )8/(),()(~ 2
zincinc kieE πkkkk = . Hence, measuring the complex field in 

the Fourier plane of a microscope (or measuring the complex field in the image plane 

of the microscope and performing a numerical Fourier transform), permits to retrieve 

the far-field amplitude e(k,kinc) within the limited solid angle defined by the 

numerical aperture of the objective. This property is used in most tomographic 

diffractive microscope set-ups to retrieve the diffracted far-field for each illumination 

angle. On the other hand, in a conventional microscope, one detects the field intensity 

|EI|2, i. e. the interference between the incident and the diffracted fields. In this case, 

the relation-ship between the measured intensity and the optogeometrical 

characteristics of the objects is not simple as will be shown below. 

Using Eq. (7), we first relate the Fourier transform of the field to the 

transmittance through, )2/()(~),(~
πincinc TiE kkkk −−≈ . Neglecting the square of the 

diffracted field in |EI|2 yields, 
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With an incoherent illumination, the detected intensity is the sum of |EI|2 for all 

possible kinc||. We assume that the illumination angular span is the same as the 

detection angular span. Simple calculations yield, 
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From this formula, one retrieves the classical Rayleigh criterion that states that 

two point-like objects will be distinguished within the image only if their interdistance 

is larger than 0.6λ/NA. Note that the image is related to the imaginary part of the 

transmittance only. The relationship between the image and the object is even more 

complicated if one tries to connect the three-dimensional images (obtained by moving 

the CCD camera along the optical axis) to the three-dimensional permittivity of the 

sample [9]. Indeed, it appears that the point spread function is different for purely 

absorbing objects and purely dephasing objects. Hence, it is not possible to retrieve 

quantitatively the permittivity of the sample from the intensity measurements. 

Comparing the point-spread functions obtained with the Tomographic 

Diffractive Microscopy set-up, Eq. (11) to that of the wide-field microscope with 

same illumination and detection angular spans, Eq. (15), one observes that the TDM 

resolution is twice better than that of the conventional microscope. However, it is 

important to stress that the Fourier support of both point-spread functions is the same, 

being a disk with radius 2k0NA. The difference comes from the fact that the optical 

transfer function of the wide-field microscope tend towards 0 when ν tends toward 

2k0NA while that of the TDM set-up is constant throughout this disk.  

Note that this simple analysis holds true only if one assumes an infinite signal 

to noise ratio. In practice, the object spatial frequencies are not transmitted equally by 

the TDM imager towards the CCD plane. Indeed, one notes that a peculiar spatial 

frequency of the object contrast, )(~ νX , can be obtained with many pairs of diffracted 

and incident directions, (k,kinc). It is thus possible to reduce the noise by averaging 

the redundant measurements. Now, the smaller the spatial frequency ν,  the larger the 

number of pairs (k,kinc) such that | k-kinc|= ν. With this trivial data processing, the 



noise corrupting the low spatial frequencies is much lower than that corrupting the 

high spatial frequencies.  

The comparison between a wide-field microscope and a Tomographic 

Diffractive Microscopy experiment with the same illumination and observation 

angular spans permits to stress the pros and cons of each technique. In a wide-field 

microscope, the sample is illuminated simultaneously under all the possible incident 

angles and a single intensity measurement with a CCD camera provides an analogical 

image of the object in real time. Yet, this image cannot be linked in a simple way to 

the permittivity or the transmittance of the object. On the other hand, TDM 

necessitates to illuminate the sample under various incident angles in a sequential 

manner (so that real-time imaging is difficult) but it is possible to obtain 

quantitatively the map of permittivity (or transmittance) of the sample. Moreover, 

under the single scattering approximation and without any a priori information on the 

sample, the resolution of TDM should be better than that of wide-field microscopy. 

3. Techniques and perspectives of Tomographic Diffractive Microscopy 
In this section, we describe different experimental configurations for Tomographic 

Diffractive Microscopy. These techniques have often been presented under other 

names (microtomography, digital holographic tomography, phase tomography, 

synthetic aperture microscopy…). Basically, we found relevant for this review any 

optical imaging system devoted to the study of microscopic objects in which the 

sample is illuminated sequentially with various illuminations and the image is 

obtained via an inversion procedure from the phase and amplitude of the measured 

diffracted field. Note that, although the principles of TDM have been known for a 

long time [5], convincing experimental results with clear improvement of the 

resolution have been published only recently.  



3.1. Experimental set-ups and applications 
Most TDM set-ups are implemented in standard reflection or transmission 

microscopes, such as the one schematically depicted in Fig. 4, with a coherent plane 

wave illumination. For a given illumination, the magnification of the microscope 

permits to measure on the CCD camera the diffracted field within a wide solid angle 

and with an appropriate sampling (one must satisfy the Shannon theorem). This 

approach is more convenient than a lensless “scatterometer” technique in which, for 

example, the diffracted field is measured by a detector placed on a rotating arm. In the 

following, we first describe several experimental configurations of TDM and discuss 

their power of resolution. Then, we present some research avenues for further 

developments. 

3.1.1 Phase measurements-Digital Holography Microscopy 
TDM set-ups differ from classical microscopes in that they measure both the phase 

and amplitude of the diffracted field, i. e. they record a hologram of the sample. When 

only one illumination is used, this approach is known as Digital Holographic 

Microscopy (DHM). DHM has stirred a lot of research in the last ten years because 

most applications developed in holography for macroscopic objects can be replicated 

at a microscopic scale with this novel technique. In this paper, we consider DHM as 

the simplest implementation of TDM and just recall its principles and limitations.  

The main experimental difficulty of Digital Holography (and TDM) is to 

obtain a precise measurement of the phase of the diffracted field. Basically, this is 

done by introducing an interferometric set-up at the image [10] or Fourier [11] or 

even object [12] plane of the microscope. Currently, three methods have been used 

with great success. Phase stepping holographic microscopy consists in acquiring 

several holograms of the same specimen, with a controlled variation of the phase of 

the reference beam. Simple mathematics permits then to reconstruct the complex 



amplitude [13-15]. This technique has been used by several authors, both in 

holography and tomography. Its advantage is that the whole detector area contributes 

to the data acquisition. On the other hand, it is a slow technique as several successive 

holograms need to be recorded. An interesting alternative is provided by off-axis 

holography [16]. In this configuration, the reference beam is tilted with respect to the 

optical axis of the acquisition system. In that case, only one hologram is to be 

recorded, which is very favourable in terms of sensitivity to vibrations during 

acquisition. The resulting hologram fringes must be decoded [17], and a larger sensor 

has to be used. Care has to be taken for high numerical systems, in order to avoid 

mixing of the actual object frequencies with twin images appearing in this 

configuration. Heterodyne detection is another possibility [18,19]. This technique is 

extremely effective in the case of weakly diffracting specimens, when the diffracted 

field is small compared to the illumination wave, reaching the shot-noise detection 

limit.  

These approaches are however indirect ones, as they reconstruct the complex 

field with the help of a well-characterized reference beam. Direct determination of the 

phase and amplitude is possible using front wave analysers like Shark-Hartman 

sensors, which may greatly simplify the acquisition setup by avoiding the need of a 

reference beam. Presently, these sensors are however still limited in terms of 

resolution (number of pixels), compared to CCD or CMOS cameras. One may also 

use numerical reconstructions of the phase and amplitude from one or several 

intensity-only measurements [20-23]. Finally, it is worth recalling that DHM (and 

TDM) are quantitative imaging tools. Hence they require a thorough calibration in 

order to accurately model the link between the sample and the measured data. The 



calibration procedure, which is usually performed with a well-known test object, can 

also be used to correct the possible aberrations of the optical system [24,25]. 

The main interest of DHM is that it permits via Eq. (6) to retrieve three-

dimensional information on the sample from two-dimensional complex data that are 

obtained in a single shot. Generally, the sample is illuminated along the optical axis 

and the field is recorded in transmission within the solid angle of the microscope 

objective. The spatial frequencies of the object are known within a sphere cap, which 

is extended laterally but very narrow axially. An example of the object frequency 

support accessible using DHM is given in Fig. 5. As a result, Digital Holographic 

Microscopy, while having a rather good lateral resolution exhibits a limited sectioning 

capability along the optical axis [10,26,27].  

Tomographic Diffractive Microscopy aims at increasing the accessible object 

frequency support (and consequently improving the resolution) by varying the 

illumination. Several approaches are possible, which we briefly describe now. 

3.1.2. Tomography with illumination rotation in transmission 
The most common configuration of TDM consists in illuminating the sample 

under various angles of incidence in a transmission microscope mode. Figure 6 shows 

how the synthetic aperture process induced by rotating the illumination [11,28] 

enlarges the accessible object frequency domain. For the sake of simplicity, we 

consider here that the illumination and detection numerical apertures are identical. 

Other cases have been described in Ref [9].  

 
Figure 6. Construction of the object frequency support (or Optical Transfer Function) 
that is accessible by rotating the illumination in a transmission holographic 
microscope. (a,b,c,d) longitudinal view, (e,f,g,h) transverse view. (a,e) Digital 
Holography Microscopy under normal incidence; (b,f) oblique incidence (c,g) DHM 
under oblique incidence; (d,h) object frequency support for height illuminations 
corresponding to the two maximum polar angles allowed by the numerical aperture of 
the condenser and four azimuth angles varying from 0 to 360° every 45° 



When a large number of incidences is used, in the (kx,ky) plane, the detected 

frequencies fill the disk limited by the bold circle in Fig. 6(h). Note that the support of 

the object recorded frequencies obtained by varying the illumination angle, bold circle 

in Fig. 6(h), is twice as large as that given by digital holographic microscopy, for 

which only the normal incidence is used, see dotted circle in Fig. 6(h). 

In the (kx,kz) plane, the recorded object frequency support scanned by 

transmission TDM when a large number of incident angles is used has a more 

complex shape. It fills the butterfly shape depicted in Fig. 6(d). A detailed 

construction of this frequency support has been given in [29]. 

To assess the interest of transmission TDM with illumination rotation in terms 

of resolution, we compare in Fig. 7 its optical transfer function to that of Digital 

Holography Microscopy and wide-field transmission microscope. The lateral and 

axial extensions of the frequency supports for holographic microscopy and 

transmission TDM are given by [11]. 

Δν x,y
Holo =

2n sinθ
λ

  Δν z
Holo =

n(1− cosθ)

λ
 and Δν x,y

Tomo =
4n sinθ

λ
  Δν z

Tomo =
2n(1− cosθ)

λ
  (16) 

We recall that the frequency support of transmission TDM is the same as that of a 

classical transmission microscope if the same condenser, objective and wavelength 

are used.  However, in conventional transmission microscopy, the high frequencies 

are strongly attenuated (Figure 7(b) dotted line) while they are theoretically 

transmitted unaffected in TDM, (Figure 7(b) dashed line). The amelioration of the 

resolution, using transmission TDM with illumination rotation, compared to that of a 

conventional widefield microscope has been experimentally demonstrated in 

[11,28,30]. 

Yet, this achievement is obtained at a certain expense. The main issue is the 

necessity of measuring, for numerous successive illuminations, the amplitude and 

phase of the diffracted field. While the classical transmission microscope with 

incoherent light may be considered as a parallel information processing system, the 



specimen being simultaneously illuminated with all the incidence angles allowed by 

the condenser, transmission TDM is a sequential information processing system. As a 

consequence, the technique may be slow, if mechanical movements of the specimen 

or of tilting mirrors are involved [10,11,27,28]. A simplified, higher-speed variant of 

this approach using a 1-D scanning only has been proposed to address this issue [31]. 

In that case, the recorded frequency support takes the characteristic shape of a 

“peanut” [32] and less object frequencies are recorded. This approach has permitted 

very fast acquisition, rendering the study of living specimens possible [31,33-35]. 

Another approach, which avoids rotating the illumination, consists in projecting a 

pattern (i. e. the sum of different plane waves) on the object and retrieving the 

information with a demodulating process in the image plane [36,37]. High-speed 

cameras (several thousands images per second) and beam control system that are now 

available should permit to record the large number of holograms mandatory to 

improve the resolution [28,30] in a very short time, opening the way to high-speed, 

high resolution imaging of living specimens. 

Last, it is worth noting that the resolution of transmission TDM with 

illumination rotation is not isotropic. Indeed, the recorded frequency support of 

transmission TDM presents a so-called “missing cone” along the optical axis, 

characteristic of transmission microscopes, which yields a relatively low resolution 

along this axis [10,11,27,28,38,39]. This important issue has been addressed and 

partially solved with other imaging configurations. 

3.1.3. Tomography with specimen rotation 
One solution to obtain a quasi-isotropic power of resolution consists in rotating the 

sample while keeping the illumination and detection static. Figure 8 describes the 



object frequency support in the case of transmission TDM with a complete specimen 

rotation about the x-axis and a plane wave illumination along the z-axis [40-42]. 

The advantage of this technique is that the holographic set-up is static and the 

power of resolution of the imager is quasi-isotropic. Most inversion algorithms used 

in this configuration are based on Radon transform [43-46], which is a simplified 

reconstruction procedure that neglects diffraction. This crude modelling of the 

experiment may have negative influence onto the specimen reconstruction [47,48]. 

Using more rigorous inversion schemes based on three-dimensional inverse Fourier 

transform improves the results [47,48]. This approach permits a quasi-isotropic 

resolution, with only a small, missing Fourier domain along the specimen rotation 

axis [42]. The main difficulty of this technique is to perform a precise rotation of the 

sample at the microscopic scale that is compatible with interferometric measurements. 

Manipulating the sample within a rotating microcapillary is not favoured by 

biologists, as handling microscopic specimens between a glass slide and a coverglass 

is easier. Techniques based on optical tweezers [49] or on electric fields [50] seem 

promising, but have not been used yet for interferometric measurements. As a 

consequence, one would often in practice prefer to keep the specimen static. 

3.1.4. Tomography with illumination rotation in reflection 
Improving the axial resolution can also be done by implementing a Tomographic 

Diffractive Microscopy set-up in a reflection microscope. Figure 9 describes the 

object frequency support that is accessible using reflection TDM with illumination 

rotation. The set of recorded frequencies in reflection TDM depicts a portion of a 

filled sphere, with the same lateral extension than that obtained in transmission TDM, 

but now comprising high frequencies along the optical axis, see Figure 9(c). From this 

construction, one therefore predicts that reflection TDM should be characterized by 



superior sectioning capabilities along the optical axis, which has been recently 

experimentally demonstrated [51]. Note that  reflection configurations have often 

been used to study 2-D or quasi 2-D objects [7, 52-54] under paraxial approximation 

(which corresponds to low numerical aperture), see Eq. (7). In this case, the inversion 

procedure is greatly simplified since a two-dimensional inverse Fourier transform of 

the joined holograms yields the reflectance of the sample [7, 52-54]. This 

approximation amounts to replace the cap of spheres depicted in Fig. 9 by disks in the 

(kx,ky) space that are placed at kz=k0, a simplification which is also valid for 

transmission set-ups [8,12,55,56]. 

 

3.1.5. Tomography with illumination wavelength variation 
A radically different implementation of Tomographic Diffractive Microscopy consists 

in varying the illumination wavelength instead of varying the illumination angle. 

Figure 10 gives the object frequency support obtained, in the case of fixed specimen, 

illumination and detection systems, for two wavelengths λ1 and λ2 = 2 λ1, and for a 

transmission and a reflection set-up. 

In the transmission configuration, Figure 10(a), both recorded caps of sphere have 

their summit at the frequency origin. Their curvature and extension change with the 

incident wavelength. This technique gives access to a rather limited frequency range. 

On the contrary, in the reflection configuration Figure 10(b), the accessible caps of 

sphere are placed at very different spatial locations in the Fourier space when the 

incident wavelength is changed. As a result the frequency support is significantly 

enlarged when the wavelength is varied from λ1 to λ2. 

Figure 10(c) compares the frequency supports, that are obtained in 

transmission and reflection modes when the wavelength is continuously varied 

between λ1 and λ2 = 2 λ1. It explains why wavelength scanning is performed 



preferentially in the reflection mode, either for 3-D tomography [57] or reflectometry 

[58-60]. In some cases, only a few wavelengths may be used in order to decouple 

index fluctuations from thickness variations [61,62]. 

3.2. Further developments 
In this paragraph, we focus on recent theoretical and, more rarely, experimental 

works, which should permit to enlarge the application domain of TDM and improve 

its power of resolution, possibly beyond the diffraction limit given by Eq. (10). Since 

Tomographic Diffractive Microscopy is a digital imaging technique, there are two 

main research avenues: improving the inversion algorithms or modifying the imaging 

configuration.  

3.2.1. Inversion algorithms 
Most inversion algorithms used in the framework of Tomographic Diffractive 

Microscopy assume a linear relation-ship between the scattered field and the 

parameter of interest (permittivity or reflectance). This assumption is particularly 

valid when the objects are weakly scattering (single scattering) and usually holds 

when biological samples are considered. Under the Born approximation 

[5,10,11,26,27,63] or under the Rytov approximation [34,64], it suffices to perform an 

inverse Fourier transform of the diffracted far-field to retrieve the permittivity map of 

the object. This widely used reconstruction procedure can be done in quasi real-time. 

Yet, it requires a tight regular sampling of the Ewald sphere and it is sensitive to noise 

and to the lack of data in certain frequency domains. Filtering is often used in order to 

dim artefacts such as Gibbs phenomenon or pixel scale effects [8,65]. A more 

sophisticated direct linear inversion method is based on the Singular Value 

Decomposition of the scattering operator. This approach permits to reconstruct 

objects from non-regularly sampled sparse data and to reduce the influence of noise 



on the reconstruction [66]. It may prove useful if one wants to diminish the number of 

illuminations in order to speed up the imaging process.  

More recently, non-linear iterative inversion techniques have also been used to 

image highly contrasted samples [67,68] such as those encountered in the 

nanotechnology domain. They provide much better images than that obtained with 

linear reconstruction algorithms when multiple scattering cannot be neglected [68] 

and they may even ameliorate the resolution beyond that expected with a single 

scattering analysis [69-71]. On the other hand, these iterative techniques are time 

consuming and cannot handle large set of data and unknowns. Up to now, they have 

been applied to objects whose size is comparable to the wavelength. Non-linear 

inversion techniques are traditionally expressed as optimization problems. The 

unknown map of permittivity within a given investigation domain Ω is parameterized 

and the value of the parameters is determined by minimizing a cost function. The 

latter is usually the L2 distance between the data and the field diffracted by an 

estimation of the permittivity map in Ω. At each iteration, the diffracted field is 

rigorously computed from the previous estimate of the permittivity.  The main 

bottleneck of this approach is that it requires repeated “exact” field computations, 

which may be excessively time-consuming. This has led to the emergence of 

modified-gradient [72,73] and contrast-source inversion methods [74,75], in which 

successive approximations of the permittivity and of the field inside Ω are obtained 

simultaneously [76]. The second important issue is convergence. Methods based on 

the optimization of a cost function inherently converge to a minimum, but that may be 

a local one. To avoid such minima, a quadratic approach may be used, as suggested in 

[77]. Another efficient method to circumvent the problem of local minima is to apply 

a regularization procedure, i. e. to introduce a priori information on the object. 



The advantages of numerical imaging have still not been fully exploited. 

Indeed, for the moment, most of the inversion techniques developed for TDM do not 

incorporate any a priori information on the object. It has been shown in the 

microwave domain that a spectacular amelioration of the images can be obtained by 

just specifying the lower and upper bounds of the sample permittivity [78]. In the 

optical domain, Sung and co-authors recently demonstrated that introducing the non-

negativity constraint on the permittivity in the reconstruction procedures yields a clear 

improvement of the image [34]. It permits to partially compensate for the missing 

cone in the object frequency support in transmission TDM with illumination rotation. 

A priori information on the object size is also very useful to improve the 

reconstruction [79]. Note that, when a priori information is introduced in the 

inversion algorithm, the resolution of the reconstruction can be much better than that 

imposed by the diffraction limit Eq. (10), even for weakly diffracting specimen [76, 

79]. 

3.2.2. Advanced imaging configurations 
In the best experimental configuration where the sample is illuminated and observed 

from every angle possible, one can theoretically obtain an isotropic resolution close to 

0.35 λ if the single scattering approximation given by Eq. (10) is valid. Yet, most 

Tomographic Diffractive Microscopy set-ups are implemented in transmission or 

reflection microscopes where the sample is illuminated and/or observed from one side 

only. As a result the axial resolution is not as good as the transverse resolution. This 

major issue for three-dimensional imaging has stirred a lot of work in the microscopy 

community. Now, the digital nature and the sequential illumination process of 

Tomographic Diffractive Microscopy appear as definite assets to address this 

problem. Hence, to increase the angular coverage and improve the axial resolution, it 



is possible to rotate the sample, as seen in section 3.1.3 or to introduce a priori 

information in the inversion algorithms as seen in 3.2.1. Another recently put forward 

solution is to place the sample in the vicinity of a mirror in a reflection microscope. 

The mirror permits to retrieve simultaneously the top and bottom views of the object. 

The separation of these two components can easily be done using two incident 

polarizations or with a simple data processing [80]. As a result, one expects an 

isotropic resolution close to that given by Eq. (10). 

Several studies have also been conducted to improve the transverse resolution 

of Tomographic Diffractive Microscopy. The simplest solution consists in 

diminishing the effective incident wavelength using immersion objectives or by 

depositing the sample onto a high index prism [66,67]. In the latter case, the inversion 

algorithms must be adapted to deal with evanescent waves, as one illuminates the 

sample under total internal reflection. The higher the refraction index n of the 

immersion liquid or prism, the smaller the effective wavelength, λeff = λ/n, and the 

better the resolution. With the present lossless materials existing in optics, the 

resolution can be improved by a factor of two at best. To overcome this limit, it has 

been proposed to deposit the sample on a periodically nanostructured substrate. The 

grating is optimized so as to transform the impinging propagative beam into an 

evanescent field with high spatial frequency. In this case, the effective wavelength of 

the field illuminating the sample depends solely on the grating period and it can be 

much smaller than λ/2. Simulations of grating-assisted TDM have shown that one 

could expect from this approach a resolution about λ/10 with a grating of period λ/5 

[81,82]. Note that this solution cannot be applied to analogical microscopes because 

the diffracted field is linked to the object in a complex way.  



Last, it is worth reporting another digital imager that permits to obtain a 

resolution well beyond the diffraction limit, the tomographic near-field microscope. In 

this approach, the sample is illuminated sequentially by a series of incident waves 

while the scattered field is measured in the near zone thanks to a scanning probe [83-

85]. An adapted inversion algorithm is then used to retrieve the three-dimensional 

map of permittivity of the sample with nanometric resolution. 

 

4. Conclusion 
Tomographic Diffractive Microscopy is a digital imaging technique that permits to 

study label-free samples. It consists in recording multiple holograms of the sample 

under different illuminations and using an inversion procedure to retrieve the sample 

parameters of interest. TDM exhibits a better power of resolution than that of classical 

microscopes and it yields quantitative information on the sample (such as the 

permittivity map) that is inaccessible with analogical microscopes. This approach 

belongs to the growing number of sequential digital imaging systems that combine 

sophisticated experimental set-ups with advanced numerical reconstructions 

(including, for example, a priori information on the sample). Digital imaging is 

mandatory in the microwave [78, 86], X-ray [87] or acoustic and seismic [63,88] 

domains where lenses able to form analogically the image of a sample do not exist. It 

is also appearing in the active domain of fluorescence microscopy where recording 

multiple images of the same sample under various illuminations and using numerical 

reconstruction procedures permits to significantly improve the resolution [89-92]. In 

our opinion, the continuous progress in computing facilities, in high-speed detectors 

and wave front shaping (for varying the illumination) is a strong asset in favour of this 



new imaging approach, which, we believe, should undergo spectacular developments 

in a near future. 
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Figure 1. A plane wave with wavevector kinc illuminates an object characterized by its 
relative permittivity ε. The detected diffracted field in the direction k is given by e(k,kinc). 
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Figure 2. Different imaging configurations. Left :Reflection configuration, the object is 
defined by its reflectance R(r||). Right transmission configuration, the object is defined by its 
transmittance T(r||). 



 
 
 
 
 
 
 
 
 
                                             

                                                       
 
 
 
 
 
 
Figure 3. The Fourier domain of the sample permittivity that is accessible at the best, i. 
e.when the sample is illuminated and observed from every angle possible. .



 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 4. Principle of detection of the diffracted wave in a classical transmission microscope. 
 



 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 5. Construction of the set of object detected frequencies in the Fourier space in the 
case of digital holographic microscopy. (a): longitudinal view, and (b): transverse view. 



 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 6. Construction of the object frequency support (or Optical Transfer Function) that is 
accessible by rotating the illumination in a transmission holographic microscope. (a,b,c,d) 
longitudinal view, (e,f,g,h) transverse view. (a,e) Digital Holography Microscopy under 
normal incidence; (b,f) oblique incidence (c,g) DHM under oblique incidence; (d,h) object 
frequency support for height illuminations corresponding to the two maximum polar angles 
allowed by the numerical aperture of the condenser and four azimuth angles varying from 0 to 
360° every 45° 
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Figure 7. (a) Comparison of frequency supports for holography (solid line) and TDM in 
transmission with illumination rotation (in grey), longitudinal view. (b): Comparison of 
Optical Transfer Functions for incoherent transmission microscopy (dotted line), holographic 
microscopy (solid line), and transmission TDM (dashed line). Note that in (b), for the sake of 
simplicity, the geometry is assumed to be invariant along the y axis. 
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Figure 8. Tomographic Diffractive Microscopy in transmission: construction of the set of 
detected waves for specimen rotation. The optical transfer function is quasi-isotropic. (a) thick 
solid line: frequency support in the kx=0 plane obtained for the initial position of the sample, 
thin solid line : frequency support obtained after one rotation of the sample about the x-axis. 
Gray disk: frequency support obtained when the sample is rotated continuously over 360°.(b) 
idem (a) but in the kx ≠ 0 plane (c) idem (a) in the ky=0 plane 



 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 9. Reflection TDM with illumination rotation: construction of the object frequency 
support, longitudinal view to be compared to Fig. 6(a,c,d). 
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Figure 10. TDM with illumination wavelength variation: construction of the object frequency 
support in transmission and reflection modes. 
 
 
 
 
 
 
 


