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Long time average of first order mean field games and weak KAM

theory

P. Cardaliaguet∗

May 30, 2013

Abstract

We show that the long time average of solutions of first order mean field game systems in
finite horizon is governed by an ergodic system of mean field game type. The well-posedness
of this later system and the uniqueness of the ergodic constant rely on weak KAM theory.

Introduction

The aim of this paper is to study the link between the finite horizon first order mean field game
system















(i) −∂tu
T +H(x,DuT ) = F (x,mT (t)) in (0, T ) × R

d

(ii) ∂tm
T − div(mTDpH(x,DuT )) = 0 in (0, T )× R

d

(iii) mT (0) = m0, u
T (x, T ) = uf (x) in R

d

(1)

and the ergodic first order mean field game system























(i) λ̄+H(x,Dū) = F (x, m̄) in R
d

(ii) −div(m̄DpH(x,Dū)) = 0 in R
d

(ii)

∫

Q

ū dx = 0 ,

∫

Q

m̄ dx = 1

(2)

Let us recall that mean field games have been introduced simultaneously by Lasry and Lions [8,
9, 10] and by Huang, Caines and Malhamé [7] to analyze large population stochastic differential
games. In (1), the scalar unknowns uT ,mT are defined on [0, T ] × R

d and F is a coupling
between the two equations. The function uT can be understood as the value function—for a
typical and small player—of a finite horizon optimal control problem in which the density mT

of the other players enters as a data. The optimal feedback of this small player is then given
by −DpH(x,Du(x)). When all players play according to this rule, their density mT = mT (t, x)
evolves in time by equation (1)-(ii). The ergodic problem (2) has similar interpretation, expect
that now the optimal control problem is of ergodic type: the unknowns are the ergodic constant
λ̄, the value function ū of the ergodic problem and m̄ which is an associate invariant measure.

In analogy with the case of optimal control problems, it is expected that, as T → +∞, the
solution of the finite horizon system (1) somehow converges to the solution of the ergodic system
(2). For second order mean field game systems (i.e., systems corresponding to stochastic control
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problems with a nondegenerate diffusion) this kind of behavior has been first discussed in [11]
and then developed and sharpened in [1, 2]. Results in the discrete setting were also obtained
in [6]. Typically it is proved in the above mentioned papers that uT (0, ·)/T converges to λ̄
while (a rescaled version of) mT converges to the invariant measure m̄. The precise meaning of
the convergence depends on the coupling F , which can be of local or nonlocal nature: when F
is local (i.e., F (x,m(t)) = F̄ (x,m(t, x)) depends on the value m(t, x) of the density of m(t)),
the convergence holds in Lebesgue spaces. When the coupling F is of nonlocal nature and
smoothing, the convergence is uniform. The main result of [1, 2] is an exponential convergence
rate when the coupling—and the diffusion—are “strong enough”.

Here we consider the same issue for first order mean field games in which the coupling F
is nonlocal and smoothing. We also assume that all functions are periodic in space and set
T
d = R

d/Zd. In the uncoupled case F = 0, this problem has been the object of a lot of attention
in the recent years under the name of weak-KAM theory (see in particular the pioneering works
[3, 4, 14, 15] and the monograph [5]). Compared to the second order setting, several interesting
issues arise: even for F = 0, one cannot expect the ergodic system to have a unique solution.
As a consequence, in the presence of the coupling, it is not even clear that the ergodic constant
λ̄ is unique. There is also a strong difficulty to give a meaning to (2)-(ii): indeed, as a solution
of a classical Hamilton-Jacobi equation, the map ū is at most Lipschitz continuous (actually
semiconcave); on another hand, the ergodic measure cannot be expected to have a density
(again, this is what happens in general for F = 0): as a consequence the term m̄DpH(x,Dū)
is a priori ill-defined. To overcome these difficulties, we use two tools: the first one is a typical
regularity property arising in weak-KAM theory [3, 4, 5]: the measure m̄ happens to concentrate
on the so-called projected Mather-set, in which the derivative of ū exists and is uniquely defined
(independently of the solution ū). This allows to give a meaning to the term m̄DpH(x,Dū) and
provides a key tool for showing the existence of solutions to (2). As for the uniqueness issue,
we introduce a weak coercivity condition on the coupling: namely we assume that there is a
constant c̄ > 0 such that, for any pair of measures m1,m2,

∫

Td

(F (x,m1)− F (x,m2))d(m1 −m2) ≥ c

∫

Td

(F (x,m1)− F (x,m2))
2dx

This condition—which is quite natural in the context of mean field game theory (see Example
1.1 below)—entails the uniqueness of the ergodic constant. Then, using energy estimates, we
prove our main result concerning the convergence of uT (0, ·)/T to λ̄: there is a constant C such
that

sup
t∈[0,T ]

∥

∥

∥

∥

uT (t, ·)

T
− λ̄

(

1−
t

T

)∥

∥

∥

∥

∞

≤
C

T
1

2

.

As for the convergence of mT , we have little information due to the lack of uniqueness of the
ergodic measure m̄. However, the coupling F (·, m̄) turns out to be unique and therefore it seems
the good quantity to look at: indeed we have the following estimate:

∫ T

0
‖F (·,mT (t))− F (·, m̄)‖∞ dt ≤ CT

1

2 .

Note that this inequality means that F (·,mT (t)) must be close to F (·, m̄) on a large amount of
time.

The paper is organized as follows: in a first part we introduce the notations and state the
assumptions used throughout the paper. Then we study the ergodic mean field game system.
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In the last section we prove our convergence result. In appendix we recall the main steps of the
proof for the well-posedness of (1).

Acknowledgement: We wish to thank Yves Achdou for fruitful discussions.
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1 Preliminaries

Throughout this note, we work in the periodic setting: we denote by T
d the torus R

d/Zd, by
P (Td) the set of Borel probability measures on T

d, and by P (Td×R
d) the set of Borel probability

measures on T
d×R

d. Both sets Td and by P (Td×R
d) are endowed with the weak-* convergence.

Let us recall that P (Td) is compact for this topology. It will be convenient to put a metric
on P (Td) (which metricizes the weak-* topology): we shall work with the Monge-Wasserstein
distance defined, for any µ, ν ∈ P (Td), by

d1(µ, ν) = sup
h

{
∫

Td

hd(µ − ν)

}

(3)

where the supremum is taken over all the maps h : Td → R which are 1-Lipschitz continuous.
The maps H and F are periodic in the space arguments: H : T

d × R
d → R while F :

T
d × P (Td) → R. In the same way, the initial and terminal conditions m0 and uf—which are

fixed throughout the paper, are periodic in space: uf : Td → R is supposed to be of class C2

while mf belongs to P (Td) is assumed to have a bounded density (mf ∈ L∞).
We now state our key assumptions on the data: these conditions are valid throughout the

paper. The map F is supposed to be regularizing:

The map m → F (·,m) is Lipschitz continuous from P (Td) to C2(Td). (4)

In particular, as P (Td) is compact, there is C̄ > 0 such that

sup
m∈P (Td)

‖F (·,m)‖
C2 ≤ C̄ (5)

As explained in the introduction, our key assumption is the following weak coercivity for the
coupling: there is a constant c > 0 such that, for any m1,m2 ∈ P (Td),

∫

Td

(F (x,m1)− F (x,m2))d(m1 −m2) ≥ c

∫

Td

(F (x,m1)− F (x,m2))
2dx. (6)

An example of map F satisfying (4) and (6) is given below. Concerning the Hamiltonian, we
suppose that H is of class C2 on T

d × R
d and quadratic-like in the second variable:

H ∈ C2(Td × R
d) and

1

C̄
Id ≤ D2

ppH(x, p) ≤ C̄Id ∀(x, p) ∈ T
d × R

d . (7)

Let us recall that, under assumptions (4) on F and (7) on H, for any time horizon T , there is
a unique solution (uT ,mT ) to the mean field game system (1): by a solution, we mean that uT

is a Lipschitz continuous viscosity solution to (1)-(i) while mT ∈ L∞((0, T ) × T
d) is a solution
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of (1)-(ii) in the sense of distribution (see [10] and Theorem 4.1 in appendix). Recall also that
the map t → mT (t) is weakly continuous as a measure on T

d. In particular, for any continuous

map φ : Td → R, the integral

∫

Td

φ(x)mT (t, x) is continuous in t ∈ [0, T ].

Example 1.1. Assume that F : Td × P (Td) → R is of the form

F (x,m) =
(

F̄ (·,m ⋆ ξ(·)) ⋆ ξ
)

(x)

where ξ : Rd → R is a smooth, even kernel with compact support and where F̄ : Td × R → R is
a smooth map for which there is a constant c > 0 with

c ≤
∂F̄ (x, z)

∂z
≤

1

c
∀(x, z) ∈ T

d × R . (8)

Then F satisfies conditions (4) and (6).

Proof. The Lipschitz continuity assumption (4) is straightforward from the smoothness assump-
tion on F̄ . Let us now check (6). We have, on the one hand,

∫

Td

(F (x,m1)− F (x,m2))d(m1 −m2)

=

∫

Td

[F̄ (·,m1 ⋆ ξ)− F̄ (·,m2 ⋆ ξ)] ⋆ ξ d(m1 −m2)

=

∫

Td

[F̄ (·,m1 ⋆ ξ)− F̄ (·,m2 ⋆ ξ)](m1 ⋆ ξ −m2 ⋆ ξ)

which, in view of our growth condition on F̄ , implies that

∫

Td

(F (x,m1)− F (x,m2))d(m1 −m2) ≥ c

∫

Td

(m1 ⋆ ξ −m2 ⋆ ξ)
2 (9)

On another hand,

∫

Td

(F (x,m1)− F (x,m2))
2dx

=

∫

Td

[

(F̄ (·,m1 ⋆ ξ)− F̄ (·,m2 ⋆ ξ)) ⋆ ξ
]2

dx

≤
∥

∥(F̄ (·,m1 ⋆ ξ)− F̄ (·,m2 ⋆ ξ)) ⋆ ξ
∥

∥

2

∞

≤ ‖ξ‖2L2(Rd)

∥

∥(F̄ (·,m1 ⋆ ξ)− F̄ (·,m2 ⋆ ξ))
∥

∥

2

L2(Td)

≤ ‖ξ‖2L2(Rd)c
−2

∫

Td

(m1 ⋆ ξ −m2 ⋆ ξ)
2dx

where we have used the second inequality in the right-hand side of assumption (8) in the last
line. Using (9) we deduce that F satisfies (6) with c̄ = c3‖ξ‖−2

L2(Rd)
. �

2 The ergodic problem

In this section, we show that the ergodic system (2) is well-posed.
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Definition 2.1. We say that the triple (λ̄, ū, m̄) is a solution of (2) if ū is Lipschitz continuous
viscosity solution of (2)-(i), if Dū(x) exists for m̄-a.e. x ∈ T

d and if (2)-(ii) is satisfied in the
sense of distribution.

Remark 2.2. Because of the regularity of H and F , the map ū is semiconcave (see, for instance,
Theorem 3.3 of [12]). In particular, Dū is continuous at m̄-a.e. x ∈ T

d. Note also that m̄Dū is
a vector measure.

Here is our main result concerning system (2).

Theorem 2.3. Under assumption (4) and (7), there is at least one solution of the ergodic
problem (2). If, moreover, assumption (6) holds, the ergodic constant is unique: more precisely,
if (λ̄1, ū1, m̄1) and (λ̄2, ū2, m̄2) are two solutions of (2), then λ̄1 = λ̄2 and F (·, m̄1) = F (·, m̄2).

Proof. The existence of the solution relies on several aspects of weak-KAM theory, as developed
by Fathi in [3, 4, 5]. Let L be the Fenchel conjugate of H with respect to the last variable:

L(x, v) = sup
p∈Rd

〈p, v〉 −H(x, p) for (x, v) ∈ T
d × R

d .

In view of our assumptions, L is of class C2 and uniformly convex. Given m ∈ P (Td), we
consider the set Em of measures η on T

d × R
d which are invariant under the Lagrangian flow

φm
t = (γ(t), γ̇(t)) defined by

{

−
d

dt
Dv [L(x, ẋ) + F (x,m)] +Dx [L(x, ẋ) + F (x,m)] = 0

x(0) = x, ẋ(0) = v

The set M(m) of the minimizers of the map

η →

∫

Td×Rd

L(x, v) + F (x,m) dη(x, v)

over Em is nonempty, compact and convex subset of P (Td×R
d). If π : Td×R

d → T
d denotes the

canonical projection, we finally set C(m) = {π♯η, η ∈ M(m)}. Then C(m) is a convex, compact
nonempty subset of P (Td). From the continuity assumption (4) on F and the coercivity of L,
the set-valued map m → C(m) has a compact graph. Using Kakutani fixed point theorem, one
deduce then that C has a fixed point: there is m̄ ∈ P (Td) such that m̄ ∈ C(m̄). Let η̄ ∈ M(m̄)
be such that π♯η̄ = m̄.

Let (λ̄, ū) be such that ū is a continuous, periodic viscosity solution of

λ̄+H(x,Dū) = F (x, m̄) in T
d .

Since the Hamiltonian is coercive and satisfies our smoothness conditions, ū is Lipschitz contin-
uous and semiconcave. Following Fathi ([3], Corollary 2),

λ̄ = min
η∈Em̄

∫

Td×Rd

L(x, v) + F (x, m̄) dη(x, v)

=

∫

Td×Rd

L(x, v) + F (x, m̄) dη̄(x, v)

Moreover Dū exists everywhere on the support of m̄ and is Lipschitz continuous on this support
([3], Proposition 3). It is also known that the canonical map π : Spt(η̄) → Spt(m̄) is one-to-one
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and its inverse is given by x → (x,DpH(x,Dū(x))) on Spt(m̄). In particular, the first component
γxt of the flow φt satisfies

d

dt
γxt = DpH(γxt ,Dū(γxt )) for x ∈ Spt(m̄) .

This implies that equality −div(m̄Dū) = 0 holds in T
d: indeed, as η̄ is invariant under the flow

φm̄
t , m̄ is invariant under the flow γxt and we have, for any test function f ∈ C∞(Td),

0 =
d

dt

∫

Td

f(γxt )dm̄(x) =

∫

Td

〈Df(γxt ),DpH(γxt ,Dū(γxt ))〉dm̄(x)

=

∫

Td

〈Df(y),DpH(y,Du(y))〉dm̄(y) .

We now show that uniqueness holds. Let (λ̄1, ū1, m̄1) and (λ̄2, ū2, m̄2) be two solutions of
(2). Let ǫ > 0, ξ : Rd → R be a smooth, nonnegative, symmetric kernel with a support contained
in the unit ball and of integral one. We set ξǫ(x) = 1

ǫd
ξ(x/ǫ) and, for i = 1, 2, mǫ

i = ξǫ ⋆ m̄i

and V ǫ
i =

ξǫ ⋆ (m̄iDpH(·,Dūi))

mǫ
i

. Then −div (mǫ
iV

ǫ
i ) = 0 in T

d. We multiply this equality by

(ū1 − ū2), integrate by parts, and subtract the resulting formulas to get:

∫

Td

〈D(ū1 − ū2),m
ǫ
1V

ǫ
1 −mǫ

2V
ǫ
2 〉 = 0 .

Therefore

0 =

∫

Td

〈D(ū1 − ū2), ξ
ǫ ⋆ (m̄1DpH(·,Dū1)− m̄2DpH(·,Dū2))〉

=

∫

Td

〈D(ū1 − ū2),m
ǫ
1DpH(x,Dū1)−mǫ

2DpH(x,Dū2)〉+Rǫ

(10)

where (the double integral being on R
d × T

d)

Rǫ =
∫∫

ξǫ(x− y)〈D(ū1 − ū2)(x)), (DpH(y,Dū1(y))−DpH(x,Dū1(x)))〉m̄1(dy)dx

−

∫∫

ξǫ(x− y)〈D(ū1 − ū2)(x)), (DpH(y,Dū2(y)) −DpH(x,Dū2(x))〉m̄2(dy)dx

=

∫∫

ξ(z)〈D(ū1 − ū2)(y + ǫz)), (DpH(y,Dū1(y)) −DpH(y + ǫz,Dū1(y + ǫz)))〉m̄1(dy)dz

−

∫∫

ξ(z)〈D(ū1 − ū2)(y + ǫz)), (DpH(y,Dū2(y))−DpH(y + ǫz,Dū2(y + ǫz)))〉m̄2(dy)dz

Since ū1 and ū2 are Lipschitz continuous, we get

|Rǫ| ≤

C

∫∫

ξ(z) |DpH(y,Dū1(y))−DpH(y + ǫz,Dū1(y + ǫz)))| m̄1(dy)dz

+C

∫∫

ξ(z) |DpH(y,Dū2(y)) −DpH(y + ǫz,Dū2(y + ǫz)))| m̄2(dy)dz

Following Remark 2.2, the maps Dūi are continuous at m̄i−a.e. y ∈ R
d for i = 1, 2. Then

Lebesgue Theorem implies that Rǫ → 0 as ǫ → 0.
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Next we multiply the equality satisfied by the ūi by (mǫ
1 −mǫ

2), integrate in space (recalling
that the mǫ

i are probability measures) and subtract to get

∫

Td

(mǫ
1 −mǫ

2) [H(x,Dū1)−H(x,Dū2)− F (x, m̄1) + F (x, m̄2)] dx = 0 .

We combine the above equality with (10) and obtain

∫

Td

〈D(ū1 − ū2),m
ǫ
1DpH(x,Dū1)−mǫ

2DpH(x,Dū2)〉

−(mǫ
1 −mǫ

2) [H(x,Dū1)−H(x,Dū2)− F (x, m̄1) + F (x, m̄2)] dx = −Rǫ .

Let us set (for i = 1, 2) Hi = H(x,Dūi) and DHi = DpH(x,Dūi). Then, following Lasry-Lions
classical computation [8, 9, 10] the above formula can be rearranged as

∫

Td

mǫ
1 [H2 −H1 − 〈DH1,D(ū2 − ū1)〉] +mǫ

2 [H1 −H2 − 〈DH2,D(ū1 − ū2)〉]

+

∫

Td

(mǫ
1 −mǫ

2)(F (x,m1)− F (x,m2)) = −Rǫ .

Using the convexity ofH, the termsH2−H1−〈DH1,D(ū2−ū1)〉 andH1−H2−〈DH2,D(ū1−ū2)〉
are nonnegative. So

∫

Td

(mǫ
1 −mǫ

2)(F (x, m̄1)− F (x, m̄2)) ≤ −Rǫ .

We let ǫ → 0 to get
∫

Td

(F (x, m̄1)− F (x, m̄2))d(m̄1 − m̄2) ≤ 0 ,

which in turn implies that

∫

Td

(F (x, m̄1)− F (x, m̄2))
2dx ≤ 0

thanks to assumption (6). So F (x, m̄1) = F (x, m̄2). Then (λ̄1, ū1) and (λ̄2, ū2) are two solutions
of an ergodic problem for the same Hamilton-Jacobi equation. This is known to entail that
λ̄1 = λ̄2 (see, for instance, [13]). �

Example 2.4. Assume for instance that H is quadratic:

H(x, p) =
1

2
|p|2 − V (x) ,

where V : Rd → R is a smooth, periodic map. Let (λ̄, ū, m̄) be a solution of (2). Then, following
[13],

λ̄ = − min
x∈Td

{V (x) + F (x, m̄)}

and m̄ is supported in the set argminx∈Td {V (x) + F (x, m̄)}. Moreover, Dū = 0 in this set.
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3 Convergence

Let us set vT (s, x) = uT (sT, x) and νT (s, x) = mT (sT, x) for (s, x) ∈ [0, 1] × T
d. Our aim is to

prove the uniform convergence of
vT (s, ·)

T
to λ̄(1 − s), where λ̄ is the unique ergodic constant

associated to the problem (2).

Theorem 3.1. Under assumptions (4), (7) and (6), the following estimates hold:

sup
s∈[0,1]

∥

∥

∥

∥

vT (s, ·)

T
− λ̄(1− s)

∥

∥

∥

∥

∞

≤
C

T
1

2

and
∫ 1

0
‖F (·, νT (s))− F (·, m̄)‖∞ ds ≤

C

T
1

2

.

In particular, there is a uniform convergence of the map (s, x) →
vT (s, x)

T
to the map s → λ̄(1−s)

as T → +∞.

In order to prove Theorem 3.1, we need some uniform estimates:

Lemma 3.2. The map uT is uniformly (with respect to T ) Lipschitz continuous.

Proof. Throughout the proof C denotes a constant which varies with the data and may change
from line to line. Since DuT is bounded (with a bound which depends a priori on T ) and H
is of class C2, the map t → mT (t) is Lipschitz continuous for the Monge-Wasserstein distance
(see Lemma 4.2 below). We denote by LT its Lipschitz constant and by C0 be the Lipschitz
continuity modulus of F given by assumption (4). We claim that

‖∂tu‖∞ ≤ ‖F‖∞ + ‖H(·,Duf )‖∞ +C0LTT. (11)

To prove (11), we first note that, as the terminal condition uf being of class C2, the maps

(t, x) → uf (x)±
(

‖F‖∞ + ‖H(·,Duf )‖∞

)

(T − t)

are respectively super- (for +) and sub- (for −) solutions of equation (1)-(i) with terminal
condition uf . Since u is a solution of this equation, we get by comparison

‖u(T − h, ·)− uf‖∞ ≤
(

‖F‖∞ + ‖H(·,Duf )‖∞

)

h ∀h ∈ (0, T ). (12)

On another hand, since the left-hand side of equation (1)-(i) is independent of time while the
right-hand side is Lipschitz continuous in time, with a Lipschitz constant bounded above by
C0LT , the maps

(t, x) → u(t− h, x)±
(

‖u(T − h, ·) − uf‖∞ +C0LTh(T − t)
)

are respectively a super (for +) and subsolution (for −) of the equation satisfied by u. Using
again comparison, we have

|u(t, x)− u(t− h, x)| ≤ ‖u(T − h, ·) − uf‖∞ + C0LTh(T − t) ∀(t, x) ∈ (h, T ) × T
d.

Plugging (12) into this last inequality then gives (11).
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Using the coercivity of H in (1)-(i), we obtain therefore

‖DuT ‖2∞ ≤ C(LT + 1). (13)

As H is of class C2, we have then

‖DpH(·,DuT (·, ·))‖∞ ≤ C(LT + 1)
1

2 .

Then we use Lemma 4.2, which states thatmT is Lipschitz continuous for the Monge-Wasserstein
distance with a Lipschitz constant bounded above by ‖DpH(·,DuT (·, ·))‖∞. So

LT ≤ C(LT + 1)
1

2 .

This shows that LT is bounded uniformly in T and, in view of (11) and (13) that uT is Lipschitz
continuous with a constant independent of T �

Lemma 3.3 (Energy estimate). If (uT ,mT ) is as above and (λ̄, ū, m̄) is a solution of the ergodic
problem (2), then

∫ T

0

∫

Td

(F (x,mT (t))− F (x, m̄))d(mT (t)− m̄)dt ≤ C

Proof. We use the same kind of argument as for the uniqueness part of Theorem 2.3. Let ǫ > 0,

ξ and ξǫ(x) = 1
ǫd
ξ(x/ǫ) be as before. We set mǫ = ξǫ ⋆m and V ǫ =

ξǫ ⋆ (m̄DpH(·,Dū))

mǫ
, so that

−div (mǫV ǫ) = 0 in T
d. We multiply this equality by (uT (t)− ū) and integrate on (0, T ) × T

d:

0 =

∫ T

0

∫

Td

〈D(uT (t)− m̄),mǫV ǫ〉

=

∫ T

0

∫

Td

〈D(uT (t)− m̄),mǫDpH(x,Dū)〉+Rǫ

(14)

where, as in the proof of Theorem 2.3, Rǫ → 0 as ǫ → 0. Since mT (t) and mǫ are probability
measures, we also have, in view of (2)-(i):

∫ T

0

∫

Td

(mT (t)−mǫ)(H(x,Dū)− F (x, m̄)) = 0 . (15)

From (1)-(ii) we have
∂t(m

T −mǫ)− div
(

mTDpH(x,DuT )
)

= 0.

Multiplying this equality by the Lipschitz map uT −ū and integrating in time-space gives, thanks
to (1)-(i),

0 =

∫

Td

[

(uf − ū)(mT (T )−mǫ)− (uT (0)− ū)(m0 −mǫ)
]

+

∫ T

0

∫

Td

−(H(x,DuT (t))− F (x,mT (t)))(mT (t)−mǫ)

+

∫ T

0

∫

Td

〈D(uT (t)− ū),mT (t)DpH(x, uT (t))〉

(16)

Note that the first integral is bounded uniformly with respect to T because
∣

∣

∣

∣

∫

Td

(uf − ū)(mT (T )−mǫ)

∣

∣

∣

∣

≤ 2(‖uf‖∞ + ‖ū‖∞)

9



while, since m0 and mǫ are probability measures,
∣

∣

∣

∣

∫

Td

(uT (0) − ū)(m0 −mǫ)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Td

(uT (0) −

∫

Td

uT (0))(m0 −mǫ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Td

ū(m0 −mǫ)

∣

∣

∣

∣

≤ 2‖DuT (0)‖∞ + 2‖ū‖∞

where DuT is uniformly bounded. Putting together (14), (15), (16) and rearranging as in the
proof of Theorem 2.3 we obtain

∫ T

0

∫

Td

mT (t)
[

H̄ −H(t)− 〈DH(t),D(ū − uT )〉
]

+

∫ T

0

∫

Td

mǫ
[

H(t)− H̄ − 〈DH̄,D(uT (t)− ū)〉
]

+

∫ T

0

∫

Td

(mT (t)−mǫ)(F (x,mT (t))− F (x, m̄)) ≤ C +Rǫ

where we have set H(t) = H(x,DuT (t, x)), DH(t) = DpH(x,DuT (t, x)), H̄ = H(x,Dū(x)) and
DH̄ = DpH(x,Dū(x)). The first two terms being nonnegative, we get the desired result by
letting ǫ → 0. �

Proof of Theorem 3.1. Recall the notations vT (s, x) = uT (sT, x) and νT (s, x) = mT (sT, x) for
(s, x) ∈ [0, 1] × T

d. According to Lemma 3.2, we have

∫ 1

0

∫

Td

(F (x, νT (s))− F (x, m̄))d(νT (s)− m̄) ≤
C

T
.

From assumption (6) this implies that

∫ 1

0

∫

Td

(F (x, νT (s))− F (x, m̄))2 dxdt ≤
C

T
,

and, using the uniform regularity of the map F and Hölder inequality,
∫ 1

0
‖F (·, νT (s))− F (·, m̄)‖∞ ds ≤ C

∫ 1

0
‖F (·, νT (s))− F (·, m̄)‖2 ds

≤
C

T
1

2

.
(17)

Note that the map vT solves

−
∂sv

T

T
+H(x,DvT ) = F (x, νT ), vT (1, x) = uf (x) , (18)

while the map wT (s, x) = ū(x) + T λ̄(1− s) solves

−
∂sw

T

T
+H(x,DwT ) = F (x, m̄), vT (1, x) = ū(x) .

From standard estimates in viscosity solutions we deduce that, for any t ∈ [0, 1],
∥

∥vT (t, ·)− wT (t, ·)
∥

∥

∞
≤

∥

∥vT (1, ·) − wT (1, ·)
∥

∥

∞

+T

∫ 1

t

‖F (·, νT (s))− F (·, m̄)‖∞ ds .
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So
∥

∥

∥

∥

vT (t, ·)

T
− λ̄(1 − t)

∥

∥

∥

∥

∞

≤
‖uf‖∞ + 2‖ū‖∞

T
+

∫ T

t

‖F (·, νT (s))− F (·, m̄)‖∞ds

≤
C

T
1

2

.

�

4 Appendix: proof of the existence and uniqueness result

The following result is stated in [10]. For convenience of the reader we recall the main ingredients
of proof.

Theorem 4.1 ([10]). Let H and F satisfy conditions (4) and (7). Then equation (1) has a
solution. If moreover the following inequality holds:

∫

Td

(F (x,m1)− F (x,m2))d(m1 −m2) ≥ 0 ∀m1,m2 ∈ P (Td),

then the solution of (1) is unique.

Proof. The proof is based on a vanishing viscosity argument. Let ǫ > 0 and (uǫ,mǫ) be the
solution to















(i) −∂tu
ǫ − ǫ∆uǫ +H(x,Duǫ) = F (x,mǫ(t)) in (0, T )× R

d

(ii) ∂tm
ǫ − ǫ∆mǫ − div(mǫDpH(x,Duǫ)) = 0 in (0, T )× R

d

(iii) mT (0) = m0, u
ǫ(x, T ) = uf (x) in R

d

(19)

By standard regularity results for parabolic equations and fixed point arguments, it is not
difficult to check that system (19) has at least one classical solution. Moreover, as uf is of class
C2 and the Hamiltonian satisfies (7), the map uǫ is semiconcave with a semiconcavity argument
independent of ǫ. In particular uǫ is uniformly Lipschitz continuous. Let us now show that mǫ

is uniformly bounded. For this we note that

div(mǫDpH(x,Duǫ))

= 〈Dmǫ,DpH(x,Duǫ)〉+mǫTr
(

D2
xpH(x,Duǫ) +D2

ppH(x,Duǫ)D2uǫ
)

≤ 〈Dmǫ,DpH(x,Duǫ)〉+ Cmǫ

because D2
xpH(x,Duǫ) is bounded thanks to the regularity of H and the uniform Lipschitz

continuity of uǫ, and Tr
(

D2
ppH(x,Duǫ)D2uǫ

)

is bounded above because D2
ppH is positive and

uǫ is uniformly semiconcave. So mǫ is a subsolution of the transport equation

∂tm
ǫ − ǫ∆mǫ − 〈Dmǫ,DpH(x,Duǫ)〉 − Cmǫ = 0 in (0, T ) ×R

d.

By maximum principle we get ‖mǫ‖∞ ≤ ‖m0‖∞eCT . Next we claim that the map t → mǫ(t) is
uniformly Hölder continuous: indeed, if we multiply (19)-(ii) by mǫ and integrate, we get:

ǫ

∫ T

0

∫

Td

|Dmǫ|2 ≤

∫

Td

∣

∣m2(T )−m2(0)
∣

∣ +

∫ T

0

∫

Td

mǫ|Dmǫ||DpH(x,Duǫ)|.

11



As mǫ and DpH(x,mǫ) are uniformly bounded, this implies that: ǫ

(
∫ T

0

∫

Td

|Dmǫ|2
)

1

2

≤ C.

Then, for any smooth test function ϕ and for any 0 ≤ t1 ≤ t2 ≤ T , we have by (19)-(ii) that

∫

Td

ϕ(mǫ(t2)−mǫ(t1)) = −

∫ t2

t1

∫

Td

ǫ〈Dmǫ,Dφ〉+mǫ〈DpH(x,Du)),Dφ〉 ≤ C(t2 − t1)
1

2 ‖Dϕ‖∞

because Duǫ and mǫ are uniformly bounded. Taking the supremum over all 1−Lipschitz map ϕ
gives d1(m(t1),m(t2)) ≤ C(t2 − t1).

Because of the bounds on (uǫ,mǫ), we can assume that (up subsequences) uǫ converges
uniformly to some Lipschitz continuous map u. On another hand mǫ converges in L∞−weak*
and in C0([0, T ], P (Td)) to some m ∈ L∞ ∩ C0([0, T ], P (Td)). In particular, m(0) = m0. Using
the continuity assumption (4), we also have that F (·,mǫ(·)) converges uniformly to F (·,m(·)).
By standard viscosity solutions arguments, we can conclude to the convergence of uǫ to the
unique solution of

{

−∂tu+H(x,Du) = F (x,m(t)) in (0, T )× R
d

u(x, T ) = uf (x) in R
d

Next we turn to the limit of mǫ: for a fixed test function ϕ ∈ C∞
c ((0, T ) × T

d), we have

∫ T

0

∫

Td

(−∂tϕ− ǫ∆ϕ+ 〈DpH(x,Dun),Dϕ(t, x)〉)mn(t, x) = 0

where DpH(x,Dun) is bounded and converges a.e. to DpH(x,Du) while mǫ converges weakly*
to m. So we get as ǫ → +∞,

∫ T

0

∫

Td

(−∂tϕ(t, x) + 〈DpH(x,Du),Dϕ(t, x)〉)m(t, x) = 0,

which shows that m is a solution of the continuity equation (1)-(ii). In conclusion, the pair
(u,m) solves (1). The uniqueness for this system is established in full details in [10], so we omit
the proof. �

We complete the paper by a standard estimate on the continuity equation:

∂tm+ div(mb) = 0 in (0, T ) × T
d (20)

Lemma 4.2. Assume that b : (0, T ) × T
d → R

d is a Borel vector field with ‖b‖∞ < +∞. If m
satisfies (20), then m is Lipschitz continuous as a map from [0, T ] to P (Td), with a Lipschitz
constant bounded above by ‖b‖∞.

Proof. Fix 0 < t1 < t2 < T and let h ∈ C∞
c (Td) be 1−Lipschitz continuous. Let ǫ > 0 small and

ϕǫ(t, x) =















(t− t1)h(x)/ǫ if t ∈ [t1, t1 + ǫ]
h(x) if t ∈ [t1 + ǫ, t2 − ǫ]
(t2 − t)h(x)/ǫ if t ∈ [t2 − ǫ, t2]
0 otherwise

As
∫ T

0

∫

Rd

(−∂tϕǫ + 〈m,Dϕǫ〉)m = 0,

12



we have
∫ t1+ǫ

t1

∫

Rd

hm

ǫ
+

∫ t2−ǫ

t1+ǫ

∫

Rd

〈b,Dh〉m+

∫ t2

t2−ǫ

∫

Rd

−
hm

ǫ
= o(1).

Letting ǫ → 0 gives for a.e. 0 < t1 < t2 < T :

∫

Rd

h d(m(t1)−m(t2)) +

∫ t2

t1

∫

Rd

〈b,Dh〉m = 0 .

So
∫

Rd

h d(m(t1)−m(t2)) ≤ ‖b‖∞‖Dh‖∞|t2 − t1| .

Taking the sup over h gives then:

d1(m(t1),m(t2)) ≤ ‖b‖∞|t2 − t1| .

�
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