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Abstract: - A new methodology for a robust analysis of uncertain nonlinear dynamic systems is presented in 

this paper. The originality of the method proposed lies in the combination of the centre manifold theory with 

the polynomial chaos approach. The first one is known to be a powerful tool for model reduction of nonlinear 

dynamic systems in the neighbourhood of the Hopf bifurcation point while the polynomial chaos approach is an 

efficient tool for uncertainty propagation. Therefore, to couple the two methods can help to overcome 

computational difficulties due to both the complexity of nonlinear dynamic systems and the cost of the 

uncertainty propagation with the prohibitive Monte Carlo method. The feasibility and efficiency of the 

proposed methodology is investigated. So, a two degree of freedom model describing a drum brake system 

subject to uncertain initial conditions is considered. 
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1 Introduction 
Uncertainty propagation plays a major role in the 

robust analysis and design of dynamic systems. It 

consists of several techniques designed meant to 

quantify the influence of different kinds of 

uncertainties (design parameters, initial conditions, 

inputs) on the process states and outputs or to take 

uncertainties into account in the design of processes 

or control systems. There are several theories about 

this topic in the literature, such as probabilistic 

approaches [22-24], [4], fuzzy logic [25], neural 

networks [26] and the interval theory [27-28].  

Among the probabilistic approaches, the Monte 

Carlo method is the most useful. The latter can give 

the entire probability density function of any system 

variable, but it is often too expensive since a large 

number of samples are required for reasonable 

accuracy. A more efficient probabilistic tool has 

been presented in the literature. It consists of the 

polynomial chaos [9]. This theory was pioneered by 

Ghanem and Spanos who used expansion in 

Wiener-Hermite polynomials to model stochastic 

processes with Gaussian random variables [4]. The 

convergence of such expansion in a mean square 

sense has been shown [2] and generalized to various 

continuous and discrete distributions using 

orthogonal polynomials following the so called 

Askey-scheme [7]. The capability of polynomial 

chaos expansions has been tested on numerous 

applications, such as solving ordinary and partial 

differential equations [6-7] and [12], observer and 

controller design problems [10], [15] and [3]. 

Polynomial chaos gives a mathematical framework 

to separate the stochastic components of a system 

response from deterministic ones. The stochastic 

Galerkin method [4], [1], collocation and regression 

methods [14] are used to compute the deterministic 

components called stochastic modes in an intrusive 

and a non intrusive manner while random 

components are concentrated in the polynomial 

basis used. Non intrusive procedures are shown to 

be more efficient for stochastic dynamic systems 

since they need only simulations corresponding to 

particular samples of the random parameters and 

they need no modifications on the system model 

contrary to intrusive methods in which Galerkin’s 

techniques are used to generate, from the stochastic 

system model, a set of deterministic coupled 

equations which are difficult to implement 

especially for non-linear systems.  

Generally speaking, the analysis of uncertain 

dynamic systems using both the Monte Carlo and 

non-intrusive polynomial chaos methods requires 

deterministic simulations of the system studied. 

These simulations are based on numerical 

integration procedures which are too expensive and 
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difficult tasks with non-linear systems as these have 

hard non-linearities and numerous degrees of 

freedom.  The model reduction theory proposes a 

number of solutions consisting of methodologies 

which approximate complex models with simpler 

ones while keeping the same dynamic behaviours 

and the most important properties of the original 

models. Balanced truncation [16-17], proper 

orthogonal decomposition (POD) [18] and singular 

perturbation [19] based methods are well known 

examples. The centre manifold is another method 

presented in literature as an efficient tool which 

helps to simplify a complex dynamic system in a 

Hopf bifurcation point neighbourhood [20], [5], 

[11]. This approach is based on the idea that all 

dynamic characteristics near the equilibrium point 

are governed by the dynamics on the centre 

manifold when some eigenvalues have zero real 

parts and all the other eigenvalues have negative 

real parts. 

The originality of this paper lies in the new 

methodology proposed to perform a simpler robust 

analysis of uncertain dynamic systems. The main 

principle of this methodology is to combine centre 

manifold theory with the polynomial chaos 

approach.  The first one provides a powerful tool to 

obtain a reduced model in the Hopf bifurcation 

neighbourhood, then the main idea is to propagate 

uncertainty on this reduced model instead of the 

original one, using a polynomial chaos based 

approach which is less expensive than the 

prohibitive Monte Carlo procedure. The objective of 

this paper is to illustrate the feasibility of the 

proposed method. So, a two degree of freedom 

model describing a drum brake system is 

considered, with uncertainty in the initial conditions. 

First, the essential principles of both the centre 

manifold method and the polynomial chaos are 

summed up in Section 2. The combination of the 

two methods is tested on a simple self-excited 

mechanism. All the results are presented in Section 

3.  Finally, there are some observations and 

conclusions about perspectives and further research 

work.  

 

 

2 Theoretical Methods 
Dynamic systems described by the following n-

dimensional differential equations are considered in 

this paper.  

                         * + * +* +,x t f x t o?$                        (1)   

where * + nx t Œ̇  is defined as the state vector and 

oŒ̇  a control parameter.  

The vector field f is assumed to be smooth and the 

origin is the equilibrium point of (1). Additionally, 

here, only polynomial nonlinearities are considered. 

This is not restrictive since any smooth nonlinear 

function can be approximated by a polynomial 

function using the multi-dimensional Taylor series 

expansion.  

 

2.1 Centre Manifold 
The centre manifold method uses the basic idea that 

the essential non-linear dynamic system 

characteristic in the neighbourhood of an 

equilibrium point is governed by the centre 

manifold associated with the part of the original 

system characterized by the eigenvalues with zero 

real-parts at the Hopf bifurcation point [11].   

As the system (1) is polynomial, it can be expressed 

under the following form: 

 * + * + * + * +1 2, , ,kx A x F x F x F xo o o o? - - - -$ A   (2) 

 

where * +A o is a n n·  matrix and kF is a vector of 

degree k polynomial functions in x and o . 

By means of a linear basis transformation x Ty? , 

the system (2) can be put in a canonical form (3) at 

the Hopf bifurcation point 0o . The linear basis 

transformation is given by the n n·  matrix  

1 1,..., , ,...,
c cn n nT T T T T-Ç ×? É Ú where 1,...,

cnT T  and 

1,...,
cn nT T- are the generalized eigenvectors 

corresponding respectively to the cn eigenvalues 

* +1,..., ci i n
n ? of * +0A o with zero real parts and the 

* +cn n/ eigenvalues * +1,...,ci i n n
n ? - of * +0A o with non-

zero real parts. 

 
* + * +* + * +0 0

0 0

, ,

, ,

c c c c c s

s s s s c s

y A y F y y

y A y F y y

o o
o o

Ê ? -ÍË ? -ÍÌ
$
$

                       (3) 

 

where cn
cy Œ̇ , sn

sy Œ̇ such that c sn n n- ?  

and ] _T

c sy y y? ,

1 0 0

0
c

c

n

A

n
n

Ç ×È Ù? È ÙÈ ÙÉ Ú

A
B D B

A
,

1 0 0

0

cn

c

n

A

n
n

-Ç ×È Ù? È ÙÈ ÙÉ Ú

A

B D B
A

and 

* +* + * + * +* +0 1
1 0 0

0

, ,
, ,

, ,

c c s

k

s c s

F y y
T F Ty F Ty

F y y

o o oo /Ç × ? -È ÙÉ Ú A  
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where, * +00,0, 0cF o ? , * +00,0, 0sF o ?  and the 

jacobian matrice, * +00,0,cDF o and * +00,0,sDF o  

are matrices with zero entries.  
 

In the neighbourhood of the Hopf bifurcation, the 

system (3) may be defined by the following 

augmented dynamics: 

 * + * +* + * +, ,

, ,

0

c c c c c s

s s s s c s

y A y F y y

y A y F y y

o o
o o

o
Ê ? -Í ? -ËÍ ?Ì

$ # #
$ # #

$#
                             (4) 

 

where  * + 01 , 1o g o g? - >>#  

 

    With the centre manifold theorem [10], [5] and 

[11], it is demonstrated that for small cy and 

o# there is a local centre manifold which helps to 

express the stable variables sy  as a function of the 

centre variables * +,cy o#  such that:  

* +,s cy h y o? # where h  is a function verifying 

* +0,0 0h ?  and * +0,0Dh  is a matrice with zero 

entries. Consequently, a reduced order system can 

be obtained from the system (4) as follows: 

 * + * +* +, , ,

0

c c c c c cy A y F y h yo o o
o
Ê ? -ÍË ?ÍÌ

$ # # #
$#

                    (5) 

 

    The main problem is then to compute the centre 

manifold h . One simpler manner to perform this 

computing is to consider h  as a polynomial function 

in the centre variables * +,cy o# with a fixed order 

without constant and linear terms (to satisfy the 

conditions on h given previously) and then to 

identify its coefficients by resolving the equation (6) 

equivalent to the equation (7). 

 

* +, .
c

s c

y
y Dh y o o

Ç ×? È ÙÉ Ú$ #
#

                                             (6)   

 

* +* + * + * +* +* +
* + * + * +* +,

. . , , ,

, , , ,

c
c c c c cy

s c s c c

D h A y F y h y

A h y F y h y

o o o o
o o o o

- ?
-

# # # #

# # # #
  (7) 

 

2.1 polynomial chaos 
Polynomial chaos establishes a separation between 

the stochastic components of a random function and 

its deterministic components. Here is a brief 

mathematical framework of this approach. So, from 

Wiener theory and the Cameron-Martin theorem, 

any second order random process x  can be 

expanded in a convergent (in the mean square sense) 

polynomial functions series as: 

 

* +
0

i i

i

x xh z¢

?
?Â                                                      (8) 

 z  is a vector of d independent random variables 

with known joint density function * +W z , ix  are the 

stochastic modes of the random process x  and 

ih are the so-called polynomial chaos which are 

orthogonal with respect to the joint density function. 

Thus: 

 

* + * + * + 2

0
,i j i j

i

i j
W d

i j
h h h z h z z z h

”ÊÍ? ? Ë ?ÍÌÐ (9) 

 

© being the internal product operator. 

     

    In practice, polynomial chaos expansion is 

truncated to a finite number of terms P which is 

demonstrated to be dependent on the polynomial 

chaos order r  and the stochastic 

dimension d denoting the number of the uncertain 

parameters. 

 

 * +
0

P

i i

i

x xh z
?

…Â                                                     (10) 

 

with     * +* +!/ ! ! 1P d r d r? - /                            (11) 

 

    For random variablesz with certain distributions, 

the orthogonal functions ih  can be chosen in such a 

way that its weight functions has the same form as 

the probability function * +W z . In this case, the 

convergence of the expansion has been shown to be 

exponential [7]. 

      

Random variable z The polynomial family * +ih z
Gaussian 

Uniform 

Gamma 

Beta 

Hermite 

Legendre 

Laguerre 

Jacobi 

Table 1. Correspondence between choice of 

polynomial and given distribution of z . 
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    Computing x  is then turned into the problem of 

finding the ix  of its truncated expansion (10). Two 

main approaches are defined to calculate these 

coefficients called stochastic modes. The non-

intrusive approach includes some techniques (non-

intrusive spectral projection (NISP), regression) 

which use simulations corresponding to particular 

samples of the random parameters. The principal 

advantage of these techniques is related to the fact 

that no modification is performed on the system 

model contrary to the intrusive approach which 

needs the Galerkin techniques to generate a set of 

coupled deterministic equations from the uncertain 

process. Only non-intrusive methods will be 

considered in this paper and be presented in the next 

sub-section. So, consider a uniform distribution for 

the initial condition * +1 0x  of the system (1). 

Consequently, all the state variables also become 

uncertain. According to the Askey scheme [7], 

Legendre polynomials are more suitable to deal with 

uniform uncertainties. So, all the state variables can 

be expanded in series of Legendre polynomials in 

the standard stochastic variable z  uniformly 

distributed in the orthogonality interval ] _1, 1/   of 

the Legendre polynomials. 

 

* + * + * +,

0

, , 1,...,
P

i i j j

j

x t x t L i nz z
?

… ?Â                   (12) 

 

The main problem now is to compute the stochastic 

modes * +,i jx t . Two methods are presented below. 

 

2.1.1 Non-intrusive spectral projection (NISP) 

The NISP method uses the inner product of * +,ix t z  

with the polynomial * +jL z  and the orthogonality 

property of the same polynomials to compute the 

stochastic modes * +,i jx t from (12) as follows: 

 

* + * + * + * + * +1

, 2

1

1
,i j i j

j

x t x t L W d
L

z z z zz /
? Ð    (13) 

 

The denominator of expression (13) is an internal 

product between the same orthogonal polynomial. It 

can be calculated analytically and may be tabulated. 

The problem, however, is related to the calculation 

of the numerator. Numerical techniques are used for 

integral computing such as the Monte Carlo or 

collocation methods [30]. Note that there is sparse 

grid collocation technique used for 

multidimensional integral computation in cases of 

multiple uncertain parameters [31]. In the present 

paper, the studied system possesses one uncertain 

initial condition, so the stochastic modes * +,i jx t are 

computed from mono-dimensional integrals. Using 

the Gauss collocation method, the expression (13) 

can be approximated by (14). 

 

* + * + * +* + * +* + * +1

, 2
1

1
,

q P
k k k

i j i j

kj

x t x t L W
L

z zz
? -

?
… Â    (14) 

 

with 1,...,i n?  and 0,...,j P?   

* +kz are the so-called Gauss collocation points. They 

are given by the roots of the * +1
th

P - order 

polynomial while 
* +k

W are the Gausse weights given 

by: 

* + * +* +
* + * +* +1

01

j
P

k

k j
j
k j

W
z z
z z?/ ”

/? /ßÐ                                    (15) 

 

2.1.2 Regression 

The regression method consists in calculating the 

stochastic modes * +,i jx t  by minimizing the 

following least square criterion: 

 

* +* + * + * +* + 2

,

1 0

,

q P
k k

i i j j

k j

x t x tg z h z
? ?
Ç ×? /È ÙÈ ÙÉ ÚÂ Â           (16) 

 

with q  denoting the number of the deterministic 

simulations of the system such that 1P q- > . 

    The regression method doesn’t use orthogonality 

property of the polynomial chaos as the NISP 

method. It just needs for a sample set of the random 

parameters 
* +} ’kz and the corresponding set of 

simulation output 
* +* +} ’,
k

ix t z . The first one can be 

generated by using Monte Carlo techniques. In this 

paper, 
* +

, 1,...,
k

k qz ?  are chosen as the zeros of a 

Legendre polynomial with a sufficient order such 

that 1P q- > .  Then the classical solution of the 

least square problem is given by: 

 * + 1
T T i

i mX Z Z Z X
/?                                             (17) 

 

with * + * +,0 ,i i i PX x t x tÇ ×? É ÚA denoting the vector 

of stochastic modes of the ith state variable, 
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 Z being the matrix of entries defined by: 
* +* + * + * +, 0,..., , 1,...,
k

j k jz L j P k qz? ? ?  and i
mX  

the vector  the simulation output. 

 

2.1.3 Statistics estimation 

Once the stochastic modes are obtained, they are 

used to determine the statistics of the system 

variables. The first and second order moments are 

given respectively by (18). 

 * + * +
* + * +* + * + * +* +

,0

22
2 2

, ,0

0

mean
i i

P

i i j j i

j

x t x t

t x t L x tu z
?

Ê ?ÍË ? /ÍÌ Â        (18) 

 

 

3 Application and results 
The objective of this application is to show that the 

combination of the centre manifold and polynomial 

chaos methods can be an efficient tool to simplify 

uncertainty propagation problems [29].  Therefore, 

the estimation of the short term statistics (mean 

value and standard deviation) of a nonlinear 

dynamic system subject to uncertain initial 

conditions has been considered. The estimation of 

the long term statistics is a more complicated 

problem which is not dealt with in this paper. A two 

degree of freedom model describing a drum brake 

system developing flutter instability (Fig.1) is used.  
 

 
Fig.1. Mechanical system 

 

 

3.1 System description 
Hulten’s model is composed of a mass held against 

a moving band; the contact between the mass and 

the band is modelled by two plates supported by two 

different springs. For simplicity’s sake, it is 

assumed that the mass and band surfaces always 

keep in contact. This assumption is justified by a 

preload applied to the system. The contact can be 

expressed by two cubic stiffnesses. Damping is 

integrated as shown in Fig.1. The friction coefficient 

at contact is assumed to be constant and the band 

moves at a constant velocity. Then it is assumed that 

the direction of the friction force does not change 

because the relative velocity between the band 

speed and 1X$ or 2X$  is assumed to be positive.  

The tangential force TF due to friction contact is 

assumed to be proportional to the normal force NF  

as given by Coulomb’s law: T NF Fo? .  

Assuming that the normal force NF  is linearly 

related to the displacement of the mass normal to 

the contact surface, the resulting equations of 

motion can be expressed as: [3], [21]. 

 

1 11 1

2 22 2

2 2 3 3
1 2 1 1 1 2 2

2 2 3 3
21 2 1 1 2 2

01 0

00 1

NL NL

NL NL

X X

X X

X X X

X X X

j y
j y

y oy l ol
oy y ol l

Ã Ô Ã ÔÇ ×Ç × - -Ä Õ Ä ÕÈ ÙÈ ÙÉ Ú É ÚÅ Ö Å Ö
Ç × Ã Ô/ / -Ã Ô ? Ä ÕÈ ÙÄ Õ Ä Õ/ /Å ÖÈ ÙÉ Ú Å Ö

$$ $
$$ $

(19)    

 

where /i i ic mkj ? are the relative damping 

coefficients, /i ik my ? are the natural pulsations 

and /NL NL
i ik ml ? for 1,2i ? . 

For numerical application: 1 2 100 /rad sy r? · , 

2 2 75 /rad sy r? · , 1 2 0.02j j? ? , 2
1 1
NLl y? and 

2 0NLl ? . 

 

Considering 1 1X x? , 1 2X x?$ , 2 3X x? and 2 4X x?$ ,  

the system model (19) is expressed with a state 

space representation as:  

 * + * + * + * +* +,NLx t A x t f x to o? -$                          (20) 

 

where * + * + * + * + * +1 2 3 4

T
x t x t x t x t x tÇ ×? É Ú , 

* + 2 2
1 1 1 2

2 2
1 2 2 2

0 1 0 0

0

0 0 0 1

0

A
y j y oyo
oy y j y

Ç ×È Ù/ /È Ù? È ÙÈ ÙÈ Ù/ / /É Ú
and     

                 * +* + * + * +
* + * +

3 3
1 1 2 3

3 3
1 1 2 3

0

,
0

NL NL

NL

NL NL

x t x t
f x t

x t x t

l olo
ol l

Ç ×È Ù/ -È Ù? È ÙÈ ÙÈ Ù/ /É Ú
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3.2 Application of the centre manifold 
As mentioned in Section 2.1, the centre manifold 

method gives a powerful formalism which helps to 

reduce a nonlinear dynamic system near equilibrium 

in the neighbourhood of a Hopf bifurcation point.   

First, it can be noted that the origin is an equilibrium 

point for the system (20).  

The Hopf bifurcation point 0o  can be obtained by 

using a classical parametric stability study which 

consists in the computing of the system eigenvalues 

near the equilibrium at each value of the control 

parameter which in our case the friction coefficient. 

So, the bifurcation point is defined by the following 

conditions: 

 

* +* +* +
* +* +* +

* +* +* +
0

0

0

0,

0,

0,

Re 0

Re 0

0

centre
x

non centre
x

x

al A

al A

d
A

d

o o

o o

o o

n o
n o

n oo

? ?

/ ? ?

? ?

ÊÍ ?ÍÍÍ ”ËÍÍ ”ÍÍÌ

                 (21) 

 

    At the Hopf bifurcation point, the system 

possesses a pair of purely imaginary eigenvalues 

centren . All the other eigenvalues non centren /  have 

non-zero real parts. A non-zero speed crossing of 

the imaginary axis is ensured by the last condition 

called the transversal condition. 

Applying the previous definition, the Hopf 

bifurcation point is computed for the system (20). It 

is given by 0 0.289368o ? . At this point, the linear 

approximation of (19) possesses a pair of purely 

imaginary eigenvalues and another pair of stable 

eigenvalues. 

    Now, in order to obtain a reduced order model, 

the centre manifold order is fixed to 3. Equation (7) 

corresponding to the canonical form of the system 

(20) is solved. The stable manifold is then expressed 

as polynomial function h  in the centre variables.  

After substituting the stables manifolds by the 

computed centre manifold, a second order model is 

generated for the neighbourhood defined by * + 01o g o? -#  with 410g /? . 

Matlab’s ODE45 solver is used to compute the 

solutions of the original and reduced models 

corresponding to the initial condition 

* + 40 10 0 0 0
T

x /Ç ×? É Ú . The speed 1X$  is plotted 

with respect to the displacement 1X  in Fig.2 while 

2X$ is plotted with respect to the displacement 2X  in 

Fig.3.  

    As shown in Fig.2 and Fig.3, the reduced model 

reproduces the same dynamic behaviour as the 

original model (20). Limit cycle oscillations are 

distinguished for both the reduced and original 

models. A small error is observed on the amplitudes 

of the limit cycles * +1 1,X X$  and * +2 2,X X$  of the 

reduced model comparing to the original ones. This 

error may be decreased by increasing the centre 

manifold order. 

 
Fig.2. Dynamic behaviours of the original and the 

reduced models 

 
Fig.3. Dynamic behaviours of the original and the 

reduced models 

 

3.3 Uncertainty propagation 
Now, the problem is to analyze short term statistics 

of the system (20) subject to uncertain initial 

conditions.  
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Let consider that uncertainty is in the initial 

displacement * +1 0X  and let assume that this later is 

governed by a uniform probabilistic law within the 

interval ] _a b . So, * +1 0X  can be expressed by a 

function in random variable z  uniformly distributed 

within ] _1, 1/  as: 

 

 * + * +1 10, 0moyX t Xz c z? ? -                              (22) 

 

where * +1 0
2

moy a b
X

-? and 
2

b ac /?  

 

    The next objective is to estimate, for 410a /? and 
43.10b /? , the mean values and the standard 

deviations of the original system responses 1X  and 

1X$  by using the reduced order model obtained in 

Subsection 3.2. The same task can be performed 

concerning 2X  and 2X$ . Before, note the sensitivity 

of the systems responses to dispersions of the initial 

conditions. This is illustrated in Fig.4 where the 

phase trajectories of the system (20) are plotted for 

different values of initial conditions with the last 

200 points among 50000 points. 

We can observe that small variations in the initial 

condition implies high variations in the amplitude of 

the displacement 1X  and the corresponding speed 

1X$ . The same effect has been observed on 2X  and 

2X$ .  

 
Fig.4. Phase trajectories of the system (20)  

    The non-intrusive polynomial chaos based 

methods (NISP and regression) and the Monte Carlo 

technique are applied to the reduced model.  

As the uncertainty is with uniform probabilistic 

distribution, we must use the Legendre polynomials. 

So an order equal to 5 is fixed for the Wiener-

Legendre expansion which is then used to estimate 

the mean values and the standard deviations of the 

original system responses in short term. For the 

NISP method, only 6 simulations of the reduced 

order model are needed to compute the stochastic 

modes. The six samples 
* +kz  * +1,...,6k ?  

correspond to the zeros of the sixth order Legendre 

polynomial.  In the regression method, the number 

of simulations is fixed arbitrarily to 15 and 

corresponds to the zeros of the 15th order Legendre 

polynomial. Both numbers 6 and 15 are much 

smaller than the one necessary for a Monte Carlo 

method. The influence of the order of the Wiener-

Legendre expansion and the number of the 

simulations in the regression method is not included 

here since it is not the aim of the intended 

application. Recall that the main objective is to 

show the feasibility of the combination of the centre 

manifold and the polynomial chaos theories.  

The results obtained from applying polynomial 

chaos based methods are compared to Monte Carlo 

solutions with 1000 uniformly distributed samples 

within the fixed interval 
4 410 3.10/ /Ç ×É Ú .  The phase 

trajectory, corresponding to the instantaneous mean 

values of 1X  and 1X$  is plotted in Fig.5 using the 

last 200 points while the standard deviations of the 

previous variables are plotted respectively in Fig.6 

and Fig.7. 

 

Fig.5. Average trajectory of phase * +1 1,X X$  
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Fig.6. Standard deviation of the displacement 1X  

 

 
Fig.7. Standard deviation of the speed 1X$  

 

    From results shown in Fig.5, Fig.6 and Fig.7, the 

precision of  the reduced model combined with MC 

and non-intrusive methods can be stated. Indeed, the 

different combinations well approximate the 

reference statistics (mean values and standard 

deviations) obtained with the Monte Carlo applied 

to the original model. As we are dealing with short 

term statistics, accuracy of the reduced model is 

better than the one observed in the subsection 3.2 

where both reduced and original models are 

simulated for longer time (until obtaining limit cycle 

oscillation). 

    What makes the polynomial chaos expansion very 

interesting is also that this expansion can be viewed 

as a simpler model since theoretically, the system 

responses can be reconstructed for any value of 

uncertainty by just evaluating the polynomial chaos 

at the corresponding value of the random variablez . 

So no simulation of the uncertain system is required.  

In the context of our application, the original system 

responses can be built easily for a given value of the 

initial conditions using the Wiener-Legendre 

expansion for which the stochastic modes are 

computed from the reduced order model. Some 

examples of reconstruction are shown in Fig.8, Fig.9 

and Fig.10. 

 

 

Fig.8. Phase trajectory for * + 4
1 0 3.10X /?  

 

 

Fig.9. Phase trajectory for * + 4
1 0 2.10X /?  
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Fig.10. Phase trajectory for * + 4
1 0 10X /?  

 

 

4 Conclusion 
This paper has proposed a new methodology to 

simplify the uncertainty propagation problem in 

nonlinear dynamic systems. It consists of central 

manifold theory combined with the polynomial 

chaos approach. The first method helps to reduce a 

parameter dependent system in a Hopf bifurcation 

neighbourhood while the second allows 

uncertainties in the analysis of nonlinear systems to 

be taken into account. Moreover, it helps to avoid 

the prohibitive MC method. The feasibility and 

efficiency of the proposed methodology has been 

verified in a simple self-excited mechanism. A third 

order centre manifold is computed so a second order 

model is obtained for the considered system. The 

reduced model reproduces the same dynamic as the 

original system model which consists of a limit 

cycle oscillation. In a second step, the reduced 

model is used to deal with an uncertainty 

quantification problem. The aim is to estimate the 

short term statistics of the considered system with 

respect to uncertain initial conditions. It has been 

verified that the proposed methodology is an 

efficient way for the considered task. The estimation 

of long term statistics is a more complicated 

problem due to the polynomial chaos properties 

which prevent a good estimation of the long term 

statistics. Other tools can be considered instead of 

polynomial chaos such as the Haar wavelets 

expansion. Research work in this context is in 

progress. 
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