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Abstract In this paper, we explore new conditions for an elasticity tensor to be-
long to a given symmetry class. Our goal is to propose an alternative approach to
the identification problem of the symmetry class, based on polynomial invariants and
covariants of the elasticity tensor C, rather than on spectral properties of the Kelvin
representation. We compute a set of algebraic relations which describe precisely the
orthotropic ([D2]), trigonal ([D3]), tetragonal ([D4]), transverse isotropic ([SO(2)])
and cubic ([O]) symmetry classes in H4, the higher irreducible component in the
decomposition of Ela. We provide a bifurcation diagram which describes how one
“travel” in H4 from a given isotropy class to another. Finally, we study the link be-
tween these polynomial invariants and those obtained as the coefficients of the char-
acteristic or the Betten polynomials. We show, in particular, that the Betten invariants
do not separate the orbits of the elasticity tensors.
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1 Introduction

In this paper we consider the problem of identifying symmetry classes of elastic
media symmetries governed by Hooke’s law, i.e. identifying the symmetry classes
of the elasticity tensor. Different definitions of symmetry classes can be found in the
literature, in our approach the definition of Forte and Vianello [17] is retained. In this
framework Ela, the vector space of elasticity tensors, is divided into eight conjugacy
classes [17] which group tensors having conjugate symmetry groups.

The problem we study here is motivated by experimental needs. When a sample
is tested, usually both the symmetries of the material and its orientation are unknown
[18]. Expressed in a reference frame (in the laboratory), the measured elasticity ten-
sors, generally, does not exhibit evident symmetry properties, therefore how can the
symmetry class of a sample be identified ? This problem is invisible for isotropic
materials, but becomes more prominent as the anisotropy of the material increases.
For a totally anisotropic (triclinic) material, how can we decide whether two sets of
components represent the same material?

This question has already been addressed in the literature. The different approaches
are usually based on the spectral decomposition of the elasticity tensor [29,11,10].
We propose here an alternative approach using polynomial invariants (and covari-
ants) of the elasticity tensor. Instead of resorting on the spectral decomposition of the
elasticity tensor, we use the harmonic decomposition, which is a higher-dimensional
analogue of the Fourier decomposition. As established in [17], Ela can be decom-
posed as follow

Ela' 2H0⊕2H2⊕H4. (1)

in which Hk is space of k-th order harmonic tensors, the analogue of Fourier modes.
It is interesting to note that H4 and Ela have the same symmetry classes.

In this paper, we develop an invariant-based approach to provide necessary and
sufficient conditions for a tensor in H4 to belong to a given isotropy class. This pro-
cedure applied to the component D ∈H4 of an elasticity tensor, gives invariant nec-
essary conditions for an elasticity tensor to belong to a given symmetry class. Under
certain hypothesis, that will be investigated in a forthcoming paper, these conditions
can further be generically sufficient.

This approach, investigated in the present contribution, follows a long series of
papers [24,25,8]. It is interesting to notice that some of the materials introduced here
are well-known by the high energy physics community [1,2,30], and has stimulated
mathematical researches [31,27,28]. However, these methods do not seem to have
yet been applied in elasticity.

The objectives of this paper are twofold:

1. Introduce a rigorous (and general) geometric framework to describe anisotropic
features of tensor spaces;

2. Parameterize the symmetry classes of H4.

The paper is organized as follows. We begin by recalling the harmonic decom-
position of Ela. In section 3, we introduce the geometric framework used for the
analysis of a tensor representation, and in section 4 the geometric parametrization
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of orbit spaces. Although materials introduced in this section are not new, and are
probably well-known by most mathematicians and the high-energy physics commu-
nity, it does not seem to have been yet exploited by the mechanical community. We
clarify the geometry behind the so called “normal forms” of elasticity tensors (lin-
ear slices) and their ambiguity (monodromy groups). This permits us to justify, on a
rigorous mathematical basis, the results given in table 1 and in table 2. Calculations
of the monodromy groups for closed subgroups of SO(3) are given in appendix A.
The materials in these sections are rather general and, as the methodology can be
applied in other situations, we believe that it was important to properly introduce this
framework. Once introduced, these notions are applied to the space H4, in order to
provide necessary and sufficient invariant conditions for a tensor in H4 to belong to
the following symmetry classes : orthotropic ([D2]), trigonal ([D3]), tetragonal ([D4]),
transverse isotropic ([SO(2)]) and cubic ([O]). For each of these classes, we provide a
parametrization of the corresponding stratum by rational expressions involving up to
six polynomial invariants. Bifurcation relations between related classes are also com-
puted and summed-up in a diagram (c.f. figure 2 in section 5.6). Finally, in section 6,
we prove, as a collateral observation, that the invariants defined by the coefficients of
the Betten polynomial [7] do not separate the orbits of Ela. This paper is concluded in
section 7 where extension of the method to a broader class of situations is discussed.

2 Decomposition of the elasticity tensor

In the theory of linear elasticity, the stress tensor σ and the strain tensor ε are related,
at a fixed temperature, by the Hooke’s law

σ
i j =Ci jkl

εkl .

The stress tensor σ belongs to S2(R3), the vector space of contravariant symmetric
tensors on R3, while ε belongs to S2(R3), the vector space of covariant symmet-
ric tensors on R3 (both of dimension 6). As a consequence, the elasticity tensor is
endowed with minor symmetries

Ci jkl =C jikl =Ci jlk.

For hyperelastic materials, the stress-strain relation is furthermore assumed to derive
from an elastic potential and we must add the major symmetry

Ci jkl =Ckli j.

The space of (hyper) elasticity tensors is therefore the 21D vector space

Ela = S2S2(R3).
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Remark 2.1. An elasticity tensor C can also be viewed as a second-rank symmetric
tensor C in S2(R3)' R6. The associate matrix representation [15] is given by

C =



c11 c12 c13
√

2c14
√

2c15
√

2c16

c12 c22 c23
√

2c24
√

2c25
√

2c26

c13 c23 c33
√

2c34
√

2c35
√

2c36√
2c14

√
2c24

√
2c34 2 c44 2 c45 2 c46√

2c15
√

2c25
√

2c35 2 c45 2 c55 2 c56√
2c16

√
2c26

√
2c36 2 c46 2 c56 2 c66

 ,

where cmn are the components of the elasticity tensor in an orthonormal frame. We
use the conventional rule to recode a pair of indices (i, j) (i, j = 1,2,3) by a integer
m = α(i, j) (m = 1,2, . . .6), where α(i, i) := i for 1≤ i≤ 3 and α(i, j) := 9− (i+ j)
for i 6= j.

To each hyperelastic material corresponds an elasticity tensor C but this asso-
ciation is not unique, it depends of the choice of a fixed orientation of the material.
Hence, there is a gauge group. As the material is rotated by an element g= (g j

i ) in the
rotation group SO(3), the elasticity tensor C = (Ci jkl) is submitted to the following
transformation

Ci jkl 7→ gi
p g j

q gk
r gl

s Cpqrs.

From the point of view of linear elasticity, the classification of elastic materials can
be assimilated to the description of the orbits of this SO(3)-representation on the
space of elasticity tensors Ela. Since throughout this paper R3 is endowed with its
traditional euclidean metric, no distinction will be made between covariant and con-
travariant components. As a consequence, since now, only lower subscripts will be
considered.

This representation can be decomposed into irreducible pieces, known as har-
monic tensors (higher dimensional analogue of Fourier modes), and denoted by Hn(R3)
(or simply by Hn if there is no ambiguity). Each Hn is the space of totally symmetric,
traceless tensors of order n. It is a vector space of dimension 2n+1. This decompo-
sition, known as the harmonic decomposition is the following for Ela

Ela' 2H0⊕2H2⊕H4. (2)

It has already been used in the study of anisotropic elasticity tensors [5,6,17] and we
refer to these references for a deeper insight into this topic.

Each C ∈ Ela can therefore be written as C = (λ ,µ,a,b,D) where λ ,µ ∈ H0,
a,b∈H2 and D∈H4. The explicit harmonic decomposition is well-known. Given an
orthonormal frame (e1,e2,e3) of the Euclidean space, we get [8]

Ci jkl = λδi jδkl +µ(δikδ jl +δilδ jk)

+δi jakl +δklai j

+δikb jl +δ jlbik +δilb jk +δ jkbil

+Di jkl ,

(3)
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where (δi j) are the components of the Euclidean metric q in the orthonormal frame
(ei). This formula can be inverted to obtain the 5 harmonic components (λ ,µ,a,b,D)
of C. On Ela = S2S2(R3), there are only two different contractions1 (or traces)

di j = (tr12 C)i j :=
3

∑
k=1

Ckki j, vi j = (tr13 C)i j :=
3

∑
k=1

Ckik j,

where d and v are known respectively, as the dilatation tensor and the Voigt tensor
[14]. Starting with (3) we get

d = (3λ +2µ)q+3a+4b, v = (λ +4µ)q+2a+5b. (4)

Taking the traces of each equation, one obtains

tr(d) = 9λ +6µ, tr(v) = 3λ +12µ,

and, finally:

λ =
1
15

(2tr(d)− tr(v)), µ =
1

30
(− tr(d)+3tr(v)),

a =
1
7
(5dev(d)−4dev(v)), b =

1
7
(−2dev(d)+3dev(v)),

where dev(a) := a− 1
3 tr(a)q is the deviatoric part (or traceless part) of the 2nd-order

tensor a.

3 Geometry of orbit spaces

In this section, we setup the geometric framework which is required to study rigor-
ously a linear group action on a vector space. Our starting point is a linear represen-
tation

ρ : G→ GL(V )

of a real, compact Lie group G on a finite dimensional R-vector space V . The action
on V will be denoted by

g · v := ρ(g)v, g ∈ G,v ∈V.

3.1 Orbits, symmetry groups and fixed point sets

The set of all vectors v ∈ V which are related to v by an element g ∈ G is called the
G-orbit of v and is denoted by

G · v := {g · v | g ∈ G} .

The G-orbits are compact submanifolds of V [2,12].

1 The notation tri j indicates that the contraction should be done on the i-th and j-th indices.
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The set of transformations of G which leave a given vector v fixed is a closed
subgroup of G, which is called the isotropy subgroup (or symmetry group) of v. It
will be denoted by

Gv := {g ∈ G; g · v = v} .

The symmetry groups of vectors in a same orbit are conjugate

Gg·v = g Gv g−1, v ∈V, g ∈ G. (5)

Let H be any subgroup of G. The set of vectors v ∈V which are fixed by H

V H := {v ∈V | h.v = v for all h ∈ H} ,

is called the fixed point set of H. It it is a linear subspace of V . Notice that, for
each v ∈ V H , H ⊂ Gv and that if H2 = gH1g−1 then V H2 = g ·V H1 . If H1 ⊂ H2 then
V H2 ⊂V H1 . However, it may happen that V H2 =V H1 but H1 6= H2.

Given a subgroup H of G, the normalizer of H

N(H) :=
{

g ∈ G | gHg−1 = H
}

is the maximal subgroup of G, in which H is a normal subgroup. It can also be
defined as the isotropy group of H for the action of G on the set of its subgroup (by
conjugacy). The proof of the following important lemma can be found in [19].

Lemma 3.1. For each subgroup H of G, the fixed point set V H is N(H)-invariant. If
H is moreover the isotropy subgroup of some vector v ∈V , then N(H) is the maximal
subgroup of G which leaves invariant V H .

3.2 Symmetry classes and strata

Two vectors v1 and v2 are in the same isotropy class (or symmetry class) if their
isotropy subgroups are conjugate in G, that is if there exists g ∈ G such that

Gv2 = gGv1g−1.

Due to (5), two vectors v1 and v2 which are in the same G-orbit are in the same
isotropy class but the converse is generally false.

The conjugacy class of a subgroup H (i.e. the subset of P(G) of all subgroups
of G which are conjugate to H) will be denoted by [H]. The conjugacy class of an
isotropy subgroup will be called an isotropy class. In general, a compact group G
has an infinite number of different conjugacy classes, but for a given action, there is
only a finite number of different isotropy classes (see [12]). In the particular case of
SO(3)-representation on tensors, this result is known to the mechanical community
as a consequence of Hermann’s theorem [20,3].

The set of all vectors v ∈ V in the same isotropy class defined by [H] is denoted
Σ[H] and called a stratum. It is the union of all G-orbits of points which isotropy
groups are conjugate to H (it is not a vector subspace in general). There is only a finite
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number of (non empty) strata and each of them is a (G-invariant) smooth submanifold
of V [2,12]. The partition

V = Σ[H0]∪Σ[H1]∪·· ·∪Σ[Hn]

is called the isotropy stratification of (V,ρ).
On the set of conjugacy classes of closed subgroups of a compact group G, there

is a partial order induced by inclusion. It is defined as follows:

[H1]� [H2] iff H1 is conjugate to a subgroup of H2.

Endowed with this partial order, the set of isotropy classes2 has a least element and a
greatest element. This partial order induces a (reverse) partial order relation on strata

Σ[H2] � Σ[H1] iff [H1]� [H2].

The set of strata inherits therefore the structure of a finite poset (partially ordered
set). The topological closure of a stratum Σ[H], denoted by Σ [H], and called shortly
the closed stratum associated to [H], corresponds to vectors v ∈ V such that v has
at least isotropy [H]. Notice that Σ[H] corresponds to vectors v ∈ V such that v has
exactly the isotropy [H]. A “closed stratum” is therefore a union of strata. A stratum
Σ[H2] � Σ[H1] means that Σ[H2] is contained in the boundary of Σ[H1]. A stratum Σ[H2]

is said to be adjacent to the stratum Σ[H1] if Σ[H2] � Σ[H1] and there is no other stratum
Σ[H] between Σ[H2] and Σ[H1] (i.e. Σ[H2] � Σ[H] � Σ[H1]).

Remark 3.2. A G-orbit is said to be generic if it belongs to the least isotropy class.
The generic stratum Σ[H0], which is the union of generic orbits can be shown to be a
dense and open set in V . Moreover, for each other stratum Σ[H], we have

dimΣ[H] < dimΣ[H0].

On the opposite side, the stratum which corresponds to the greatest isotropy subgroup
is called the minimal stratum3.

3.3 Normal forms and monodromy groups

It is important to notice that a vector v ∈V belongs to the closed strata Σ [H] (i.e. has
at least isotropy [H]), iff its G-orbit intersects the fixed point set V H . This observation
leads to the possibility to define a normal form4 for each G-orbit, or at least to reduce
the complexity of the problem of describing G-orbits.

2 The partially ordered set of conjugacy classes of all closed subgroups of SO(3) is described in sec-
tion A.

3 Since the isotropy group of the null-vector is G itself, this minimal stratum is always represented by
the isotropy class [G] = {G}. The stratum Σ[G] is always reduced to {0} if ρ is a non-trivial irreducible
representation but it may not be otherwise.

4 In elasticity this is known as the possibility to choose a “natural coordinate system” in which the
matrix representation of a given elasticity tensor C has a lot of zeros.
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Example 3.3. For the standard action of the rotation group SO(3) on the space of 3×3
symmetric matrices, the least isotropy class is [D2]. In particular, each symmetric
matrix has at least this symmetry. Therefore, the SO(3)-orbit of each matrix meets
the fixed point set VD2 which corresponds to diagonal matrices. This gives a (global)
normal form representative for each orbit.

This general reduction procedure can be described as a consequence of lemma 3.1.
For each subgroup H, the linear representation ρ : G→ GL(V ) induces a linear rep-
resentation of N(H) on V H , obtained by the restriction

ρ/N(H) : N(H)−→ GL(V H).

This induced representation is not faithful5 because its kernel contains H. However,
when H is an isotropy group, its kernel is exactly H and we get a faithful linear
representation

ρΓ H : Γ
H −→ GL(V H) where Γ

H := N(H)/H.

Furthermore, two vectors v1,v2 in V H ∩Σ[H] are in the same G-orbit iff there are
in the same N(H)-orbit. We have therefore reduced (locally, for orbits in Σ[H]) the
problem of describing the orbit space V/G to the the orbit space V H/Γ H . This is
especially meaningful when the group Γ H is finite, in which case, we say that V H is a
linear slice. Then, each G-orbit intersects V H at most in a finite number of points and
V H/Γ H is an orbifold6. The cardinal of Γ H is equal to the index [N(H),H] of H in
its normalizer N(H). It is equal to the number of times, the G-orbit of a point in Σ[H]

intersects the fixed point set V H . Each of this point defines a normal form of the orbit
(like the diagonal form of a symmetric matrix). But this normal form is not unique in
general, these different normal forms are permuted by the group Γ H which is called
the monodromy group of V H and described this ambiguity (in the case of symmetric
matrices this monodromy group corresponds to the permutations of the eigenvalues
on the diagonal). It is quite remarkable that this ambiguity (the monodromy group)
can be computed a priori, for each isotopy class (see Appendix A).

3.4 Strata dimensions

The main formula, which is the basis for all other equations relating dimensions of
strata, fixed-point sets and isotropy subgroups is a consequence of the reduction pro-
cedure explained in section 3.3. It is summarized by the following lemma.

Lemma 3.4.
dimΣ[H] = dimV H +dimG−dimN(H) (6)

5 A representation ρ : G→ GL(V ) is faithful if the only element g ∈ G such that ρ(g) is the identity in
GL(V ) is the unit element of G.

6 Orbifolds have been introduced by Thurston [33]. They generalize manifolds to admit quotients of
manifolds by finite groups.
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Proof. The main observation is that Σ[H]/G is a differentiable manifold, contrary
to the whole the orbit space V/G which is not in general. This can be justified as
follows (see [12] for a more rigourous proof). Each G-orbit in Σ[H] meets V H , and
two vectors in V H ∩Σ[H] are in the same G-orbit iff they are in the same Γ H -orbit.
Therefore, the orbit spaces Σ[H]/G and (V H ∩Σ[H])/Γ H are the same. Notice that the
set V H ∩Σ[H] is the subspace of vectors in V H whose isotropy classes are exactly [H]

(generic elements in V H ). It is an open and dense set in V H . But Γ H has no fixed
point on V H ∩Σ[H], from which it can be deduced that (V H ∩Σ[H])/Γ H is a manifold
of dimension

dim(V H ∩Σ[H])/Γ
H = dimV H −dimΓ

H .

Moreover, the restriction of the projection map π : V →V/G to the stratum Σ[H]

π/Σ[H]
: Σ[H]→ Σ[H]/G

can be shown to be a fiber bundle with fiber G/H, i.e. a space that locally looks like
Σ[H]/G×G/H, and therefore

dimΣ[H] = dimG/H +dimΣ[H]/G,

where

dimG/H = dimG−dimH,

and

dimΣ[H]/G = dimV H −dimΓ
H = dimV H − (dimN(H)−dimH).

Finally, we get

dimΣ[H] = dimV H +dimG−dimN(H).

Remark 3.5. The dimension of V H can be computed using the trace formula for the
Reynolds operator (see [19]). Letting χρ be the character of the representation (V,ρ),
we have

dimV H =
1
|H| ∑

h∈H
χρ(h), (7)

if H is a finite group (and the preceding formula has to be replaced by the Haar
integral over H for an infinite compact Lie group). Explicit analytical formulas based
on (7) were obtained in [19] and [4].
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Fig. 1 Adjacency diagram for isotropy classes of Ela.

3.5 Application to the elasticity tensor

The isotropy classes for the elasticity tensor have been computed in [17,9] (a general
algorithm to compute all the isotropy classes of any SO(3)-representation has been
proposed in [23]). There are exactly eight classes: the isotropic class [SO(3)], the
cubic class [O], the transversely isotropic class [O(2)], the tetragonal class [D4], the
trigonal class [D3], the orthotropic class [D2], the monoclinic class [Z2] and the the
triclinic class [1] (see Appendix A for the definitions of these classes). The corre-
sponding adjacency diagram is illustrated in figure 1.

The geometric characterization of Ela and its stratification are summed-up in
table 1, where Sn is the symmetric group (the group of permutations acting on n
elements) and the notations used for the closed subgroup of SO(3) are given in Ap-
pendix A. The results appearing in table 1 are well-known in elasticity, but their
constructions are usually ad-hoc and do not stand on rigorous mathematical founda-
tions. The material provided in this section was primary exposed to fix and clarify the
geometric framework underneeth7. The following remarks should be of importance
to relate this framework with popular and historical considerations.

Remark 3.6. The space V H is defined for any closed subgroup H, not only for an
isotropy subgroup. In elasticity, for instance, fixed-point sets have been considered

7 The dimensions of Σ[H] and Σ[H]/G are obtained using formula (6) of section 3.3, dimV H is computed
using the trace formula (7) and the explicit formulas provided [4].
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Table 1 Isotropy classes for Ela.

Isotropy class H N(H) Γ H cardΓ H dimV H dimΣ[H]/G dimΣ[H]

Triclinic 1 SO(3) SO(3) ∞ 21 18 21
Monoclinic Z2 O(2) O(2) ∞ 13 12 15
Orthotropic D2 O S3 6 9 9 12
Trigonal D3 D6 S2 2 6 6 9
Tetragonal D4 D8 S2 2 6 6 9
Transverse isotropic O(2) O(2) 1 1 5 5 7
Cubic O O 1 1 3 3 6
Isotropic SO(3) SO(3) 1 1 2 2 2

Table 2 Isotropy classes for H4.

Isotropy class H N(H) Γ H cardΓ H dimV H dimΣ[H]/G dimΣ[H]

Triclinic 1 SO(3) SO(3) ∞ 9 6 9
Monoclinic Z2 O(2) O(2) ∞ 5 4 7
Orthotropic D2 O S3 6 3 3 6
Trigonal D3 D6 S2 2 2 2 5
Tetragonal D4 D8 S2 2 2 2 5
Transverse isotropic O(2) O(2) 1 1 1 1 3
Cubic O O 1 1 1 1 4
Isotropic SO(3) SO(3) 1 1 0 0 0

for Z3, Z4 (which are not isotropy subgroups). This may be why it was believed, for
such a long time, that there was ten types of elasticity classes rather than eight.

Remark 3.7. The stratum Σ[H] consists of tensors whose symmetry group is conju-
gate to H. It corresponds to a symmetry class according to Forte and Vianello [17].
Formula (6) can be recast as

dimΣ[H] = dimV H + eH

where eH = dimG/N(H) is the Euler number8. In elasticity, eH is the number of
Euler angles needed to define the appropriate coordinate system in which the elastic
tensor has the minimum number of elastic constants [22]. The strata dimension cor-
responds to what Norris, for example, calls the number of independent parameters
characterizing a tensor.

Remark 3.8. When the monodromy group Γ H is finite, Σ[H]/G and V H have the same
dimension, this is the situation for most of elasticity symmetry classes. At the op-
posite, when Γ H is continuous, the dimension of the orbit space Σ[H]/G is strictly
smaller than dimV H . In elasticity, this case occurs only for classes [Z2] and [1].

The isotropy classes of the 9-D space H4, the higher order component of the
harmonic decomposition of Ela, are the same as the 8 classes of Ela. The main char-
acteristics of each symmetry classes are reported in the table 2.

8 Notice that G/N(H) is in bijection with the set of distinct subgroups of G which are conjugate to H,
that is [H]
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4 Semialgebraic structure on orbit spaces

4.1 Polynomial invariants

The linear action of the group G on the R-vector space V extends naturally to the
vector space of polynomial functions defined on V with values in R. This extension
is given by

(g ·P)(v) := P(g−1 · v)

for every polynomial function P on V and every vector v ∈V . The set of all invariant
polynomials is a sub-algebra of the algebra R[V ] of polynomial functions defined on
V . This invariant algebra is denoted by R[V ]G.

When G is a compact Lie group, this algebra R[V ]G is of finite type [21,26]. This
means that it is possible to find a finite set of invariant polynomials J1, . . . ,JN which
generates R[V ]G (as an algebra). A minimal generating set is called an integrity basis.
Notice that, in general, the invariant algebra is not free, which means that it is not
always possible to find a minimal generator set J1, . . . ,JN which are algebraically
independent9. The polynomial relations among J1, . . . ,JN are called syzygies. The set
of such relations is also finitely generated.

4.2 Inequalities defining orbit spaces

The orbit space V/G of a linear representation V of a compact Lie group G can be
given the structure of a semialgebraic set [13], that is a subset of RN defined by a
boolean combination of polynomial equations and inequalities over R. A general ex-
plicit construction has been proposed in [27] [27]. Since invariant polynomial func-
tions on V separate the orbits [2, Appendix C], it is possible to find a finite set of
polynomial invariants {J1, . . . ,JN} which defines a polynomial mapping J : V → RN

such that

J(C) = J(C′) iff C and C′ are in the same orbit.

This way, a G-orbit can be identified with a point in J(V )⊂RN and the orbit space is
described by the equations and inequalities which defined the subset J(V ) of RN .

4.3 Equations for closed strata

Similarly, each closed stratum can be described by a finite set of polynomial equations
and inequalities. Let [H] be a fixed isotropy class and Σ[H] ⊂V be the corresponding
stratum. Let {J1,J2, . . . ,JN} be a finite set of invariant polynomials which separate
the orbits of G. To obtain the defining equations for Σ[H], we fix a subgroup H in
the conjugacy class [H] and choose linear coordinates (xi)1≤i≤q on V H . Then, we

9 Polynomials P1, . . . ,PN are said to be algebraically independent over R if the only polynomial in N
variables which satisfies Q(P1, . . . ,PN) = 0 is the zero polynomial.
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evaluate {J1,J2, . . . ,JN} on V H (as polynomials in the xi) and we try to obtain implicit
equations on the Jk for the parametric system

Jk = Pk(x1, . . .xq), k = 1, . . . ,N, Pk ∈ R[X1, . . . ,Xq], (8)

satisfied by the restriction of the Jk to V H .
This is however a difficult task in general (one might consider [16] for a full

discussion about the implicitization problem). Moreover, it could happen that the al-
gebraic variety VI defined by such an implicit system is bigger than the variety VP,
defined by the parametric system (8). Besides, we are confronted to the difficulty that
we work over R which is not algebraically closed.

To overcome these difficulties, we observe that the restrictions of {J1,J2, . . . ,JN}
to V H are Γ H -invariant and therefore can be expressed as polynomial expressions of
some generators σ1, . . . ,σr of the invariant algebra of the monodromy group Γ H on
V H . This observation reduces the complexity of the problem. We consider first the
implicitization problem for the parametric system

Jk = pk(σ1, . . . ,σr), k = 1, . . . ,N, pk ∈ R[X1, . . . ,Xr]. (9)

To solve this problem, we use a Groebner basis [16]. The main observation is that, in
each case we considered, the system (9) leads to rational solutions. More precisely,
we obtained a system of implicit equations (syzygies) which characterizes the closed
stratum Σ [H]

S j(J1,J2, . . . ,JN) = 0, j = 1, . . . l S j ∈ R[X1, . . . ,XN ], (10)

and a system

σi = Ri(J1,J2, . . . ,JN), i = 1, . . . ,r Ri ∈ R(X1, . . . ,XN), (11)

which express the σi as rational10 functions of {J1,J2, . . . ,JN} on the open stratum
Σ[H].
Remark 4.1. Beware, however, that these rational expressions may not be unique.
However if some σi can be written as P1/Q1 as well as P2/Q2 then P1Q2−P2Q1
belongs to the ideal generated by the S j.

Because the expressions of σi are rational, the fact that the field on which we
work is real or complex does not matter at this level. Therefore, each real solution
(J1,J2, . . . ,JN) of (10) corresponds to a unique real solution (σ1, . . . ,σr) given by
(11).

The second step is to obtain a real point (x1, . . . ,xq) in V H from a real solution
(σ1, . . . ,σr) of (11). For this, we need to compute an additional system of inequalities
on the σi, or equivalently on the Jk, which permits to exclude complex solutions of

σi = Qi(x1, . . .xq), i = 1, . . . ,r, Qi ∈ R[X1, . . . ,Xq].

In section 5 where our results are presented, the only non-trivial monodromy
group that we encountered were the standard action of the symmetric groups S2 and

10 The fact that the solutions are rational will not be justified here. We just observe that this is the case
for all classes we have treated in this article.
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S3 (in appropriate coordinates). In these cases, and more generally when the mon-
odromy group is Sn and the action is isomorphic to the standard one, r = q = n, the
invariants σ1, . . . ,σn are algebraically independent and (in an appropriate coordinates
system) x1, . . . ,xn are the roots of the polynomial

p(z) = zn−σ1zn−1 + · · ·+(−1)n
σn.

Therefore, the problem reduces to finding conditions on the σi that ensure that all the
roots of p are real. The solution is due to Hermite, [13]. He has proved that the number
of distinct real roots of a real polynomial p of degree n is equal to the signature of
the Hankel matrix B(p) :=

(
Si+ j−2

)
1≤i, j≤n, where Sk := ∑

n
i=1(x

i)k is the power sum
of the roots of p. In particular, p has real roots if and only if B(p) is non-negative.

5 Symmetry classes of H4

Contrary to Ela, an integrity basis for H4 is known11. The aim of this section is to
describe the strata of H4, applying the algebraic procedure detailed in section 4.3 and
using this integrity basis. We obtain a characterization, in terms of polynomial re-
lations between invariants, for isotropy classes having finite monodromy group Γ H ,
namely the cubic class [O], the transversely isotropic class [O(2)], the trigonal class
[D3], the tetragonal class [D4] and the orthotropic class [D2]. For each of them, ex-
plicit polynomial relations between the elementary invariant of H4 is given. Finally,
a bifurcation diagram is provided to make explicit how we “travel” from a given
isotropy class to another.

Let D ∈H4, we introduce the following 2nd-order tensors d2, . . . ,d10 (which are
covariant12 to D)

d2 = tr13(D2) d3 = tr13(D3) d4 = d2
2

d5 = d2Dd2 d6 = d3
2 d7 = d2

2Dd2

d8 = d2
2D2d2 d9 = d2

2Dd2
2 d10 = d2

2D2d2
2

(12)

Proposition 5.1. An integrity basis for H4 is given by

Jk := tr(dk), k = 2, . . . ,10.

The first six invariants J2, . . . ,J7 are algebraically independent. The last three ones
J8,J9,J10 are linked to the formers by polynomial relations. These fundamental syzy-
gies were computed in [32]. For technical details and historical considerations con-
cerning these fundamental invariants, we refer to the original publication of Boelher
and al.[8] and the references therein.
Remark 5.2. Notice that the first invariant J2(D) = 〈D,D〉 is the squared norm of D,
it corresponds to the squared Frobenius norm of D. In particular, J2(D) = 0 if and
only if D = 0.

11 This integrity basis has been computed in [32] and brings to the knowledge of the mechanic commu-
nity in [8].

12 A linear map Φ : V1 → V2, between two representations (V1,ρ1) and (V2,ρ2) of a same group G is
equivariant if Φ(ρ1(g) ·v1) = ρ2(g) ·Φ(v1), for all v1 ∈V1 and g∈G. In that case, we say that v2 :=Φ(v1)
is covariant to v1.
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5.1 Cubic symmetry ([O])

An O-invariant tensor D ∈H4 has the following matrix representation:

D =


8δ −4δ −4δ 0 0 0
−4δ 8δ −4δ 0 0 0
−4δ −4δ 8δ 0 0 0

0 0 0 −8δ 0 0
0 0 0 0 −8δ 0
0 0 0 0 0 −8δ

 (13)

where δ ∈ R.
As indicated in Table 1, the monodromy group for the cubic system is 1, therefore

linear slice corresponding to the octahedral group is of degree 1. In other terms, there
is no ambiguity in defining the normal form (13). The evaluation of the invariants (12)
on this slice gives the following parametric system

J2 = 480δ
2, J3 = 1920δ

3, J4 = 76800δ
4,

J5 = 0, J6 = 12288000δ
6, J7 = 0,

J8 = 0, J9 = 0, J10 = 0.

We notice that the parameter 4δ = J3/J2 is a rational invariant.

Proposition 5.3. A harmonic tensor D ∈H4 is in the closed stratum Σ [O] if and only
if the invariants J2(D) · · ·J10(D) satisfy the following polynomial relations

3J4 = J2
2, J5 = 0, 30J3

2 = J2
3, 9J6 = J2

3,

J7 = 0, J8 = 0, J9 = 0, J10 = 0.
(14)

D is in the cubic class [O] if moreover J2(D) 6= 0. In that case, it admits the normal
form (13) where 4δ := J3(D)/J2(D).

We observe that ∀J2,J3 ∈R,δ ∈R. Therefore we do not need to add any inequal-
ity to the syzygy system (14) to ensure that δ is real. This fact is general to any linear
slice of degree 1.
Remark 5.4. All 2nd-order tensors in H2 covariant to D vanish.

As a consequence, for the cubic case, the following characterization is possible.

Corollary 5.5. A harmonic tensor D ∈H4 is in the closed stratum Σ [O] if and only if
there exists c2,c3 ∈ R? such that

d2 = c2 q, d3 = c3 q, and 10c2
3− c3

2 = 0. (15)

Proof. Since dk are covariant to an O-invariant tensor, they are multiple of the iden-
tity, i.e., dk = ckq, for k = 2, . . . ,10. Thus Jk = tr(dk) = 3ck and the set of syzygies
(14) can be expressed in terms of the ck. The announced relations follow, using the
additional fact that Dq = 0 and the definitions of the dk.

Conversely, suppose that these relations are verified. The fundamental D covari-
ants, provided in proposition (5.1), are either d3, powers of d2, or involved products of
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D and d2. If d2 = c2 q, powers of d2 are scalar multiples of the metric q, and because
D is harmonic all terms involving Dd2 vanish. Therefore J5,J7,J8,J9,J10 vanish and
the relations between J2, J4 and J6 are automatically satisfied. Because trq = 3 and
10c2

3−c3
2 = 0, we have moreover 10J2

3 −J3
2 = 0. Therefore the fundamental syzygies

of the cubic class are satisfied.

5.2 Transversely isotropic symmetry ([O(2)])

An O(2)-invariant tensor D ∈H4 has the following matrix representation:

D =


3δ δ −4δ 0 0 0
δ 3δ −4δ 0 0 0
−4δ −4δ 8δ 0 0 0

0 0 0 −8δ 0 0
0 0 0 0 −8δ 0
0 0 0 0 0 2δ

 (16)

where δ ∈ R.
As in the previous case, the monodromy group for the transversely isotropic sym-

metry is 1, and the linear slice is of degree 1. The evaluation of the invariants (12) on
this slice gives

J2 = 280δ
2, J3 = 720δ

3, J4 = 32800δ
4,

J5 = 80000δ
5, J6 = 4528000δ

6, J7 = 17600000δ
7,

J8 = 211200000δ
8, J9 = 3872000000δ

9, J10 = 46464000000δ
10

The parameter δ = 7J3/18J2 is a rational invariant. The linear slice corresponding to
the group O(2) is of degree 1, which was already known (see section A).

Proposition 5.6. A harmonic tensor D ∈ H4 is in the closed stratum Σ [O(2)] if and
only if the invariants J2(D) · · ·J10(D) satisfy the following polynomial relations

98J4 = 41J2
2, 63J5 = 25J3J2, 3430J3

2 = 81J2
3,

1372J6 = 283J2
3, 882J7 = 275J2

2J3, 4802J8 = 165J2
4,

12348J9 = 3025J2
3J3, 67228J10 = 1815J2

5.

(17)

D is in the transversely isotropic class [O(2)] if moreover J2(D) 6= 0. In that case, it
admits the normal form (16) where δ = 7J3(D)/18J2(D).

As for [O] the expression of δ ensures that, for all J2,J3 ∈ R, the solution δ is
real.

Remark 5.7. All 2nd-order tensors in H2 covariant to D are multiple of diag(1,1,−2)
and are eigenvectors of D corresponding to the eigenvalue 12δ .
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5.3 Trigonal symmetry ([D3])

A D3-invariant tensor D ∈H4 has the following matrix representation:

D =


3δ δ −4δ −

√
2σ 0 0

δ 3δ −4δ
√

2σ 0 0
−4δ −4δ 8δ 0 0 0
−
√

2σ
√

2σ 0 −8δ 0 0
0 0 0 0 −8δ −2σ

0 0 0 0 −2σ 2δ

 (18)

where (δ ,σ) ∈ R2.
As indicated in the table 1 for this symmetry class is no more 1 but S2, and the

linear slice is of degree 2. Its action is given by

δ 7→ δ , σ 7→ −σ .

Therefore, we will have to make a choice between σ and −σ to define our normal
form. The evaluation of the invariants (12) on this slice gives

J2 = 280δ
2 +16σ

2

J3 = 144δ
(
5δ

2−σ
2)

J4 = 32800δ
4 +2720σ

2
δ

2 +88σ
4

J5 = 32δ
(
−σ

2 +50δ
2)2

J6 = 4528000δ
6 +436800σ

2
δ

4 +20640σ
4
δ

2 +496σ
6

J7 = 320δ
(
22δ

2 +σ
2)(−σ

2 +50δ
2)2

J8 = 3840δ
2 (22δ

2 +σ
2)(−σ

2 +50δ
2)2

J9 = 3200δ
(
−σ

2 +50δ
2)2 (

22δ
2 +σ

2)2

J10 = 38400δ
2 (−σ

2 +50δ
2)2 (

22δ
2 +σ

2)2

We notice that the parameter:

δ =−1
4

J5

J2
2−3J4

is a rational invariant, therefore for all J2,J4,J5 ∈ R, the parameter δ is real (c.f.
section 4.3). However, the minimal equation satisfied by σ is of degree 2

J2 = 280δ
2 +16σ

2 . (19)

A condition is needed for σ to be real. This condition, which is σ2 ≥ 0, is given
by the following inequality on J2,J4,J5:

2J2(J2
2 −3J4)

2−35J2
5 ≥ 0 (20)

Having computed δ , the equation (19) has two roots with opposite signs.
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Proposition 5.8. A harmonic tensor D∈H4 is in the closed stratum Σ [D3] if and only
if the invariants J2(D) · · ·J10(D) satisfy the following polynomial relations

192J6 =−51J2
3 +216J2J4 +10J3

2

36J7 =−2J2
2J3 +6J3J4 +27J2J5

768J4
2 =−99J2

4 +552J2
2J4 +10J2J3

2 +240J3J5

240J8 =−33J2
4 +96J2

2J4 +30J2J3
2 +40J3J5

576J4J5 =−41J2
3J3 +120J2J3J4 +216J2

2J5 +30J3
3

1152J9 =−99J2
3J3 +296J2J3J4 +648J2

2J5 +10J3
3

1440J5
2 =−11J2

5 +32J2
3J4−70J2

2J3
2 +240J2J3J5 +240J3

2J4

8640J10 =−891J2
5 +2592J2

3J4 +730J2
2J3

2 +2160J2J3J5 +240J3
2J4

(21)

together with inequality (20). D is in the trigonal class [D3] if moreover 3J4−J2
2 6= 0

and 98J4−41J2
2 6= 0. In that case, it admits the normal form (18) where

δ =−1
4

J5

J2
2−3J4

and where σ is the positive root of J2 = 280δ 2 +16σ2.

Remark 5.9. All 2nd-order tensors in H2 covariant to D are multiple of diag(1,1,−2)
and are eigenvectors of D corresponding to the eigenvalue 12δ .

5.4 Tetragonal symmetry ([D4])

A D4-invariant tensor D ∈H4 has the following matrix representation:

D =


−σ +3δ σ +δ −4δ 0 0 0

σ +δ −σ +3δ −4δ 0 0 0
−4δ −4δ 8δ 0 0 0

0 0 0 −8δ 0 0
0 0 0 0 −8δ 0
0 0 0 0 0 2σ +2δ

 (22)

where (δ ,σ) ∈ R2. As for the [D3] class, the monodromy group is S2, and the linear
slice is of degree 2. Therefore a choice has to be made between σ and −σ to define
the normal form.
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The evaluation of the invariants (12) on this slice gives

J2 = 8σ
2 +280δ

2

J3 = 48δ
(
σ

2 +15δ
2)

J4 = 32σ
4 +960δ

2
σ

2 +32800δ
4

J5 = 128δ (5δ −σ)2 (5δ +σ)2

J6 = 128σ
6 +5760σ

4
δ

2 +86400σ
2
δ

4 +4528000δ
6

J7 = 512δ
(
55δ

2 +σ
2)(5δ −σ)2 (5δ +σ)2

J8 = 6144δ
2 (55δ

2 +σ
2)(5δ −σ)2 (5δ +σ)2

J9 = 2048δ (5δ −σ)2 (5δ +σ)2 (55δ
2 +σ

2)2

J10 = 24576δ
2 (5δ −σ)2 (5δ +σ)2 (55δ

2 +σ
2)2

We notice that the parameter

δ =−1
4

J5

J2
2−3J4

is a rational invariant, therefore for all (J2,J4,J5) ∈R3, δ ∈R. However, the minimal
equation satisfied by σ is of degree 2

J2 = 8σ
2 +280δ

2 (23)

As for [D3], the condition

2J2(J2
2 −3J4)

2−35J2
5 ≥ 0 (24)

has to be added in order to ensure σ to be real.
Having computed δ , the equation (23) has two roots with opposite signs. The

linear slice corresponding to the group D4 is of degree 2, which was already known
(see section A).

Proposition 5.10. A harmonic tensor D ∈ H4 is in the closed stratum Σ [D4] if and
only if the invariants J2(D) · · ·J10(D) satisfy the following polynomial relations

6J6 =−3J2
3 +9J2J4 +20J3

2

3J7 = J2
2J3−3J3J4 +3J2J5

6J4
2 =−3J2

4 +9J2
2J4 +20J2J3

2−20J3J5

5J8 =−3J2
4 +6J2

2J4 +30J2J3
2−5J3J5

3J4J5 = 7J2
3J3−15J2J3J4 +3J2

2J5−60J3
3

6J9 = 5J2
3J3−13J2J3J4 +6J2

2J5−20J3
3

5J5
2 =−2J2

5 +4J2
3J4 +10J2

2J3
2−20J2J3J5 +30J3

2J4

15J10 =−9J2
5 +18J2

3J4 +85J2
2J3

2−30J2J3J5 +15J3
2J4

(25)
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together with inequality (24). D is in the tetragonal class [D4] if moreover 3J4−J2
2 6=

0 and 5J3
2 −8J2J4−70J2

3 6= 0. In that case, it admits the normal form (22) where

δ =−1
4

J5

J2
2−3J4

and where σ is the positive root of J2 = 8σ2 +280δ 2.

Remark 5.11. All 2nd-order tensors in H2 covariant to D are multiple of diag(1,1,−2)
and are eigenvectors of D corresponding to the eigenvalue 12δ .

5.5 Orthotropic symmetry ([D2])

A D2-invariant tensor D ∈H4 has the following matrix representation:

D =


−λ2−λ3 λ3 λ2 0 0 0

λ3 −λ3−λ1 λ1 0 0 0
λ2 λ1 −λ1−λ2 0 0 0
0 0 0 2λ1 0 0
0 0 0 0 2λ2 0
0 0 0 0 0 2λ3

 (26)

where (λ1,λ2,λ3)∈R3. The monodromy group is the group S3 acting on (λ1,λ2,λ3)
by permutation, therefore the linear slice is of degree 6. This fact will make the fol-
lowing computation rather cumbersome. As the evaluations of the invariants (12) on
this slice are S3-invariant, they can therefore be expressed as polynomial functions
of the elementary symmetric polynomials (σ1,σ2,σ3) defined by:

σ1 := λ1 +λ2 +λ3, σ2 := λ1λ2 +λ1λ3 +λ2λ3, σ3 := λ1λ2λ3.
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More precisely, we have:

J2 =−14σ2 +8σ
2
1

J3 =−6σ1σ2 +24σ3

J4 = 40σ1σ3−112σ
2
1 σ2 +68σ

2
2 +32σ

4
1

J5 = 64σ
2
1 σ3−12σ2σ3−16σ

3
1 σ2 +28σ1σ

2
2

J6 =−344σ
3
2 +192σ

3
1 σ3−24σ

2
3 −672σ

4
1 σ2 +1008σ

2
1 σ

2
2

+128σ
6
1 −504σ1σ2σ3

J7 =−432σ
2
1 σ2σ3 +384σ

4
1 σ3 +104σ

2
2 σ3−96σ1σ

2
3 −64σ

5
1 σ2

+192σ
3
1 σ

2
2 −248σ1σ

3
2

J8 = 608σ
3
1 σ2σ3 +80σ

4
2 −768σ

5
1 σ3 +192σ

2
1 σ

2
3 +72σ2σ

2
3

+288σ
4
1 σ

2
2 −416σ

2
1 σ

3
2 +744σ1σ

2
2 σ3

J9 =−5248σ
4
1 σ2σ3 +2880σ

2
1 σ

2
2 σ3 +1328σ1σ2σ

2
3 +144σ

3
3 +2304σ

6
1 σ3

−1152σ
3
1 σ

2
3 −880σ

3
2 σ3−256σ

7
1 σ2 +1024σ

5
1 σ

2
2 −2304σ

3
1 σ

3
2 +2160σ1σ

4
2

J10 = 10752σ
5
1 σ2σ3−1280σ

3
1 σ

2
2 σ3−5664σ1σ

3
2 σ3−2688σ

2
1 σ2σ

2
3 −800σ

5
2

−4608σ
7
1 σ3 +2304σ

4
1 σ

2
3 −1344σ

2
2 σ

2
3 −288σ1σ

3
3 +1536σ

6
1 σ

2
2

−4224σ
4
1 σ

3
2 +3104σ

2
1 σ

4
2

As it can be observed, the parametric system obtained for [D2] is rather complicated.
Nevertheless, the evaluation of J2, . . . ,J10 on the slice and their expressions using σ1,
σ2, σ3 is simple using a computer. By computing the elimination ideal of a Groebner
basis for the ideal generated by

Jk− pk(σ1,σ2,σ3), k = 2, . . . ,7,

we obtain a set of 6 syzygies.

−1350J3 J7−840J4 J6 +465J2
2 J6 +270J5

2 +720J2 J3 J5 +747J2 J4
2

−170J3
2 J4−564J2

3 J4 +70J2
2 J3

2 +84J2
5 = 0 (27a)

−1620J4 J7 +810J2
2 J7 +360J5 J6−1110J2 J3 J6 +999J2 J4 J5 +960J3

2 J5

−549J2
3 J5−972J3 J4

2 +1638J2
2 J3 J4−80J2 J3

3−312J2
4 J3 = 0 (27b)

4050J5 J7−25650J2 J3 J7−14310J2 J4 J6+9600J3
2 J6+7965J2

3 J6+9450J3 J4 J5

+10530J2
2 J3 J5 +1134J4

3 +11259J2
2 J4

2−12330J2 J3
2 J4−9018J2

4 J4

+400J3
4 +3270J2

3 J3
2 +1350J2

6 = 0 (27c)
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−12150J2 J3 J7 +3600J6
2−11610J2 J4 J6 +9750J3

2 J6 +4410J2
3 J6

+8505J3 J4 J5 +3645J2
2 J3 J5 +1458J4

3 +5670J2
2 J4

2

−10710J2 J3
2 J4−4104J2

4 J4 +400J3
4 +2580J2

3 J3
2 +576J2

6 = 0 (27d)

1800J6 J7−10800J2 J4 J7+4800J3
2 J7+4950J2

3 J7+4020J3 J4 J6−8370J2
2 J3 J6

+162J4
2 J5 +7371J2

2 J4 J5 +2880J2 J3
2 J5−3483J2

4 J5−9216J2 J3 J4
2

+640J3
3 J4 +11946J2

3 J3 J4−720J2
2 J3

3−2160J2
5 J3 = 0 (27e)

60750J7
2 +178200J3 J4 J7−546750J2

2 J3 J7 +3780J4
2 J6−246780J2

2 J4 J6

+348000J2 J3
2 J6 +137025J2

4 J6 +116640J2 J3 J4 J5−75600J3
3 J5

+223560J2
3 J3 J5 +29808J2 J4

3 +82170J3
2 J4

2

+177660J2
3 J4

2−438390J2
2 J3

2 J4−148014J2
5 J4

+17200J2 J3
4 +102000J2

4 J3
2 +22221J2

7 = 0 (27f)

If these relations are satisfied, the elementary symmetric polynomials σ1, σ2 and
σ3 can be expressed, on the open stratum defined by

6J6−9J2 J4−20J3
2 +3J2

3 6= 0,

as rational expressions of J2, . . . ,J7. More precisely, we have

σ1 =−
9
(
3J7−3J2 J5 +3J3 J4− J2

2 J3
)

2
(
6J6−9J2 J4−20J3

2 +3J2
3
) .

and

σ2 =
4
7

σ1
2− 1

14
J2, σ3 =

1
24

J3 +
1
7

σ1
3− 1

56
σ1 J2,

Then λ1,λ2,λ3 are recovered (up to their monodromy group) as the roots of the
third degree polynomial in λ

p(λ ) = λ
3−σ1λ

2 +σ2λ −σ3

But, to ensure that given J2, . . . ,J7 ∈ R we can find λ1,λ2,λ3 ∈ R, the following
inequalities have to be satisfied

∆2 = 2σ
2
1 −6σ2 ≥ 0 , ∆3 = σ

2
1 σ

2
2 −4σ

3
1 σ3 +18σ1σ2σ

2
3 −27σ

2
3 ≥ 0

The discriminant ∆3 and ∆2 can be rewritten, using J2, . . . ,J7, as

∆2 =
N2

14
(
6J6−9J2 J4−20J3

2 +3J2
3
)2 ; ∆3 =

6J6−9J2 J4−20J3
2 +3J2

3

432
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where

N2 = 3645J7
2 +7290J2 J5 J7−7290J3 J4 J7 +2430J2

2 J3 J7−36J2 J6
2

+108J2
2 J4 J6 +240J2 J3

2 J6−36J2
4 J6−3645J2

2 J5
2 +7290J2 J3 J4 J5

−2430J2
3 J3 J5−3645J3

2 J4
2−81J2

3 J4
2 +2070J2

2 J3
2 J4

+54J2
5 J4−400J2 J3

4−285J2
4 J3

2−9J2
7.

We will summarize these results in the following proposition.

Proposition 5.12. A harmonic tensor D∈H4 is in the closed stratum Σ [D2] if and only
if the invariants J2(D), · · · ,J10(D) satisfy the polynomial relations (27), completed by
the three equations

Sk(J2, . . .J10) = 0, k = 8,9,10 (28)

obtained from Jk− pk(σ1,σ2,σ3), where we have substituted the corresponding ra-
tional expressions for the σi, and we have cleared the denominators. The inequalities

6J6−9J2 J4−20J3
2 +3J2

3 ≥ 0 (29)

as well as

3645J7
2 +7290J2 J5 J7−7290J3 J4 J7 +2430J2

2 J3 J7−36J2 J6
2 +108J2

2 J4 J6

+240J2 J3
2 J6−36J2

4 J6−3645J2
2 J5

2 +7290J2 J3 J4 J5−2430J2
3 J3 J5

−3645J3
2 J4

2−81J2
3 J4

2 +2070J2
2 J3

2 J4 +54J2
5 J4

−400J2 J3
4−285J2

4 J3
2−9J2

7 ≥ 0
(30)

are also required. D is in the orthotropic class [D2] if moreover inequality (29) is
strict. In that case, it admits the normal form (26) where λ1,λ2,λ3 are the roots of the
third degree polynomial

p(λ ) = λ
3−σ1λ

2 +σ2λ −σ3.

Remark 5.13. Even if it is the core of the method, it is worth noting that, instead
of λ1,λ2,λ3, the three numbers σ1,σ2,σ3 are uniquely defined on the open stratum:
they are invariants of D and can be written as rational expressions of (J2, . . . ,J7). It
should be noticed that it is also possible to express σ1,σ2,σ3 as rational functions of
only (J2, . . . ,J5) on an open subset of Σ[D2]. We will, however, not give these formulas
here.

Remark 5.14. All second rank tensors in H2 covariant to D commute.
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5.6 Bifurcation conditions for tensors in H4

An important observation has to be made. Mathematical results [32] tell us that the
invariant algebra of H4 is generated by the 9 fundamental invariants (J2, . . . ,J10). In
this set 6 invariants (J2, . . . ,J7) are algebraically independent, meanwhile the others
are linked to the formers by polynomial relations. As discussed before, it is a well-
known fact that this algebra separates the orbits. But, as demonstrated exhaustively
in this section, for any class with a finite monodromy group13, the first 6 invariants
(J2, . . . ,J7) are necessary and sufficient to separate the orbits inside each of these
classes. This observation can be summed-up by the following theorem.

Theorem 5.15. 1. For the cubic, the transversely isotropic, the trigonal and the
tetragonal classes in H4(R3), the first four invariants (J2,J3,J4,J5) separate the
orbits inside the class.

2. For the orthotropic class, the first six invariants (J2,J3,J4,J5,J6,J7) separate the
orbits inside the class.

We will now give bifurcation conditions on the Jk which make explicit how we
“travel” from a given isotropy class to another. More precisely, so far, we have given
necessary and sufficient conditions to belong to a closed stratum Σ [H] with finite
monodromy group. A closed Σ [H] is defined by a finite set of polynomial relations
and inequalities on the Jk. Given two adjacent strata Σ [H1] ⊂ Σ [H2], the bifurcation
conditions, detailed on figure 2, correspond to the relations which need to be added
for a tensor in Σ [H2] to belong to Σ [H1].

6 Relation with the characteristic polynomial

In this section, we will investigate the relations between the invariants of H4, the
coefficients of the characteristic polynomial of D and Betten’s invariants [7].

Proposition 6.1. Let D ∈ H4. The coefficients of the characteristic polynomial of D
are SO(3)-invariants of D. They can be expressed in terms of the invariants J2, . . . ,J5
defined above. We have

χD(z) = z6− 1
2

J2z4− 1
3

J3z3 +
1
5
(
J2

2−2J4
)

z2 +
2

25
(J2J3−3J5)z. (31)

Proof. Notice first that z = 0 is always an eigenvalue of D. Indeed, if q stands for
the standard metric on R3, we have Dq = tr12(D) = 0. The coefficient of zk in χD
is a homogeneous invariant polynomial of degree 6− k for 1 ≤ k ≤ 4. Therefore,
it can be expressed as a polynomial in J2(D), · · · ,J5(D). The computation of this
last expression reduces therefore to identify some real coefficients. This can be done
by specializing on particular values or on some particular strata where it is easy to
compute, the cubic or the transverse isotropic stratum, for instance.

13 i.e., for all symmetry classes, except the monoclinic and the triclinic classes
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Fig. 2 Bifurcation paths for finite monodromy isotropy classes in H4.

Besides the characteristic polynomial, Betten [7] has introduced a two variables,
invariant polynomial of the elasticity tensor. It is defined as

BC(λ ,µ) = det(C−Cλ ,µ),

where

Cλ ,µ =


λ +2 µ λ λ 0 0 0

λ λ +2 µ λ 0 0 0
λ λ λ +2 µ 0 0 0
0 0 0 2 µ 0 0
0 0 0 0 2 µ 0
0 0 0 0 0 2 µ


is the totally isotropic tensor. Notice that BD(0,µ) = χD(2 µ) and that BC is of de-
gree lower than 1 in λ (indeed, this can be observed by subtracting the first line to the
second line and to the third line in the determinant). The interset of this polynomial
is that it may generate other invariants than the ones obtained from the characteristic
polynomial. However, it does not bring any new invariants for a tensor D ∈H4(R3).
Indeed, we have the following result.

Lemma 6.2. The Betten polynomial of a harmonic tensor D ∈ H4(R3) is related to
its characteristic polynomial by the formula

BD(λ ,µ) = (3λ +2 µ)χ
r
D(2 µ),

where χD(λ ) = λ χr
D(λ ).
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Proof. For a harmonic tensor D = (Di jkl) with matrix representation D = (dmn) (see
remark 2.1), we have

(tr12 D)i j :=
3

∑
k=1

Dkki j = 0, 1≤ i, j ≤ 3,

and therefore
3

∑
m=1

dmn = 0, 1≤ n≤ 6.

Thus, if Lm (1≤ m≤ 6) are the lines of the determinant det(D−Cλ ,µ), the substitu-
tion L1→ L1 +L2 +L3 shows that there is a factorisation

BD(λ ,µ) = (3λ +2 µ)P(λ ,µ).

But BD(λ ,µ) is of degree lower than 1 in λ and hence P(λ ,µ) = P(µ) does not
depend on λ . Now, for λ = 0 we get

BD(0,µ) = χD(2 µ) = (2 µ)P(µ),

from which we deduce that P(µ) = χr
D(2 µ). This achieves the proof.

Corollary 6.3. The invariants defined by the coefficients of the Betten polynomial do
not separate the orbits of Ela.

Proof. If this was the case, it would also separate the orbits of H4 but then lemma 6.2
and proposition 6.1 would imply that J2,J3,J4,J5 separate the orbits of H4, which is
false.

7 Conclusion

In this paper, five sets of algebraic relations were provided to identify the following
symmetry classes in H4 (section 5): orthotropic ([D2]), trigonal ([D3]), tetragonal
([D4]), transverse isotropic ([SO(2)]) and cubic ([O]). These relations are invariant
necessary conditions for an elasticity tensor to belong to one of these classes. We
consider this paper as a first step towards a more systematic use of invariant-based
methods in continuum mechanics. Based on the geometrical framework introduced
in this paper, the following extensions of the current method can be considered:

– extend the current polynomial-characterization of isotropy classes to ones having
continuous monodromy group,

– identify the transformation matrix that bring a tensor to its normal form,
– tackle the increasing degree of the algebraic relations for low symmetry groups.

It might be interesting to characterize classes in terms of second-order covariants.

Such an approach was conducted here in the context of classical elasticity, but the
framework used allows a direct extension of this method to other kinds of anisotropic
tensorial behaviours. It can be extended to the study of anisotropic features of piezoe-
lasticity, flexoelasticity or strain-gradient elasticity. Furthermore, from a more practi-
cal viewpoint, we aim at testing our approach on experimental situations. This would
allow to compare the proposed approach with the more classical ones.
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A Appendix: Closed subgroups of SO(3) and their normalizers

Every closed subgroup of SO(3) is conjugate to one of the following list [19]

SO(3), O(2), SO(2), Dn(n≥ 2), Zn(n≥ 2), T,O, I, and1 (32)

where:

– O(2) is the subgroup generated by all the rotations around the z-axis and the order 2 rotation σ :
(x,y,z) 7→ (x,−y,−z) around the x-axis.

– SO(2) is the subgroup of all the rotations around the z-axis.
– Zn is the unique cyclic subgroup of order n of SO(2), the subgroup of rotations around the z-axis.
– Dn is the dihedral group. It is generated by Zn and σ : (x,y,z) 7→ (x,−y,−z).
– T is the tetrahedral group, the (orientation-preserving) symmetry group of a tetrahedron. It has order

12.
– O is the octahedral group, the (orientation-preserving) symmetry group of a cube or octahedron. It

has order 24.
– I is the icosahedral group, the (orientation-preserving) symmetry group of a icosahedra or dodecahe-

dron. It has order 60.
– 1 is the trivial subgroup, containing only the unit element.

The poset of conjugacy classes of closed subgroups of SO(3) is completely described [19] by the
following inclusion of subgroups (which generates order relations between conjugacy classes)

Zn ⊂ Dn ⊂ O(2) (n≥ 2),

Zn ⊂ Zm and Dn ⊂ Dm, (if n divides m),

Z2 ⊂ Dn (n≥ 2),

Zn ⊂ SO(2)⊂ O(2) (n≥ 2),

and the arrows in figure 3 which complete the poset, taking account of the exceptional subgroups O,T,I
(beware that figure 3 cannot be realized by an inclusion diagram between representatives of these conju-
gacy classes).

Remark A.1. Notice that O and I are maximal subgroups of SO(3) which both contained T.

Recall that the normalizer of a subgroup H of a group G, denoted by N(H) is the biggest subgroup of
G in which H is normal. It is defined by

N(H) :=
{

g ∈ G; gHg−1 = H
}
.

Proposition A.2. The normalizers of the subgroups in the list (32) are given below.

N(SO(3)) = SO(3), N(O(2)) = O(2), N(SO(2)) = O(2),

N(O) =O, N(I) = I, N(T) =O,

N(1) = SO(3), N(Zn) = O(2) for n≥ 2, N(Dn) = D2n for n≥ 3,

and N(D2) =O. Moreover, the quotient groups are given by

N(SO(3))/SO(3) = 1, N(O(2))/O(2) = 1, N(SO(2))/SO(2) = Z2,

N(O)/O= 1, N(I)/I= 1, N(T)/T= Z2,

N(1)/1= SO(3), N(Zn)/Zn = O(2) for n≥ 2, N(Dn)/Dn = Z2 for n≥ 3,

and N(D2)/D2 =S3, the symmetric group of 3 elements.
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Fig. 3 Exceptional classes in the poset of conjugacy classes of closed subgroup of SO(3).
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