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Study of statistical correlations in intraday and
daily financial return time series

Gayatri Tilak, Tamas Széll, Rémy Chicheportiche andrBain Chakraborti

Abstract The aim of this article is to briefly review and make new stadié cor-
relations and co-movements of stocks, so as to understarideiasonalities” and
market evolution. Using the intraday data of the CAC40, weihéy reasserting
the findings of Allez and Bouchaud![1]: the average corretabietween stocks in-
creases throughout the day. We then use multidimensioabihgdMDS) in gener-
ating maps and visualizing the dynamic evolution of thelstaarket during the day.
We do not find any marked difference in the structure of theketaduring a day.
Another aim is to use daily data for MDS studies, and visgatiz detect specific
sectors in a market and periods of crisis. We suggest thatythe of visualization
may be used in identifying potential pairs of stocks for tpdrade”.
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1 Introduction

Many complex features, including multi-fractal behaviafifinancial markets have
been studied for a long time, and constitute today a cotlaatf empirical “laws”,
the so-called “stylized facts? [2]. The questions: “How eifint is the market? To
what extent?” have been long debated on by economists, pairioians and prac-
titioners of financel[3]. It is now accepted that the markewvesakly efficient (at
least to some extent and in certain time scales), and thataeyuantities like the
price returns, volatility, traded volume, etc. do exhitdeasonal patterrﬂ;”why
these “market anomalies” appear is, of course, not welkwstdod. One reason
for their appearance could be that the markets operate ithsynization with hu-
man activities and so the financial time series of returns afiyrassets reveal the
related statistical “seasonalities”. Identifying suclvamalies in order to make sta-
tistical arbitrage is a usual practice. Another relatectiice is estimating market
co-movements, which is certainly relevant in several aodéisance, including in-
vestment diversification [5] and risk managemeént [6].

In this paper, we first present some notations, definitiomsraathods. We then
review existing results on intraday patterns concernint lrdividual and collec-
tive stock dynamics. We compare the cross-sectional “dsspe’ of returns and
its typical evolution during the day, with the intraday eatt of the leading modes
of the cross-correlation matrix between stock returngpfdghg the studies of Allez
and Bouchaud]1]. Then, we make additional plots of the pése cross-correlation
matrix elements and study their typical evolution during tray. Finally, we use
multidimensional scaling (MDS) in generating maps and afiging the dynamic
evolution of the stock market during the day. When the MDSlistsi are repeated
with daily data, we find that it is easier to visualize or dégecific sectors and
market events. We suggest that this type of plots may be nsieléitifying poten-
tial pairs of stocks for “pairs trade”.

2 Some data specifications, notations, and definitions

In order to measure co-movements in the time series of stacks the popular
Pearson correlation coefficient is commonly used. Howet/é,now known that
several factors viz., the statistical uncertainty astediwith the finite-size time se-
ries, heterogeneity of stocks, heterogeneity of the aeenaigr-transaction times,
and asynchronicity of the transactions may affect the béiig of this estimator.
The investigation of high-frequency “tick-by-tick” dataels enable one to monitor
market co-movements and price formation in real time. Hatehigh-frequency
data have the drawback of aggravating the above mentiomtar$aeven further,
raising the need to adequately evaluate their impact thrpugper correlation mea-

1 “The existence of seasonal asset returns may be an indifatmarket inefficiencies. . . The pres-
ence of seasonal returns, however, does not necessitatetrimafficiency”[4]
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sures, such as the Hayashi-Yoshida estimator [7]. In thiscse we introduce such
concepts, along with notations and definitions, and alscipthe details of the
datasets used.

We have considered three data sets.

e Daily returns: we have used the freely downloadable dadgute prices from
Yahoo forN = 54 companies in the New York Stock Exchange, over a period
spanning from January 1, 2008 to May 31, 2011.

e Intraday tick-by-tick:N = 40 companies of the CAC40 stock exchange for
March 2011, between 10:00-16:00 CET. We have purposefuityded the
opening and closing hours of the market, so as to avoid cestsdmalies.

¢ Intraday sampled retuns: Same universe as the tick-bystitkampled in bins
of 5 minutes or 30 minutes. Thus, the total number of 5 minirteis 72 per day
and total number of 30 minute bins is 12 per day. The total remobtrading
days in one month is arouid= 21.

2.1 Cross-sectional “dispersion” of the binned data

In this section we introduce the notations and definitionsdusy the authors of
Ref. [1] for their study of sampled intraday data; we will tbke same notations
when reproducing their results for our own dataset.

Stocks are labelled biy=1,...,N, days byt =1,..., T and binsbyk=1,... K.
The return of stock in bin k of dayt will be denoted asi(k;t). The temporal
distribution of stocki in bin k is characterised by its moments: meark) and
standard deviation (volatilityd; (k), which are defined as:

pi (k) = (ri(k;t)) (1a)
o7 (K) = (ri(kit)?) — pf(K), (1b)

where averages over days for a given stock and a given bixpressed with angled
bracketsy...).

The cross-sectional “dispersion” of the returns of khetocks for a given birk
in a given dayt is as well characterised by its moments:

Ha(k;t) = [ri(k;t)] (2a)
ad(kt) = [ri(kt)? — pd(kt), (2b)

where the averages over the “ensemble” of stocks for a giweimla given day are

expressed with square brackéts:]. We note thatiy(k;t) may be interpreted as the
“return of an index”, equiweighted on all stocks. We will b@ra interested in the
average obg(k;t) over all days, as a way to characterise the typical intragay e
lution of the “dispersion” between stock returns. Detaséadies of this dispersion
and other such measures, concerning both stock pricesamdsgwill be presented
elsewhere [8].
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Although the dispersion, described above, indicates tleeniovements” of
stocks, a more common and direct characterisation is throlig standard “cor-
relation” of returns. In order to measure the correlatiortrmaf the returns, each
return isnormalised by the dispersion of the corresponding bin, to reduce the in-
traday seasonality and also take into account the fluctuafithe volatility in the
considered time perio@l. Therefore, following the same prescription as in Ref. [1],
we definefi(k;t) =ri(k;t)/oq(k;t) and study the correlation matrix defined for a

given bink:

(Fi(kt)rj(kit)) — (Fi(kit)) (7 (kb))
ai(K)aj (k) '
The largest eigenvalue of thé x N correlation matrixC(k) composed of the el-
ementsp;j(K), is denoted by\1(k) and is equal to the risk of the corresponding
eigenmode, the “market mode” with all entries positive alode to 7/+/N. In fact,
A1(K)/N can be seen as a measure of the average correlation betwelen $t/e will

be interested in the intraday evolution or the bin-dependeri the largest eigen-
valud.

pij (k) ==

3)

2.2 Correlation matrix with tick-by-tick data

Computing correlations using these intraday data, rassolf issues concerning
usual estimators, as already indicated above. Let us ashatee observa time
series of prices or log-pricgs, (i=1,...,T), observed at timeg,(m=0,...,M).
The usual estimator of the covariance of pricesd j is therealized covariance
estimator, which is computed as:

i M
SR = > (Pi(tm) = Pi(tm-1)) (P} (tm) — Pj(tm-1))-

m=1

The problem is that high-frequency tick-by-tick data retchanges of prices
when they happen, i.e. at times not predefined and not etpidisMultivariate
tick-by-tick data are thus asynchronous, contrary to delibse prices for exam-
ple, which are by construction synchronous for all the &ssata given exchange.
Using standard estimators without caution, could be onsetar the “Epps effect”,
first observed in[[9], which stated that “correlations am@nige changes in com-
mon stocks of companies in one industry are found to decreitis¢he length of the
interval for which the price changes are measured.” Herere, e use the Hayashi-
Yoshida estimatoi | 7] also, which takes (part of) the Epfsatinto account. There
are many other estimators that may be used in general, anthpacson of such
estimators has been performed in Ref][10].

2 A similar study about the intraday evolution of the first eigector is of great interest and has
been performed as well ial[1].
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Hayashi-Yoshida (HY) estimator

In 7], the authors introduced a new estimator for the line@relation coefficient
between two asynchronous diffusive processes. Given fvpriicesseX,Y such
that

dX = p*dt + o7 A (4)
d¥ = p4'dt + oy Ay (5)
d(WX,WY), = pdt, (6)

and observation timesBtg <t; < ... <tp_1 <th =T for X, and 0= < 5 <
... <spo1 < sn=T for Y, which must be independent farandY, they showed
that the following quantity:

XY
Z ri rj ]l{oij?go}a (7)
]
Oij =Jti—1,t]N]sj_1,Sj]
riX =X — X1
rJY :YSJ _Ysj—1’

is an unbiased and consistent estimato;f(})btxotthdt, as the largest mesh size
goes to zero. In practice, it amountsstanming every product of increments as soon
asthey share any overlap of time. In the case of constant volatilities and correlation,
it provides a consistent estimator for the correlation

XY
o 2o, ey

pii = (8)
b s02s ()2

2.3 Pearson correlation coefficient and correlation matnixith
daily returns

In order to study thequal time cross-correlations betwedhstocks, we first denote
the closure price of stodkin dayt by P(1), and determine the logarithmic return of
stocki asri(t) =InR(1) —InR (1 — 1). For the sequence df consecutive trading
days, encompassing a given windbwith width T, these returns form theturn
vector rl. In order to characterize the synchronous time evolutioasséts, we use
the equal time Pearson correlation coefficients betweexisisnd j defined as
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‘ (rir§) = (rH(rf)

i = t2 t\ 217/t 2 tyor

VI = (2102 = (142

where(...) indicates a time average over tfieconsecutive trading days included
in the return vectors. These correlation coefficients fulfie usual condition of
—1<pjj <1andformarN x N correlation matrixCt, which serves as the basis of
further analyses [11, 12].

For analysis, the data is divided time-wise iMowindows (t =1, 2, ..., M) of
width T, corresponding to the number of daily returns included ewlindow. The
consecutive windows may be overlapping/non-overlappiitly @ach other, the ex-
tent of which is dictated by the window step length paramétedescribing the
displacement of the window, measured also in trading dalye.slizes of window
width T, and window step widtldt, are to be chosen cleverly: for examplemust
be long enough to grasp any signal with a certain statigbicaier, but not cover too
long a period over which the signal could have varied.

(9)

2.4 Distance matrix

To obtain “distances”, a non-linear transformation

dij =/2(1-pij), (10)

is used, with the property 2 dij > 0, forming anN x N distance matrixD!, such
that all distances are “ultrametric”. The concept of ultedritity is discussed in
detail by Mantegna [13]. Out of the several possible ultraimepaces, the sub-
dominant ultrametric is opted for due to its simplicity aredarkable properties.
The choice of the non-linear function is again arbitraryipsg as all the conditions
of ultrametricity are met.

2.5 Multidimensional scaling (MDS)

Multidimensional scaling is a set of data analysis techesfihat display the struc-
ture of “distance”-like data as a “geometrical picture”,ev each object is repre-
sented by a point in a multidimensional space. The pointamesged in this space,
such that the distances between pairs of points have thegstsbpossible relation to
the “similarities” among the pairs of objects — two simildijects are represented
by two points that are close together, and two dissimilaectsj are represented
by two points that are far apart. The space is usually a twahme-dimensional
Euclidean space, but may be non-Euclidean and may have rimoeasions.

MDS is a generic term that includes many different types-ssifeed according
to whether the similarities data are “qualitative” (callezh-metric MDS) or “quan-
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titative” (metric MDS). The number of similarity matricesé the nature of the
MDS model can also classify MDS types. This classificatiaids classical MDS
(one matrix, unweighted model), replicated MDS (severatrites, unweighted
model), and weighted MDS (several matrices, weighted n)oHet a general intro-
duction and overview, please see Refl[14].

The collection of objects to be analyzed in our case\ istocks, on which a
distance function is defined using EQ.X10). These distaameshe entries of the
similarity matrix

dig dip -+ din

. dog dop -+ oy
D= . . |- (11)

dng dn2 -+ dnn

GivenD!, the aim of MDS is to findN vectorsx, ..., xy € RP, such that

||X5—Xj||zdij vi,j €N, (12)

where|| - || is a vector norm. In classical MDS, this norm is typically theclidean
distance metric.

In other words, MDS tries to find a mathematical embeddinchefN objects
into RP such that distances are preserved. If the dimerBignchosen to be 2 or 3,
we are able to plot the vectoxsto obtain a visualization of the similarities between
theN objects. It may be noted that the vectgrarenot unique— with the Euclidean
metric, they may be arbitrariliranslated androtated, since these transformations
do not change the pairwise distandes— x;||.

There are various approaches to determining the vegtoGenerally, MDS is
formulated as awoptimization problem, wheréx;, ..., xy) is found as a minimiza-
tion of some cost function, such as

min 3 (% = x| - dij)?. (13)
P
A solution may then be found by numerical optimization teéghes. In our case,
we used simulated annealing as the optimization procedure.

3 Results

3.1 U-effect in volatility

In financial studies, among the periodicities or “seastiealiis the “U-effect” [15,
16], which describes the intraday pattern of average \ityato (k) = [0i(k)] of
individual stocks: the average volatility is high duringtharket opening hours,
then decreases so as to reach a minimum around lunch timeénenedses again
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steadily until the market closes. We show a similar resuRim[, computed with
the CAC40 intraday data for the period March, 2011. The aedd|uy(k;t)| is a
proxy for the “index volatility”, and is displayed in Figl it:also shows a U-shaped
pattern similar to that ofr(k).

2.5 T
—o— [0,K)]
<o d(k)>

—— <luy kD> -

0 10 20 30 40 50 60 70
bin k

Fig. 1 Plots of the average volatility of stocks(k), the average cross sectional dispersigik)
and the average absolute value of the index retipg(k,t)|) as a function of the 5-minute bins
denoted by, from 10h00-16h00 CET, for the period March, 2011. Court&yGuevara Het al

@)

3.2 The eigenvalues of the correlation matrix and average
correlations

The largest eigenvaluky, of the correlation matrix of stock returns, is well known
to be associated with the “market mode”, i.e. all stocks mgvnore or less in a
synchronized manner. We show in the top panel of Hig. 2 thenitede of A1 /N
computed from Eq[{3) on 5-min data, as a function of thekbinterestingly, the av-
erage correlation cleariyicreases as time elapses. As mentioned earlier, the quan-
tity A1/N captures the behavior of the average correlation betweskstwhich
can be seen in the bottom panel of Eib. 2.
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0.7
—*—)\l/N
— AN
2
0.6 b
7)\3/N
0sh —M,N
. i 7)\5/N
oa i )\G/N
- . 7)\7/N
2_
0.3 b
0.2 b
0.1 i
O L L L L L L L
0 10 20 30 40 50 60 70

bin k

S |—o— maximum eigen value
—— average correlation

bin k

Fig. 2 Top: Top eigenvalues of the correlation matix(k)/N, i = 1,...,7, as a function of the
5-minute bins denoted bk, from 10h00-16h00 CET, in March, 2011. [5-min sampled wjce
courtesy E. Guevara Ht al [8]]. Bottom: The largest eigenvalug; /N (circles) is a proxy for
the average correlation (plain) [HY correlations for eveair and every bin of every day, then
averaged over days for visual comfort and comparison wighipus figure].
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The evolution of the next six eigenvaluggk), i = 2,...,7 is also shown in
Fig.[2. We see that the amplitudes of theserease with time. It may be appro-
priate to quote the authors of Ref] [1]: “Although by constion the trace of the
correlation matrix, and therefore the sum ofMléigenvalues is constant (and equal
to N), this decrease is not a trivial consequence of the increfase.. What we see
here is that as the day proceeds, more and more risk is cagritee market factor,
while the amplitude of sectorial moves shrivels in relataens (but remember that
the correlation matrix is defined after normalising the mestby the local volatility,
which increases in the last hours of the day).”

We also compute using Ed.](8) the cross-correlation matnidén tick-by tick
data, for all 72 bins per day and 20 days in a month. The terhpeadution of the
pairwise average correlation coefficients as a functionin$,for different days,
and further averaged over all the days, are plotted belovigni3-

average over pairs

0.6
L

05

correlation
0.4

03

bin k

Fig. 3 Plot of the (pairwise) average correlations as functionsingk, for different days. Thick
solid line: Plot of the average correlation coefficientstHar averaged over all the days, which
shows that the average correlation between stocks inaréhssughout the day. Thick dashed
lines: Plots of the standard deviations on either side o&tleage correlation.

3.3 MDS using intraday data

In order tovisually capture the co-movement of stocks, we used the MDS plots
of the 40 stocks of the CAC40 index (see list of CAC40 stock3able[1), for
the period of March 2011. We used 30 minute bins to computetheelations,
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using the Hayashi-Yoshida estimator. We used the perio@Q-06h00 CET, so as
to get 12 bins per day for the 22 days. Using the correlatiotriogs as input, we
made the distance transformations (using EG. (10)) to prethe distance matrices.
These distance matrices were then used as inputs to theastiadS function in
MATLAB. We used the method of simulated annealing to optimize teefaaction
of a particular bin. The first bin starts with an initial setafordinates chosen at
random; for the following bins, we used the final results &f pinevious bins as the
initial stateB. The output of the MDS were the coordinates, which were @tbés
the MDS maps. The coordinates were plotted in a manner sathhih centroid of
the map coincided with the origi{®, 0). We then computed the mean distance of all
the coordinates from the centre, and plotted this measuadwascton of time.

During the course of any day, since for every bin the cori@tahatrix changes,
the MDS map also changes. Just as it is interesting to studythe average cor-
relation between the stocks varies during the day, we thioiiglould be also in-
teresting to study how the MDS map evolves “on an averagehduhe day. We
had two choices: (i) Run the MDS algorithm for every bin for&®%s, and take the
average of the coordinates over all the 22 maps, and plotrtagsfor every bin. (ii)
Take the average of the correlations over the 22 days forlgiacland plot a single
MDS map for every bin. We executed both, to see the variationshoice (i), for
every bink we take an average of the coordinates generated by the 22 Mi3%for
different days) and plot them stock by stock. Some stock$uate a lot on a day
to day basis, in the same time bin; others fluctuate less. ®whvle we expected
to see the average structure (clustering) of the marketdice (ii), we expected to
see less structure, since when we take the average of cmmslaver all 22 days,
and then run the MDS once for every bin, the variances in thelzdions disappear
and so the MDS plots look more uniform.

3.3.1 Averaged (over days) coordinates in different bins

We took the average of the coordinates (output of the MDSpoheompany over
all 22 days, for a particular bin. We then plotted the MDS magiag these averaged
coordinates for the different bins to see the evolutionmythe day, as shown in
Fig.[4 (for first six bins) and Fid.]5 (for last six bins). We fitlat there is some
structure, and particular companies always stay togetheecluster or a group.

3 This is to avoid too drastic a change in the MDS plots from oingdanother, keeping in mind
that the vectors; arenot unique- with the Euclidean metric, they may be arbitrariians ated
androtated.
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Fig. 5 MDS plots for bins 7-12. Each point on a plot represents &dee list of CAC40 stocks in
Table1), designated by two coordinatgsy;), i = 1,...,N. We took the average of the coordinates
(output of the MDS) of each company over all 22 days, for aipaldr bin. We then plotted the
MDS maps using these averaged coordinates for the difféiaatto see the evolution during the
day.

3.3.2 Averaged (over days) correlations in different bins
We also took the average of the correlation coefficients &mhepair over all 22

days, and then used them to generate the MDS plot for a plartibin. We then
plotted the MDS maps for the different bins to see the evotuduring the day, as
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shown in Fig[® (for first six bins) and Figl 7 (for last six bing/e find that there is
less structure than the previous plots (as average of etior$ “smoothen out” the
dissimilarities). The structures of the maps and positiinthe companies do not
change drastically during the course of the day.
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Fig. 6 MDS plots for bins 1-6. Each point on a plot represents a stee list of CAC40 stocks in
Table[1), designated by two coordinat&sy;), i = 1, ..., N. We took the average of the correlation
coefficients for each pair over all 22 days, and then used titegenerate the MDS plot for a
particular bin. We then plotted the MDS maps for the diffédgins to see the evolution during the
day.
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Fig. 7 MDS plots for bins 7-12. Each point on a plot represents &dee list of CAC40 stocks in
Table1), designated by two coordinat&sy;), i = 1, ..., N. We took the average of the correlation
coefficients for each pair over all 22 days, and then used titegenerate the MDS plot for a
particular bin. We then plotted the MDS maps for the diffédgins to see the evolution during the
day.

We further plotted the variation of the mean distance oftadl¢oordinates from
the centre of the map, over the different bins to see the teahpwolution during
the day, in FiglB. This follows exactly the opposite trenthaf average correlations
as shown in Fid.]2 or Fifl] 3— the mean distadegreases during the day. This result
is as expected, and not very surprising.
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mean distance from centre

bin k

Fig. 8 Mean distance of coordinates of all the points (40 stockanfcenter of the map, as a
function of the birk. There are 12 bins of 30 minutes between 10:00 and 16:00 CET.

Table 1 RICS list of the stocks in the CAC 40.

[ Names [ RICS ]
ACCOR FICTIVE ACCP.PA
AIR LIQUIDE AIRP.PA
ALCATEL LUCENT ALUA.PA
ALSTOM ALSO.PA
ARCELOR MITTAL FICTIVE ISPA.AS
AXA AXAF.PA
BNP PARIBAS BNPP.PA
BOUYGUES BOUY.PA
CAP GEMINI CAPP.PA
PERNOD RICARD PERP.PA
VALLOUREC VLLP.PA
CARREFOUR CARR.PA|
PEUGEOT SA PEUP.PA
VEOLIA ENVIRONNEMENT VIE.PA
CREDIT AGRICOLE SA CAGR.PA|
PPR PRTP.PA
VINCI SGEF.PA|
DANONE DANO.PA
PUBLICIS PUBP.PA
VIVENDI VIV.PA
EADS PEA FICTIVE EAD.PA
RENAULT RENA.PA
EDF EDF.PA
SAINT GOBAIN SGOB.PA|
ESSILOR INTERNATIONAL ESSI.PA
SANOFI SASY.PA
FRANCE TELECOM FTE.PA
SCHNEIDER ELECTRIC SA SCHN.PA
GDF SUEZ GSZ.PA
SOCIETE GENERALE SOGN.PA|
LOREAL OREP.PA|
STMICROELECTRONICS PEA FICTIVE STM.PA
LVMH LVMH.PA
SUEZ ENVIRONNEMENT SA SEVI.PA
LAFARGE LAFP.PA
TECHNIP TECF.PA
MICHELIN MICP.PA
TOTAL TOTF.PA
NATIXIS CNAT.PA
UNIBAIL-RODAMCO SE UNBP.PA
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3.4 MDS using daily data

In order to capture the co-movement of stocks visually, waeragsed the MDS plots
of 54 stocks from Yahoo daily data, for the period of Janu&98May 2011. We
computed the correlations using non-overlapping windofss consecutive trading
days, using Eq[{9). The choice ®fis important because if /N is small, then
according to the Random Matrix Theory we cannot distingbistween noise and
the true signal. Since MDS needs a full rank correlation ixatine noise needs to
be cleaned with appropriate statistical measures befgiyiag MDS.

As before, using the correlation matrices as input, we miaeldistance transfor-
mations (using Eq[{10)) to produce the distance matrickes& distance matrices
were then used as inputs to the MDS coddviiTLAB. We used the method of
simulated annealing to optimize the cost function of a patar day. The first day
(time-step) starts with an initial set of coordinates clmoserandom; for the follow-
ing days (time-steps), we used the final results of the pusuvilay (time-step) as the
initial staté. The output of the MDS were the coordinates, which were @tbtts
the MDS maps. The coordinates were plotted in a manner sathhi centroid of
the map coincided with the origi{®, 0). We then computed the mean distance of all
the coordinates from the centre, and plotted this measuadwascton of time.

In Fig.[3 we plot MDS maps for sample dates: 28/05/2008 (prieg8me cri-
sis), 27/10/2008 (onset of Subprime crisis) and 28/06/2pb8t-Subprime crisis).
In these plots we do see the difference in the positions oftimepanies. The posi-
tion of Lehman brothers in the plot of the MDS during the pBabprime crisis is
noteworthy.

We also plotin Fig.B, the mean distance of coordinates frenter for the period
01/01/2008 to 31/12/2009. There is certainly a noticeablgation in this entire
period, and the period of the Subprime crisis can be idedtiigh the low value of
mean distance.

4 This is to avoid too drastic a change in the MDS plots from éme tstep to another, keeping
in mind that the vectors; are not unique— with the Euclidean metric, they may be arbitrarily
trandated androtated. We imposed a small penalty in the cost function for deviafimm the
initial state.
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Fig. 9 The correlation matrices are computed from Yahoo dailyoegrice data using E.](9) and
54 trading day window, for the set of 54 companies. The paintsach MDS plot represent stocks,
each designated by two coordinatgsy;), i = 1,...,54. Top-most: MDS plot for date 28/05/2008.
Top: MDS plot for date 27/10/2008. Bottom: MDS plot for da®/@6/2010. Bottom-most: Mean

distance of coordinates from center for the two year peri@12008 to 31/12/2009.
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In order to examine carefully whether any clusters can betified, we worked
with a subset of 18 companies. In Fig.] 10 and Fid. 11, we plot3vaps for
different sample dates: 03/06/2008, 25/07/2008, and @3008 (pre-Subprime cri-
sis); 17/10/2008, 28/11/2008 and 13/01/2009 (during Soimpcrisis); 24/02/2009,
07/04/2009, 12/09/2009 and 04/11/2009 (post-Subprinsésri
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Fig. 10 MDS plots for different dates. Top Left: 03/06/2008 Top Rig2b/07/2008 Middle Left:
05/09/2008 Middle Right: 17/10/2008 Bottom Left: 28/11380Bottom Right: 13/01/2009. The
correlation matrices are computed from Yahoo daily cloguiee data using EqCY9) and 30 trad-
ing day window, for the subset of 18 companies. The pointsami @lot represent stocks, each
designated by two coordinates,f:), i = 1,...,18.
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Fig. 11 MDS plots for different dates. Top Left: 24/02/2009 Top Ridbir/04/2009 Bottom Left:
12/09/2009 Bottom Right: 04/11/2009. The correlation mes are computed from Yahoo daily
closure price data using EJ(9) and 30 trading day windowntfe subset of 18 companies. The
points on each plot represent stocks, each designated byowvdinatesx,y;),i =1,...,18.

In these plots we do see the considerable differences inaiégns of the com-
panies. However, it is interesting to follow the positiofi€ertain pairs:

(i) JP Morgan and Bank of America
(i) Nissan and Toyota
(iii) Chevron and Exxon
(iv) Pepsiand Coca Cola.

This type of visual plot may therefore be used in identifyragential pairs of stocks
for “pairs trade”. Such a strategy monitors the performarndéwo historically cor-
related stocks: when the correlation between the two seesiremporarily weakens,
i.e. one stock moves up while the other moves down, the paide tstrategy would
be toshort the outperforming stock and tong the underperforming one, betting
that the “spread” between the two would eventually convefgether analysis is of
course necessary to devise such a strategy.

We also find that there is some noticeable clustering effegt, as all the Eu-
ropean banks are in one cluster and all the European auttasabye in another
cluster.
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4 Concluding remarks

In this paper, we first reviewed existing results on intraplatterns concerning both
individual and collective stock dynamics. We studied thessrsectional “disper-
sion” of returns and its typical evolution during the dayddaund that the average
volatility is high during the market opening hours, thenméases so as to reach a
minimum around lunch time, and increases again steadily tinet market closes.
The average offy(k;t)|, which is a proxy for the “index volatility”, also displayed
a U-shaped pattern similar to that@fk). Studying the intraday pattern of the lead-
ing modes (eigenvalues) evaluated using the cross-ctorelaatrix between stock
returns, we found that the maximum eigenvalyék) (corresponding to the market
mode oraverage correlation) clearlyincreases as time elapses. However, the evo-
lution of the next six eigenvalueg(k), i = 2,...,7 showed that the amplitudes of
thesedecrease with time. Then, we made additional plots of the pair-wisessr
correlation matrix elements and studied their typical etioh during the day. Fi-
nally, we used multidimensional scaling (MDS) in genemtimaps and visualizing
the dynamic evolution of the stock market during the day. Wihe MDS studies
were repeated with daily data, we found that it was easieridoalize or detect
specific sectors, strongly correlated pairs and markettev#Ye suggest that this
type of plots using daily data may be used in designing gir@seof “pairs trade” as
explained earlier, or identifying clusters or detectingkeatrends.
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