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Ten-parameters deformations of the sixth order Peregrine breather solutions of the NLS equation

In this paper, we construct new deformations of the Peregrine breather of order 6 with 10 real parameters. We obtain new families of quasi-rational solutions of the NLS equation. With this method, we construct new patterns of different types of rogue waves. We get as already found for the lower order, the triangular configurations and rings isolated. Moreover, one sees for certain values of the parameters the appearance of new configurations of concentric rings.

Introduction

Since fundamental work of Zakharov and Shabat in 1972, and the first expressions of the quasi-rational solutions given by Peregrine in 1983, a considerable number of studies were carried out. Eleonski, Akhmediev and Kulagin obtained the first higher order analogue of the Peregrine breather [START_REF] Akhmediev | Generation of periodic trains of picosecond pulses in an optical fiber : exact solutions[END_REF] in 1986. Akhmediev et al. [START_REF] Akhmediev | Rogue waves and rational solutions of nonlinear Schrödinger equation[END_REF][START_REF] Akhmediev | Rogue waves, rational solutions, the patterns of their zeros and integral relations[END_REF] , constructed other families of higher order, using Darboux transformations. In 2010, rational solutions of the NLS equation have been written as a quotient of two Wronskians in [START_REF] Dubard | On multi-rogue waves solutions of the NLS equation and positon solutions of the KdV equation[END_REF]. In 2011, an other representation of the solutions of the NLS equation has been constructed in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF], also in terms of a ratio of two Wronskians determinants of order 2N .

In 2012, an other representation of the solutions of the focusing NLS equation, as a ratio of two determinants has been given in [START_REF] Guo | Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions[END_REF] using generalized Darboux transform. Ohta and Yang [START_REF] Ohta | General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation[END_REF] have given a new approach where solutions of the focusing NLS equation by means of a determinant representation, obtained from Hirota bilinear method. A the beginning of the year 2012, one obtained a representation in terms of determinants which does not involve limits [START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF]. These first two formulations given in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF] did depend in fact only on two parameters. Then we found for the order N (for determinants of order 2N), solutions depending on 2N -2 real parameters. The purpose of this study is to present new solutions depending this time on strictly more than two parameters, to get all the possible patterns for the solutions of NLS equation. We construct solutions depending on 10 parameters which give the Peregrine breather as particular case when all the parameters are equal to 0 : it is the reason why we will call these solutions, 10 parameters deformations of the Peregrine of order 6. We first recall the expressions of solutions of the two dimensional focusing nonlinear Schrödinger equation [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF] in terms of wronskians. Then, we construct new quasi rational solutions depending a priori on 2N -2 parameters at the order N . After, one builds various drawings to illustrate the evolution of the solutions according to the parameters. One obtains at the same time triangular configurations and ring structures with a maximum of 21 peaks. The complete analytical expression of the solutions depending on 10 parameters is found, but is too monstrous to be published. These deformations are completely new and gives by new patterns a best understanding of the NLS equation.

Determinant representation of solutions of NLS equation

We recall the results obtained in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF] and [START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF]. We consider the focusing NLS equation

iv t + v xx + 2|v| 2 v = 0. (1) 
In the following, we consider 2N parameters λ ν , ν = 1, . . . , 2N satisfying the relations

0 < λ j < 1, λ N +j = -λ j , 1 ≤ j ≤ N. (2) 
We define the terms κ ν , δ ν , γ ν by the following equations,

κ ν = 2 1 -λ 2 ν , δ ν = κ ν λ ν , γ ν = 1 -λ ν 1 + λ ν , (3) 
and

κ N +j = κ j , δ N +j = -δ j , γ N +j = 1/γ j , j = 1 . . . N. (4) 
The terms x r,ν (r = 3, 1) are defined by

x r,ν = (r -1) ln γ ν -i γ ν + i , 1 ≤ j ≤ 2N. ( 5 
)
The parameters e ν are defined by

e j = ia j -b j , e N +j = ia j + b j , 1 ≤ j ≤ N, (6) 
where a j and b j , for 1 ≤ j ≤ N are arbitrary real numbers. We use the following notations :

A ν = κ ν x/2 + iδ ν t -ix 3,ν /2 -ie ν /2, B ν = κ ν x/2 + iδ ν t -ix 1,ν /2 -ie ν /2,
for 1 ≤ ν ≤ 2N , with κ ν , δ ν , x r,ν defined in (3), ( 4) and [START_REF] Akhmediev | Circular rogue wave clusters[END_REF].

The parameters e ν are defined by [START_REF] Belokolos | Algebro-geometric approach to nonlinear integrable equations[END_REF].

Here, the parameters a j and b j , for 1 ≤ N are chosen in the form

a j = N -1 k=1 ãk ǫ 2k+1 j 2k+1 , b j = N -1 k=1 bk ǫ 2k+1 j 2k+1 , 1 ≤ j ≤ N. (7) 
We consider the following functions :

f 4j+1,k = γ 4j-1 k sin A k , f 4j+2,k = γ 4j k cos A k , f 4j+3,k = -γ 4j+1 k sin A k , f 4j+4,k = -γ 4j+2 k cos A k , (8) 
for 1 ≤ k ≤ N , and

f 4j+1,k = γ 2N -4j-2 k cos A k , f 4j+2,k = -γ 2N -4j-3 k sin A k , f 4j+3,k = -γ 2N -4j-4 k cos A k , f 4j+4,k = γ 2N -4j-5 k sin A k , (9) 
for

N + 1 ≤ k ≤ 2N .
We define the functions g j,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, we replace only the term A k by B k .

g 4j+1,k = γ 4j-1 k sin B k , g 4j+2,k = γ 4j k cos B k , g 4j+3,k = -γ 4j+1 k sin B k , g 4j+4,k = -γ 4j+2 k cos B k , (10) 
for 1 ≤ k ≤ N , and

g 4j+1,k = γ 2N -4j-2 k cos B k , g 4j+2,k = -γ 2N -4j-3 k sin B k , g 4j+3,k = -γ 2N -4j-4 k cos B k , g 4j+4,k = γ 2N -4j-5 k sin B k , (11) 
for

N + 1 ≤ k ≤ 2N .
Then we get the following result :

Theorem 2.1 The function v defined by v(x, t) = exp(2it -iϕ) × det((n jk) j,k∈[1,2N ] ) det((d jk) j,k∈[1,2N ] ) (12) 
is a quasi-rational solution of the NLS equation ( 1)

iv t + v xx + 2|v| 2 v = 0,
depending on 2N -2 parameters ãj , ãj , 1 ≤ j ≤ N , where

n j1 = f j,1 (x, t, 0), 1 ≤ j ≤ 2N n jk = ∂ 2k-2 f j,1 ∂ǫ 2k-2 (x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N n jN +1 = f j,N +1 (x, t, 0), 1 ≤ j ≤ 2N n jN +k = ∂ 2k-2 f j,N +1 ∂ǫ 2k-2 (x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N d j1 = g j,1 (x, t, 0), 1 ≤ j ≤ 2N d jk = ∂ 2k-2 g j,1 ∂ǫ 2k-2 (x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N d jN +1 = g j,N +1 (x, t, 0), 1 ≤ j ≤ 2N d jN +k = ∂ 2k-2 g j,N +1 ∂ǫ 2k-2 (x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N
The functions f and g are defined in (8),( 9), [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF], [START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF].

We will give the proof in a forthcoming paper. The solutions of the NLS equation can also be written in the form :

v(x, t) = exp(2it -iϕ) × Q(x, t)
where Q(x, t) is defined by :

Q(x, t) := f 1,1 [0] . . . f 1,1 [N -1] f 1,N +1 [0] . . . f 1,N +1 [N -1] f 2,1 [0] . . . f 2,1 [N -1] f 2,N +1 [0] . . . f 2,N +1 [N -1] . . . . . . . . . . . . . . . . . . f 2N,1 [0] . . . f 2N,1 [N -1] f 2N,N +1 [0] . . . f 2N,N +1 [N -1] g 1,1 [0] . . . g 1,1 [N -1] g 1,N +1 [0] . . . g 1,N +1 [N -1] g 2,1 [0] . . . g 2,1 [N -1] g 2,N +1 [0] . . . g 2,N +1 [N -1] . . . . . . . . . . . . . . . . . . g 2N,1 [0] . . . g 2N,1 [N -1] g 2N,N +1 [0] . . . g 2N,N +1 [N -1] ( 13 
)
3 Quasi-rational solutions of order 6 with ten parameters

Wa have already constructed in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF] solutions for the cases from N = 1 until N = 6, and in [START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF] with two parameters. Because of the length of the expression v of the solution of NLS equation with eight parameters, we can't give here. We only construct figures to show deformations of the fifth Peregrine breathers.

Conversely to the study with two parameters given in preceding works [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF], we get other type of symmetries in the plots in the (x, t) plane. We give some examples of this fact in the following.

Peregrine breather of order 6

If we choose ã1 = b1 = ã2 = b2 = ã3 = b3 = ã4 = b4 = ã5 = b5 = 0, we obtain the classical Peregrine breather : With other choices of parameters, we obtain all types of configurations : triangles, overlapping triangular-circular and circular configurations with a maximum of 21 peaks.

Variation of parameters

In the case of the variation of one parameter, we obtain different types of configuration with a maximum of 21 peaks. In the cases a 1 = 0 or b 1 = 0 we obtain triangles; for a 2 = 0 or b 2 = 0, we have 3 concentric rings with two of them with 5 peaks and an another with 10 peaks with a central peak. For a 3 = 0 or b 3 = 0, we obtain 3 concentric rings with 7 peaks on each of them without a central peak. For a 4 = 0 or b 4 = 0, we have 2 concentric rings with 9 peaks with inside (for large values of parameters) the apparition of the Peregrine breather of order 2 with 3 peaks. For a 5 = 0 or b 5 = 0, we have only one ring with 2N -1 = 11 peaks with inside (for large values of parameters) the apparition of the Peregrine breather of order N -2 = 4 with 10 peaks. 

Conclusion

In the present paper we construct explicitly solutions of the NLS equation of order N with 2N -2 real parameters. The explicit expression in terms of polynomials of x and t is too monstrous to be published. By different choices of these parameters, we obtained new patterns in the (x; t) plane; we recognized rings as already observed in the case of deformations depending on two parameters [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF]. We get news triangular shapes and multiple concentric rings configurations.

conjectures are verified : the maximum of the modulus of the Peregrine breather of order N = 6 is equal to 2N -1 = 11; in the case of one ring, there is 2N -1 peaks on the ring; we obtain polynomials in x and t of degree N (N + 1) = 42. We hope to continue this study for the higher orders in order to give a better understanding of the phenomenon of rogue waves.
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