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Abstract

This paper presents COSMO, a Bayesian computational
model, which is expressive enough to carry out syllable
production, perception and imitation tasks using motor,
auditory or perceptuo-motor information. An imitation
algorithm enables to learn the articulatory-to-acoustic
mapping and the link between syllables and correspond-
ing articulatory gestures, from acoustic inputs only: syn-
thetic CV syllables generated with a human vocal tract
model. We compare purely auditory, purely motor and
perceptuo-motor syllable categorization under various
noise levels.

Index Terms: Speech perception, Bayesian modeling,
computational model, sensorimotor fusion.

1. Introduction

It is now more or less accepted that motor information is
available during speech perception [1, 2], but two crucial
questions remain largely unanswered. (1) What is the
nature of motor information; why and when is it useful
for perception? (2) How can it be extracted by a listener;
how does he/she learn the perceptuo-motor link?

Indeed, a few works have dealt with the fusion of au-
ditory and motor information, either from the point of
view of speech recognition (e.g. [3]) or to provide some
support to motor or perceptuo-motor theories [4]. But
their answers to question (1) are rather vague, as it is
not made clear why motor information is useful. Ques-
tion 2 is solved by providing motor information extracted
from speech analysis instruments (electromyography [5],
X ray microbeam data [6] or mixtures of laryngography,
electroglottography or electropalatography, and electro-
magnetic articulography [4, 7]) but no real attempt is
done to mimic the way a human might learn and exploit
the perceptuo-motor link.

The present work is based on COSMO, a computa-
tional model we have proposed for studying perceptuo-
motor interactions in speech perception and production.
‘We propose a plausible developmental scenario for learn-

ing the perceptuo-motor link. Then, we use COSMO to
implement audio [8], motor [9, 10] and perceptuo-motor
[11] theories of speech perception, and to compare them
on a task of categorization, under various levels of acous-
tic noise, of synthetic CV syllables generated on a human
vocal tract model. We conclude on the feasibility and in-
terest of fusing auditory and motor information in speech
perception, particularly in adverse conditions.

2. Generating synthetic CV syllables on an
articulatory model of the human vocal tract

2.1. VLAM

We use a realistic vocal tract model, VLAM, the Vari-
able Linear Articulatory Model [12]. Seven articulatory
parameters (Jaw, Larynx, TongueBody, TongueDorsum,
TongueApex, LipHeight, LipProtrusion) describe the po-
sition of the jaw and larynx, and the shape of the tongue
and lips. These parameters can be interpreted in terms of
phonetic and muscular commands [13]. The areas of 28
sections of the vocal tract are estimated as linear com-
binations of these seven parameters, which then allow
to compute the transfer function and the formants [14].
Hence, VLAM is a geometric model enabling to compute
formants from articulatory parameters.

2.2. Generating CV syllables on VLAM

We consider the 9 Consonant-Vowel (CV) syllables ob-
tained by combining the most frequent vowels and plo-
sive consonants: /ba/, /bi/, /bu/, /gal, /gi/, /gu/, /da/, /di/,
/du/. Plosive-Vowel syllables are viewed as a pair of two
articulatory states, one in which the vocal tract is closed
(plosive), and the other one where it is stabilised in a more
opened position (vowel). Thus, we assume that syllables
are characterised by these two articulatory states only, ne-
glecting the geometry and temporal aspects of the trajec-
tory linking them.

Simplified vowels are described by three VLAM ar-
ticulatory parameters (TongueBody, TongueDorsum and



LipHeight), all other parameters being set to a neutral
value (resting position). We define motor vowel proto-
types for /a i u/, using average formant values for French
vowels [15] as targets, and selecting values of the three
VLAM parameters that best fit to the acoustic target. For
each vowel category we generate a set of articulatory con-
figurations by drawing according to a Gaussian probabil-
ity distribution centered on the prototype value, with a
given variance. Configurations with a vocal tract opening
too small for a vowel are rejected.

We adopt the view [16] that plosives are local per-
turbations (vocal tract closing gestures) of vowel config-
urations within CV syllables. /b/, /d/ and /g/ are stop
consonants obtained, from a vowel position, by closing
the vocal tract in different places (respectively bilabial,
alveolar, and velar). Therefore we synthesize plosives by
closing the vocal tract from a vowel position, using the
VLAM Jaw parameter combined with one other articula-
tor: LipHeight for /b/, TongueApex for /d/ and Tongue-
Dorsum for /g/. Hence, plosives are described by five pa-
rameters (Jaw, TongueBody, TongueDorsum, TongueApex
and LipHeight). This choice to model a consonant as a
perturbation added to a vowel means that consonants and
vowels are linked by maximal coarticulation.

In acoustic space, vowels are characterized by the first
two formants (F'1, F'2) which VLAM computes from the
articulatory parameters in the opened state. For plosives,
as F'1 is basically the same (=~ 250H z) for all configura-
tions, characterization is done by (F'2, F'3). As VLAM is
a geometrical model, F'2 and F'3 are computed when the
closed state just starts opening towards the vowel.

Figure 1 displays the generated vowels and plosives,
with formant values consistent with other works [17, 18].

3. Learning and processing CV sequences
in COSMO

3.1. COSMO and its auditory, motor and perceptuo-
motor instantiations

In previous works [19], we have developed a compu-
tational model within the framework of Bayesian Pro-
gramming [20, 21, 22]. We baptized this model COSMO
for “Communicating Objects using SensoriMotor Opera-
tions”. It is grounded in the idea that a communicating
agent, able to behave both as a speaker and as a listener,
has an internal representation of the whole communica-
tion situation. The speaker, willing to communicate about
the object Og, performs a motor gesture M producing a
sensory percept .S enabling the listener to understand and
recover an object Oy,. Efficient communication C' can be
assessed by an external validation system (e.g. deixis).
COSMO is based on a single mathematical object: the
joint probability distribution over the variables of inter-
est, which we choose to decompose as follows.

P(C OL S M Os)
= P(0s)P(M | 0s)P(S | M)P(Oy | S)P(C | Os Or)
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Figure 1: Synthetic syllables in acoustic space. Top:
(Fy, Fy) for vowels; bottom: (Fy, F3) for plosives.

This model provides a framework unifying purely
motor, purely auditive, and perceptuo-motor approaches
to speech production and perception [23]. Here we fo-
cus on speech perception tasks, which amounts to com-
puting probability distributions of the form P(O | S),
i.e. the probability distribution over possible messages,
given a sensory input. In a purely auditory approach,
this gets instantiated as P(Op | S). Purely auditory
perception therefore consists in following a direct asso-
ciation route between sensory inputs and possible mes-
sages. In a purely motor approach, P(Og | S)
> P(M | Os)P(S | M), is computed by combin-
ing an articulatory decoder P(M | Og) with a forward
model P(S | M) of the articulatory-to-acoustic trans-
form. This is commonly referred to as “analysis by
synthesis”. Finally, in a perceptuo-motor approach, in-
formation from the perceptual association route and the
motor simulation route is combined. C' ensures the
coherence of Og and Oy, thanks to which perceptuo-
motor perception is expressed as a Bayesian fusion of
the motor and auditory answers: P(Og=0y, | S C=1)
P(OL | §) Yy, P(M | O5)P(S | M).



3.2. COSMO implementation for CV syllables

We extend the COSMO model to CV syllables process-
ing. The objects, Og from the speaker point of view and
Oy, in alistener perspective, refer to the syllables we con-
sider: /ba/, /bi/, /bu/, /gal, /gi/, /gu/, /da/, /di/, /du/. Since
we model a syllable as a vowel state and a consonant
state, variable .S separates into Sy and S¢, and variable
M into My and M.

In this extended version of COSMO (Figure 2), the
motor system (in red), the auditory system (in blue), and
the perceptuo-motor system (in green) are linked together
by coherence variables A\, which are a mathematical tool
we use to force duplicate variables to have the same val-
ues at all time during probabilistic inference [24]. This
allows to integrate constraints coming from the different
submodels into the global model. Likewise, the specifi-
cation of C in an inference task allows to combine motor
and auditory cues.

The motor system describes a state of knowledge of
the link between the phonetic objects Og and articula-
tory gestures. It involves MY, the articulatory config-
uration of the vowel (TongueBody, TongueDorsum and
LipHeight in VLAM), G, the articulator used to make a
plosive consonant (LipHeight for /b/, TongueDorsum for
/gl, and TongueApex for /d/), and A’C the variation of this
articulator and of the Jaw necessary to achieve a conso-
nant from M{,. The term P(A’, o | M{, G{;) shows that
the consonant is conditioned by the vowel, according to
the “perturbation model” described in section 2.2.

The sensorimotor system describes the knowledge
the agent has of the articulatory-to-acoustic mapping,
i.e. of the mapping between articulatory gestures My,
(vowel) and M¢ (consonant), and formant values Sy and
Sc. The term P(Mc¢ | My ) encodes a support for conso-
nants achievable from each vowel, according to the per-
turbation hypothesis.

The auditory system describes the knowledge the
agent has of the link between phonetic objects Oy, and
sensory variables: S{, (F; and F; for the vowel) and S,
(F5 and Fj for the consonant).

This work is done under the assumption of an up-
stream normalization [25]: the formant values the agent
can produce (Sy,Sc¢) and perceive (S§,,S¢) are ex-
pressed in the exact same acoustic space.

3.3. A developmental scenario for learning model pa-
rameters

Some probability distributions of the model are not
learned. The priors P(Og), P(Or) and P(My ) are
set as uniform probability distributions. The biologi-
cal constraints P(M¢c | My) describing what conso-
nants are achievable from what vowels are hardcoded
into the model. Finally, probability distributions over co-
herence variables, P(Asy | Sv Si,), P(Asc | Sc S¢),
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l \ l / L
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Figure 2: Dependency structure of COSMO, described as
a graphical model (on top), and by its joint probability
distribution (below).

P(/\ILIV | M‘// Mv), P()\MC | M‘l/ Al]\/IC' Mc) and
P(C'| Og Oy,) are set as Dirac probability distributions,
with value 1 when both variables on the right hand side
have the same value.

While for infants learning motor, auditory and
perceptuo-motor knowledge certainly overlaps, we made
the simplifying assumption to separate three learning
stages. Our model follows them in an order consistent
with a real developmental sequence [26]. 1) Learning
auditory categorization. 2) Learning the articulatory-
to-acoustic mapping through babbling and imitation.
3) Learning motor categorization.

3.3.1. Learning auditory categorization

The auditory system, linking perceptual stimuli and
corresponding syllables, is learned by association.
P(S{, S¢ | Or) consists of 9 4-dimensional Gaussian
probability distributions (one for each Op) on the for-
mant space (Fiv, Foy, Foe, F3¢). They are learned in
a supervised manner using all (formant values; syllable)
pairs taken from the data presented Figure 1.

3.3.2. Learning the sensory-motor link through babbling
and imitation

The sensorimotor system is learned without supervision,
following an imitation scenario. Given a syllable acous-
tic target, and using its current state of knowledge, the
model carries out an imitation task, by infering a motor
gesture (My, M) likely to reach the target. This ges-
ture is sent to VLAM, which here plays the role of an ex-
ternal vocal tract simulator. VLAM outputs the formants
(Sv, Sc) corresponding to motor command (My , M¢),
and the model updates its knowledge with the observa-



tion that the chosen motor commands produce a given set
of formants. This knowledge is stored in P(Sy | My)
and P(S¢ | M¢), which are Gaussian probability distri-
butions, evolving through the learning process.

The syllable targets to imitate are taken from the data
presented on Figure 1. At a given step, whether the target
has been reached or not is not taken into account. Each
new observation guarantees that the motor inversion, i.e.
the process driving the choice of motor gestures allowing
to imitate auditory inputs, becomes more and more accu-
rate. This imitation scenario we propose can be viewed
as target-oriented babbling.

3.3.3. Learning motor categorization

The motor system is learned in a supervised way, i.e. syl-
lable labels are given. But while in other works [3, 4] the
articulatory data is provided, here we provide the model
with labeled acoustic data. We use the same (formant val-
ues; syllable) pairs used to learn auditory categorization
in stage 1), and we use the perceptuo-motor link learned
in stage 2) to retrieve motor information. Given an acous-
tic target and the corresponding syllable, the model infers
a motor gesture allowing to reach the target, by invers-
ing the articulatory-to-acoustic mapping, and by using
the state of knowledge at that time of the correspondence
between syllables and motor gestures. The chosen motor
gesture is then used to update parameters of the following
probability distributions: the Gaussian probability distri-
bution P(Mj, | Og), the histogram P(G, | Og), and the
Gaussian probability distribution P(A,~ | M{, G).

3.4. Processing CV syllables in COSMO
3.4.1. Evaluation

At this point, we can compare motor categorization, audi-
tory categorization and their perceptuo-motor fusion. We
use the data already used for the learning processes, and
add to acoustic inputs (Sy, S¢) various levels of white
noise on a perceptive scale using Barks [27]. Then we
assess recognition scores P(O | Sy S¢) from these de-
graded noisy inputs. For each noise level, and for each
model, we compute the correct recognition rate as the av-
erage over all stimuli of the probability of it being at-
tributed to the right category according to this model.
The objective is to quantify how well the motor, auditory
and perceptuo-motor versions of the model generalize, by
measuring their robustness to noise.

3.4.2. Simulations

A comparison of the different model correct recognition
rates over various noise levels is shown Figure 3.

When there is no noise, the audio model is more ac-
curate than the motor model. But as soon as there is some
noise, the motor model, more robust, performs better than
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Figure 3: Motor, audio and perceptuo-motor model ro-
bustness to noise in a syllable classification task.

the audio model. Motor knowledge brings robustness to
noise: this is due to the summation, in the inference,
over all possible motor gestures (see section 3.1). The
perceptuo-motor model performs always better than both
audio and motor models. Motor knowledge complements
audio knowledge, allowing a higher performing sensori-
motor fusion. The overall good performance of the motor
model validates our learning-by-imitation algorithms.

4. Conclusion

These results are to be interpreted in a more general
framework, where it has been shown on very simple
cases [19] that auditory representations are likely to be
more accurate than articulatory ones, particularly when
the articulatory-to-acoustic mapping is highly nonlinear,
while motor representations are more robust in adverse
conditions. This paper generalizes these results to CV
syllable categorization and shows that motor knowledge
brings robustness to noise and, complementing auditory
knowledge, allows a better performing sensori-motor fu-
sion. This work extends and complements a recent series
of modelling attempts to integrate perception and action
in a coherent computational framework [28, 29].

The target-oriented babbling algorithm learning the
sensory-motor link allows the model to acquire and en-
code motor information from acoustic inputs only. A
VLAM version including vocal tract growth during learn-
ing [30], combined with appropriate auditory normaliza-
tion, could enable to simulate developmental changes re-
lated to growth of the articulatory system [31].

In the current version of the model, O-M and O-S
mappings are learned independently, in a supervised way,
given the number of classes. These hypotheses are unre-
alistic, and further work will focus on exploring differ-
ent learning paradigms, where motor and auditory sys-
tems are co-constructed in parallel (as proposed in the
Perception-for-Action-Control Theory (PACT) [11]).
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