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Abstract

This paper is motivated by two applications, namely i) gen-

eralizations of cuckoo hashing, a computationally simple ap-

proach to assigning keys to objects, and ii) load balanc-

ing in content distribution networks, where one is interested

in determining the impact of content replication on perfor-

mance. These two problems admit a common abstraction:

in both scenarios, performance is characterized by the max-

imum weight of a generalization of a matching in a bipartite

graph, featuring node and edge capacities. Our main re-

sult is a law of large numbers characterizing the asymptotic

maximum weight matching in the limit of large bipartite

random graphs, when the graphs admit a local weak limit

that is a tree. This result specializes to the two application

scenarios, yielding new results in both contexts. In contrast

with previous results, the key novelty is the ability to handle

edge capacities with arbitrary integer values. An analysis of

belief propagation algorithms (BP) with multivariate belief

vectors underlies the proof. In particular, we show conver-

gence of the corresponding BP by exploiting monotonicity

of the belief vectors with respect to the so-called upshifted

likelihood ratio stochastic order. This auxiliary result can

be of independent interest, providing a new set of structural

conditions which ensure convergence of BP.

1 Introduction

Belief Propagation (BP) is a popular message-passing
algorithm for determining approximate marginal distri-
butions in Bayesian networks [25] and statistical physics
[22] or for decoding LDPC codes [26]. The popularity of
BP stems from its successful application to very diverse
contexts where it has been observed to converge quickly
to meaningful limits [30], [21]. In contrast, relatively
few theoretical results are available to prove rigorously

∗This work was conducted while the author was with Technicolor.

its convergence and uniqueness of its fixed points when
the underlying graph is not a tree [4].

In conjunction with the local weak convergence
[2], BP has also been used as an analytical tool to
study combinatorial optimization problems on random
graphs: through a study of its fixed points, one can
determine so-called Recursive Distributional Equations
(RDE) associated with specific combinatorial problems.
In turn, these RDEs determine the asymptotic be-
haviour of solutions to the associated combinatorial
problems in the limit of large instances. Representa-
tive results in this vein concern matchings [5], spanning
subgraphs with degree constraints [27] and orientability
of random hypergraphs [19].

All these problems can be encoded with binary val-
ues on the edges of the underlying graph and these con-
texts involve BP with scalar messages. A key step in
these results consists in showing monotonicity of the
BP message-passing routine with respect to the input
messages. As an auxiliary result, the analyses of [27]
and [19] provide structural monotonicity properties un-
der which BP is guaranteed to converge (when messages
are scalar).

The present work is in line with [27], [19] and
contributes to a rigorous formalization of the cavity
method, originating from statistical physics [23], [16],
and applied here to a generalized matching problem
[20]. The initial motivation is the analysis of generalized
matching problems in bipartite graphs with both edge
and node capacities. This generic problem has several
applications. In particular, it accurately models the
service capacity of distributed content delivery networks
under various content encoding scenarios, by letting
nodes of the bipartite graph represent either contents
or servers. It also models problem instances of cuckoo
hashing, where in that context nodes represent either
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objects or keys to be matched.
Previous studies of these two problems [19, 17] es-

sentially required unit edge capacities, which in turn
ensured that the underlying BP involved only scalar
messages. It is however necessary to go beyond such
unit edge capacities to accurately model general server
capacities and various content coding schemes in the
distributed content delivery network case. The exten-
sion to general edge capacities is also interesting in the
context of cuckoo hashing when keys can represent sets
of addresses to be matched to objects (see Section 3.1).

Our main contribution is Theorem 2.1, a law of large
numbers characterizing the asymptotic size of maximum
size generalized matchings in random bipartite graphs
in terms of RDEs. It is stated in Section 2. It is
then applied to cuckoo hashing and distributed content
delivery networks in Section 3, providing generalizations
of the results in [19] and [17] respectively.

Besides obtaining these new laws of large numbers,
our results also have algorithmic implications. Indeed
to prove Theorem 2.1, in Section 4 we state Propo-
sition 4.2, giving simple continuity and monotonicity
conditions on the message-passing routine of BP which
guarantee its convergence to a unique fixed-point. This
result is shown to apply in the present context for the
so-called upshifted likelihood ratio stochastic order. Be-
yond its application to the present matching problem,
this structural result might hold under other contexts,
and with stochastic orders possibly distinct from the up-
shifted likelihood ratio order, to establish convergence
of BP in the case of multivariate messages.

2 Main result

Let G = (V,E) be a finite graph, with additionally
an integer vertex-constraint bv attached to each vertex
v ∈ V and an integer edge-constraint ce attached to
each edge e ∈ E.

A vector x = (xe)e∈E ∈ NE is called an allocation
of G (or a c-capacitated b-matching, in [28]) if

∀e ∈ E, 0 ≤ xe ≤ ce and ∀v ∈ V,
∑
e∈∂v

xe ≤ bv,

where ∂v is the set of edges incident to v in G. We also
write u ∼ v when uv ∈ E.

For an allocation x ofG, we define the size |x| of x as
|x| :=

∑
e∈E xe, and we denote by M(G) the maximum

size of an allocation of G. Our aim is to characterize the
behaviour of M(G)/|V | for large graphs G in the form
of a law of large numbers as |V | goes to infinity.

We focus mainly on sequences of graphs (Gn)n∈N
which converge locally weakly towards Galton-Watson
trees G. In short (we will explain more in detail later),
what this convergence means is that, if we let Rn be a

vertex chosen uniformly at random in Gn, what Rn sees
within any finite graph distance k looks more and more
like the k-hop neighborhood of the root of a Galton-
Watson tree as n → ∞. Such a tree is characterized
by a joint law Φ ∼ (D,W, {Ci}Di=1) for respectively the
degree, vertex-constraint and adjacent edge-constraints
(counted with multiplicity) of the vertices of G. We
always assume that the graphs are locally finite, i.e.
D <∞ a.s.

To sample a Galton-Watson tree G, we first draw
a sample from Φ for the root. Then we construct at
each dangling edge the missing vertex and its other
adjacent edges (therefore maybe creating new dangling
edges), until no dangling edge remains. Independently
for each dangling edge and conditionally on its capacity

c0, we draw a sample (D̃, W̃ , {C̃i}D̃i=1|c0) ∼ Φ̃(·|c0) for
the number of other adjacent edges (not counting the
dangling edge), the capacity of the vertex, and the other
adjacent edge-constraints. Specifically, the distribution
Φ̃ is given by

Φ̃(d̃− 1, b̃, {c̃1, . . . , c̃d̃−1}|c0)

=
Φ(d̃,b̃,{c0,c̃1,...,c̃d̃−1})(1+

∑d̃−1
i=1 1(c̃i=c0))∑

(d,b,{c1,...,cd−1})
Φ(d,b,{c0,...,cd−1})(1+

∑d−1
i=1 1(ci=c0))

.

The construction above can be extended to bipartite
graphs G = (A∪B,E). In that case, there are two laws

ΦA and ΦB for the characteristics (DA,WA, {CA
i }D

A

i=1)

and (DB ,WB , {CB
i }D

B

i=1) of vertices in A and B respec-
tively. These satisfy the consistency relation for all edge
capacities c:

1

E[DA]
E

DA∑
i=1

1(CA
i = c) =

1

E[DB ]
E

DB∑
i=1

1(CB
i = c).

The construction then alternates between Φ̃A and Φ̃B

for vertices at even and odd distances from the root.
We define [z]yx = max {x,min{y, z}} and (z)+ =

max{z, 0}. Our main result allows to compute the limit
M(ΦA,ΦB) of M(Gn)/|An| when (Gn)n∈N converges
locally weakly towards a bipartite Galton-Watson tree
G = (A ∪B,E) defined by ΦA and ΦB :

Theorem 2.1 (Maximum allocation for bipartite
Galton-Watson limits) Provided E[WA] and E[WB ]
are finite, the limitM(ΦA,ΦB) = limn→∞M(Gn)/|An|
exists and equals

M(ΦA,ΦB) = inf

{
E
[
min

{
WA,

∑DA

i=1 Xi(C
A
i )
}]

+E[DA]
E[DB ]

E

[(
WB −

∑DB

i=1

[
WB −

∑
j 6=i Yj(C

B
j )
]CB

i

0

)+

1
(
WB <

∑DB

i=1 C
B
i

)]}
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where for all i, (Xi(c), Yi(c))c∈N is an independent
copy of (X(c), Y (c))c∈N, and the infimum is taken over
distributions for (X(c), Y (c))c∈N satisfying the RDE

Y (c) =


W̃A −

D̃A∑
i=1

Xi(C̃
A
i )

c

0

∣∣∣∣∣CA
0 = c

 ;

X(c) =


W̃B −

D̃B∑
i=1

Yi(C̃
B
i )

c

0

∣∣∣∣∣CB
0 = c

 .

Remark 2.1. A similar result holds when the graphs
are not bipartite; the limiting tree is then simply a
Galton-Watson tree described by a joint distribution Φ.
We set ΦA = ΦB = Φ, and the formula in Theorem 2.1

then computes limn→∞
2M(Gn)
|Vn| =M(Φ,Φ).

3 Applications

We now apply Theorem 2.1 to performance analysis
of generalized cuckoo hashing and distributed content-
delivery networks.

3.1 Cuckoo hashing and hypergraph orientabil-
ity Cuckoo hashing is a simple approach for assigning
keys (hashes) to items. Given an initial collection of n
keys, each item is proposed upon arrival two keys cho-
sen at random and must select one of them. Depending
on the number m of items and the random choices of-
fered to each item, it may or may not be possible to
find such an assignement of items to keys. In the basic
scenario, it turns out that such an assignement will be
possible with probability tending to 1 as m,n→∞ for
all m = bτnc with τ < 1

2 .
The basic problem can be extended in the following

meaningful ways:

• each item can choose among h ≥ 2 random keys
[9, 12, 13];

• each key can hold a maximum of k items [10, 6, 11];

• each item must be replicated at least l times
[14, 19];

• each (item,key) pair can be used a maximum of r
times (not covered previously)

the basic setup corresponding to (h, k, l, r) = (2, 1, 1, 1).
We let τ∗h,k,l,r be the associated threshold, i.e. if
m = bτnc with τ < τ∗h,k,l,r then an assignement of
items to keys satisfying the conditions above will exist
with probability tending to 1 as m,n → ∞; on the
contrary, if τ > τ∗h,k,l,r, then the probability that such
an assignement exists will tend to 0 as m,n→∞.

An alternative description of the present setup con-
sists in the following hypergraph orientation problem.
For h ∈ N∗, a h-uniform hypergraph is a hypergraph
whose hyperedges all have size h. We assign marks in
{0, . . . , r} to each of the endpoints of a hyperedge. For
l < h in N∗, a hyperedge is said to be (l, r)-oriented if
the sum of the marks at its endpoints is equal to l. The
in-degree of a vertex of the hypergraph is the sum of
the marks assigned to it in all its adjacent hyperedges.
For a positive integer k, a (k, l, r)-orientation of an h-
uniform hypergraph is an assignement of marks to all
endpoints of all hyperedges such that every hyperedge
is (l, r)-oriented and every vertex has in-degree at most
k; if such a (k, l, r)-orientation exists, we say that the
hypergraph is (k, l, r)-orientable. We now consider the
probability space Hn,m,h of the set of all h-uniform hy-
pergraphs with n vertices and m hyperedges, and we
denote by Hn,m,h a random sample from Hn,m,h. In
this context, we can interpret Theorem 2.1 as follows:

Theorem 3.1 (Threshold for (k, l, r)-orientability
of h-uniform hypergraphs) Let h, k, l, r be positive
integers such that k, l ≥ r, (h − 1)r ≥ l and k + (h −
2)r − l > 0 (i.e. at least one of the inequalities among
k ≥ r and (h−1)r ≥ l is strict). We define ΦA and ΦB

τ

by (h, l, {r}) ∼ ΦA and (Poi(τh), k, {r}) ∼ ΦB
τ , and

τ∗h,k,l,r = sup
{
τ :M(ΦA,ΦB

τ ) < l
}
.

Then,

limn→∞ P
(
Hn,bτnc,h is (k, l, r)-orientable

)
=

{
1 if τ < τ∗h,k,l,r
0 if τ > τ∗h,k,l,r

This result extends those from [19], where the value of
the threshold τ∗h,k,l,1 was computed. The proof can be
found in the appendix.

3.2 Distributed content delivery network Con-
sider a content delivery network (CDN) in which service
can be given either from a powerful but costly data cen-
ter, or from a large number of small, inexpensive servers.
Content requests are then served if possible by the small
servers and otherwise redirected to the datacenter. One
is then interested in determining the fraction of load
that can be absorbed by the small servers. A natu-
ral asymptotic to consider is that of large number m
of small servers with fixed storage and service capacity
and large collection n of content items.

The precise model we consider follows the statistical
assumptions from [17]. It is described by a bipartite
graph G = (A ∪ B,E), where A is the set of servers
and B the set of contents, |A| ∼ |B|τ . An edge in E
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between a server s in A and a content c in B indicates
that server s stores a copy of content c and is thus able
to serve requests for it.

An assignement of servers to requests corresponds
exactly to an allocation of G provided the vertex-
constraint at server s is its upload capacity, the vertex-
constraint at content c is its number of requests ωc,
and the edge-constraint is ∞. Thus, M(G) is the
maximum number of requests absorbed by the small
servers. Assuming ΦA is the distribution of storage and
upload capacity of the servers and ΦB the distribution
of number of replicas and requests of the contents,
then M(ΦA,ΦB) computed from Theorem 2.1 is the
asymptotic maximum load absorbed by the servers
(in number of requests per server). This represents
a generalization of the results in [17] which handled
only servers with unit service capacity, while our result
applies to any capacity distribution with finite mean.

Furthermore, the addition of edge capacities also
allows us to model more complex cases. Suppose that
all contents may have unequal sizes, say the size of
a randomly chosen content is a random variable L,
and that each content is fragmented into segments of
constant unit size. The storage and upload capacity of
the servers is then measured in terms of size rather than
number of contents, and the servers now choose which
content and also which segment they store.

Assume further that when a server chooses to cache
a segment from content c, instead of storing the raw
segment it instead stores a random linear combination
of all the lc segments corresponding to content c. Then,
when a user requests content c it needs only download
a coded segment from any lc servers storing segments
from c, as any lc coded segments are sufficient to
recover the content c. An assignement of servers to
requests still corresponds to an allocation of G, with
the vertex-constraints at servers unchanged, the vertex-
constraints at content c equal to ωclc and the edge-
constraints linked to a content c equal to ωc. Indeed
a given encoded segment can be used only once per
request of the corresponding content. Then, letting ΦA

and ΦB be the appropriate joint laws, M(ΦA,ΦB) is
the asymptotic maximum absorbed load (in number of
fragments per server).

One could then follow the same path as in [17] and
determine the replication ratios of contents based on
a priori knowledge about their number of requests so
as to maximize the load asymptotically absorbed by
the server pool; this is beyond the scope of the present
paper.

4 Main Proof Elements

We start with a high level description of this section.
The proof strategy uses a detour, by introducing a
finite activity parameter λ > 0 playing the role of
an inverse temperature. For a given finite graph G,
a Gibbs distribution µλ

G is defined on edge occupancy
parameters x (Section 4.1) such that an average under
µλ
G approaches the quantity of interest M(G)/|V | as

λ tends to infinity. Instead of considering directly the
limit of this parameter over a series of converging graphs
Gn, we take an indirect route, changing the order of
limits over λ and n.

We thus first determine for fixed λ the asymptotics
in n of averages under µλ

Gn
. This is where BP comes

into play. We characterize the behaviour of BP asso-
ciated with µλ

G on finite G (Section 4.2), establishing
its convergence to a unique fixed point thanks to struc-
tural properties of monotonicity for the upshifted likeli-
hood ratio order, and of log-concavity of messages (Sec-
tions 4.3 and 4.4). This allows to show that limits over
n of averages under µλ

Gn
are characterized by fixed point

relations à la BP. Taking limits over λ → ∞, one de-
rives from these fixed points the RDEs appearing in the
statement of Theorem 1. It then remains to justify in-
terchange of limits in λ and n. These last three steps
are handled similarly to [19] (see [18]).

Before we proceed we introduce some necessary no-
tation. Letters or symbols in bold such as x denote
collections of objects (xi)i∈I for some set I. For a
subset S of I, xS is the sub-collection (xi)i∈S and
|xS | :=

∑
i∈S xi is the L1-norm of xS . Inequalities be-

tween collections of items should be understood compo-
nentwise, thus x ≤ c means xi ≤ ci for all i ∈ I. For
distributions mi, we let mS(x) :=

∏
i∈S mi(xi). When

summing such terms as in
∑

x∈NS :|x|≤b, x≤c mS(x), we

shall omit the constraint x ∈ NS . Similarly, we let
∗Sm = ∗i∈Smi, where ∗ is the convolution of two vec-
tors (will be defined in Section 4.3).

4.1 Gibbs measure Let G = (V,E) be a finite
graph, with collections of vertex- and edge-constraints
b = (bv)v∈V and c = (ce)e∈E . The Gibbs measure at
activity parameter λ ∈ R+ on the set of all vectors in
NE is then defined, for x ∈ NE , as

µλ
G(x) =

λ|x|

ZG(λ)
1(x allocation of G)

=
λ|x|

ZG(λ)

∏
v∈V

1(
∑
e∈∂v

xe ≤ bv)
∏
e∈E

1(xe ≤ ce),

where ZG(λ) is a normalization factor.
When λ→∞, µλ

G tends to the uniform probability
measure on the set of all allocations of G of maximum
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size. Thus, limλ→∞ µG(|X|) = M(G), where µλ
G(|X|)

is the expected size of a random allocation X drawn
according to µλ

G. Hence, we can compute M(G)/|V | as
follows:

M(G)

|V |
= lim

λ→∞
µλ
G

(∑
v∈V

1

|V |

∑
e∈∂v Xe

2

)

=
1

2
lim
λ→∞

E

[
µλ
G

(∑
e∈∂R

Xe

)]
,(4.1)

where R is a root-vertex chosen uniformly at random
among all vertices in V , and the first expectation is
with respect to the choice of R.

4.2 Associated BP message passing We intro-

duce the set
−→
E of directed edges of G comprising two di-

rected edges −→uv and −→vu for each undirected edge uv ∈ E.

We also define
−→
∂v as the set of edges directed towards

vertex v ∈ V ,
←−
∂v as the set of edges directed outwards

from v, and ∂−→e := (−→wv)w∈∂v\u if −→e is the directed edge
−→vu.

An allocation puts an integer weight on each edge of
the graph. Accordingly the messages to be sent along
each edge are distributions over the integers. We let
P be the set of all probability distributions on integers
with bounded support, i.e.

P =
{
p ∈ [0, 1]N;

∑
i∈N

p(i) = 1

and ∃k ∈ N such that p(i) = 0,∀i > k
}
,

and P̃ the set of distributions in P whose support is an
interval containing 0.

A message on directed edge −→e with capacity ce is
a distribution in P with support in {0, . . . , ce}. The
message to send on edge −→e outgoing from vertex v is
computed from the messages incoming to v on the other
edges via

R(λ)
−→e [m](x) =

λx1(x ≤ cvu)
∑
|y|≤bv−x m∂−→vu(y)∑

t≤cvu
λt
∑
|y|≤bv−t m∂−→vu(y)

,

where we introduced the operator R(λ)
−→e : P̃∂−→e → P̃.

For notational convenience, we write R(λ)
−→e [m] instead of

R(λ)
−→e [m∂−→e ]. We also introduce R−→e for R(1)

−→e . The two
operators are linked via the relationship

R(λ)
−→e [m](x) =

λxR−→e [m](x)∑
t≥0 λ

tR−→e [m](t)
.

We also define an operatorDv : P̃
−→
∂v → R+ meant to

approximate the average occupancy at a vertex v under

µλ
G from the messages incoming to v:

Dv[m] =

∑
|x|≤bv |x|m−→∂v(x)∑
|x|≤bv m−→∂v(x)

.

Finally we denote by R(λ)
G the operator that per-

forms the action of all theR(λ)
−→e for all −→e simultaneously,

i.e. R(λ)
G [m] =

(
R(λ)
−→e [m]

)
−→e ∈−→E

(the same type of nota-

tion will be used for other operators). It is well known
that belief propagation converges and is exact on finite
trees [22]:

Proposition 4.1. In a finite tree G, the fixed point

equation m = R(λ)
G [m] admits a unique solution m(λ) ∈

P̃
−→
E , and it satisfies for every vertex v:

µλ
G

(∑
e∈∂v

Xe

)
= Dv[m

(λ)].

However, to be able to take the limit as the activity
parameter λ goes to infinity as well as to deal with
cases when G is not a tree anymore, we need to study
further the operators R−→e and Dv, which we term the
local operators.

4.3 Structural properties of local operators In
this section, we focus on the one-hop neighborhood of a
vertex v of a graph G, i.e. on vertex v and its set ∂v of
incident edges. We thus only consider the directed edges

in
−→
∂v ∪

←−
∂v. We let bv be the vertex-constraint at v and

c = (ce)e∈∂v be the collection of the edge-constraints on
the edges in ∂v.

Among the many stochastic orders studied for com-
paring distributions (see e.g. [24]), the one best adapted
to the structure of operators R−→e and Dv is the so-called
upshifted likelihood-ratio stochastic order (abbreviated
lr ↑). For two distributions m and m′ in P, we say that
m is smaller than m′ (for the lr ↑ stochastic order) and
we write m ≤lr↑ m

′ if

m(i+ k + l)m′(i) ≤ m(i+ l)m′(i+ k),∀i, k, l ∈ N.

In particular, if m and m′ have the same interval as

support, we have m ≤lr↑ m′ ⇔ m(i+1)
m(i) ≤ m′(i+1)

m′(i) , for

all i for which the denominators are non-zero. In this
paper, we will always use the lr ↑-order when comparing
distributions.

We shall also need the following definition. A
distribution (pj)j≥0 is log-concave if its support is an
interval and pipi+2 ≤ p2i+1, for all i ∈ N. This property
has strong ties with the lr ↑-order. In particular one can
note that p is log-concave if and only if p ≤lr↑ p. We let
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Plc ⊂ P be the set of all log-concave distributions over
integers with finite support, and P̃lc = P̃ ∩ Plc:

Plc =
{
p ∈ [0, 1]N;

∑
i∈N

p(i) = 1, p is log-concave,

and ∃k ∈ N such that p(i) = 0,∀i > k
}
.

The key result of this Section is then the following:

Proposition 4.2 (Monotonicity of the local oper-

ators for the lr ↑-order) The operator R(λ)
−→e is non-

increasing; furthermore, if the inputs of R(λ)
−→e are log-

concave, then the output is also log-concave. The oper-
ator Dv is non-decreasing, and strictly increasing if all
its inputs are log-concave with 0 in their support.

The proof will rely on the following lemma from [29]
establishing stablity of lr ↑-order w.r.t. convolution ∗,
where m ∗m′(x) =

∑
y m(y)m′(x− y):

Lemma 4.1. For a set
−→
S of directed edges, if m1−→

S
≤lr↑

m2−→
S

in P
−→
S , then ∗−→

S
m1 ≤lr↑ ∗−→S m

2.

We shall also need the following notions:

• the reweighting of a vector m by a vector p is

defined by m � p(x) := m(x)p(x)∑
y∈N m(y)p(y) for x ∈ N, for

p and m with non-disjoint supports and |p| <∞ or
|m| < ∞. If p or m is in P, then m � p ∈ P. Note

that R(λ)
−→e [m] = λN �R−→e [m], where λN = (λx)x∈N.

• the shifted reversal of a vector p is defined by
pR(x) = p(bv − x)1(x ≤ bv) for x ∈ N; if p ∈ P
and its support is included in [0, bv], then pR ∈ P
as well.

It is straightforward to check that

Lemma 4.2. Reweighting preserves the lr ↑-order;
shifted reversal reverses the lr ↑-order.

Note that by the previous lemma it suffices to prove
the results of Proposition 4.2 for R−→e and they will then

extend to R(λ)
−→e . For space reasons, we prove here only

the part of the statement concerning R−→e , and only for

inputs in P̃. The rest of the proof can be found in [18].

Proof. Let −→e be an edge outgoing from vertex v, and
m1

∂−→e ,m
2
∂−→e ∈ P̃

∂−→e such that m1
∂−→e ≤lr↑ m2

∂−→e . Let
δ[0,bv ](x) = 1(0 ≤ x ≤ bv); we have δ[0,bv] ∗∂−→e mi(x) =∑

x−bv≤|y|≤x m
i
∂−→e (y). Clearly, δ[0,bv ] is log-concave,

so δ[0,bv ] ≤lr↑ δ[0,bv] and Lemma 4.1 then implies
δ[0,bv ] ∗∂−→e m1 ≤lr↑ δ[0,bv ] ∗∂−→e m2. Lemma 4.2 then says

(
δ[0,bv ] ∗∂−→e m1

)R ≥lr↑
(
δ[0,bv] ∗∂−→e m2

)R
. It is easy to

check that

(4.2) R−→e [mi] = δ[0,ce] �
(
δ[0,bv ] ∗∂−→e mi

)R
;

and as
(
δ[0,bv] ∗∂−→e mi

)R
(0) > 0 Lemma 4.2 again

implies that R−→e [m1] ≥lr↑ R−→e [m2].

If now m∂−→e ∈ P̃∂−→e
lc , then m∂−→e ≤lr↑ m∂−→e and

R−→e [m] ≥lr↑ R−→e [m], hence R−→e [m] ∈ P̃lc.

To pave the way for the analysis of the limit λ→∞,
we distinguish between two collections of messages m−→

∂v

and n−→
∂v

in P̃
−→
∂v and introduce additional operators. For

an edge −→e outgoing from v we define the operator

Q(λ)
−→e : P̃∂−→e → P̃ by Q(λ)

−→e [n] = R(λ)
−→e [λN � n], where

λN � n =
(
λN � n−→e

)
−→e ∈
−→
E
. As reweighting preserves the

lr ↑-order, the operator Q(λ)
−→e is non-increasing. It also

verifies the following useful monotonicity property with
respect to λ, proven in [18]:

Proposition 4.3 (Monotonicity in λ) For n∂−→e ∈
P̃∂−→e , the mapping λ 7→ Q(λ)

−→e [n] is non-decreasing.

As λ → ∞, limiting messages may not have 0 in
their support. We thus define α−→e as the infimum of the
support of m−→e ∈ P, i.e. α−→e = min{x ∈ N : m−→e (x) >

0}, and β−→e as the supremum of the support of n−→e ∈ P̃,
i.e. β−→e = max{x ∈ N : n−→e (x) > 0}. When there
may be confusion, we will write α(m−→e ) and β(m−→e )
for the infimum and the supremum of the support of
m−→e . We also extend the definition of the local operators
given previously so that they allow inputs with arbitrary
supports in N: for an edge −→e outgoing from vertex

v, we define R−→e : P∂−→e → P̃, Dv : P
−→
∂v → R+,

Q−→e : P̃∂−→e → P and S−→e : N∂−→e → N as

R−→e [m](x) =(4.3){
1(x≤ce)

∑
|y|≤bv−x m∂−→e (y)∑

t≤ce

∑
|y|≤bv−t m∂−→e (y)

δ0(x)

if |α∂−→e | ≤ bv
otherwise

Dv[m] =(4.4) { ∑
|x|≤bv

|x|m−→
∂v

(x)∑
|x|≤bv

m−→
∂v

(x)

bv

if |α−→
∂v
| ≤ bv

otherwise

Q−→e [n](x) =(4.5){
1(x≤ce)

∑
|y|=bv−x n∂−→e (y)∑

t≤ce

∑
|y|=bv−t n∂−→e (y)

δce(x)

if |β∂−→e | ≥ bv − ce
otherwise

S−→e (x) = [bv − |x∂−→e |]
ce
0 .(4.6)

Note that the support of R−→e [m] is {0, . . . ,S−→e (α)} and
that of Q−→e [n] is {S−→e (β), . . . , ce}. The following result
is established in [18]:
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Proposition 4.4 (Continuity for log-concave in-
puts and limiting operators) The operators R−→e and
Dv given by equations (4.3),(4.4) are continuous for the

L1 norm for inputs in P̃lc. Also, Q−→e defined in equa-

tion (4.5) satisfies Q−→e [n] = lim ↑λ→∞ Q(λ)
−→e [n] for any

n∂−→e ∈ P̃∂−→e .

It follows naturally that Q−→e is non-increasing.
Moreover, we can extend the results of Proposition 4.2
to the extended operators, i.e. R−→e is still non-increasing
and Dv non-decreasing.

4.4 Convergence of BP on finite graphs The
main result of this section is the following

Proposition 4.5 (Convergence of BP to a unique
fixed point) Synchronous BP message updates accord-

ing to mt+1 = R(λ)
G [mt] for t ≥ 0 converge to the unique

solution m(λ) of the fixed point equation m = R(λ)
G [m].

Proof. For all −→e ∈
−→
E initialize the message on −→e at

m0−→e = δ0 ∈ P̃lc. As R(λ)
G is non-increasing and δ0 is

a smallest element for the lr ↑ order, it can readily be
shown that the following inequalities hold for all t ≥ 0:

m2t ≤lr↑ m
2t+2 ≤lr↑ m

2t+3 ≤lr↑ m
2t+1.

In other words the two series (m2t)t≥0 and (m2t+1)t≥0
are adjacent and hence converge to respective limitsm−,

m+ such that m− ≤lr↑ m
+. Continuity of R(λ)

G further

guarantees thatm+ = R(λ)
G (m−) and m− = R(λ)

G (m+).
Moreover, considering any other sequence of vectors of
messages (m′t)t≥0 with an arbitrary initialization, since

m0 ≤lr↑ m
′0, monotonicity of R(λ)

G ensures that for all
t ≥ 0, one has

m2t ≤lr↑ m
′2t,m′2t+1 ≤lr↑ m

2t+1.

The result will then follow if we can show that m+ =
m−.

We establish this by exploiting the fact that Dv is
strictly increasing for inputs in P̃lc. As m− ≤lr↑ m+

and Dv is non-decreasing for the lr ↑-order for all v ∈ V ,
it follows Dv[m

−] ≤ Dv[m
+] for all v ∈ V . Then,

summing over all vertices of G, we get∑
v∈V

Dv[m
−] =

∑
v∈V

∑
u∼v

∑
x∈N xm−−→uv(x)R−→vu[m

−](x)∑
x∈N m−−→uv(x)R−→vu[m−](x)

=
∑
v∈V

∑
u∼v

∑
x∈N xR−→uv[m+](x)m+

−→vu(x)∑
x∈NR−→uv[m+](x)m+

−→vu(x)

=
∑
u∈V

∑
v∼u

∑
x∈N xR−→uv[m+](x)m+

−→vu(x)∑
x∈NR−→uv[m+](x)m+

−→vu(x)

=
∑
u∈V

Du[m
+].

Hence, in fact, Dv[m
−] = Dv[m

+] for all v ∈ V . As Dv

is strictly increasing for these inputs, m− = m+ = m(λ)

follows.

We finish this Section by stating results on the limiting
behaviour of the fixed point of BP on a fixed finite
graph G as λ → ∞. First, in [7] Chertkov builds upon
the fact an associated linear programming relaxation is
gapless due to the total unimodularity of the adjacency
matrix of bipartite graphs. Even though [7] only deals
with unitary capacities, we simply mention here without
proof (as it is not a necessary step towards our main
theorems) that the same argument can be used in our
setup and yields the following:

Proposition 4.6 (Correctness for finite bipartite
graphs) In finite bipartite graphs,

1

2
lim ↑λ→∞

∑
v∈V

Dv[m
(λ)] = M(G).

Remark 4.1. In view of this proposition, BP can be
used as an algorithm to compute the maximum size of
allocations in finite bipartite graphs to any accuracy
needed, by running the algorithm at finite but large
enough activity parameter λ and computing Dv[m

(λ)]
for all v from the fixed-point messages.

In the non-bipartite case, the fixed-point m(λ) at finite
λ admits a limit m(∞), and the value of

∑
v Dv[m

(∞)]
is equal to

∑
v Fv(α

(∞)), where Fv is defined in the
propositions below (which proofs are in [18]). This sum
is computed from the infimum α(∞) of the support of
m(∞). Furthermore, α(∞) can also be obtained from
a fixed-point equation, of which it is the solution that
gives the lowest value of

∑
v Fv.

Proposition 4.7 (Limit of λ → ∞) m(λ) is non-
decreasing in λ for the lr ↑-order, and m(∞) =

lim ↑λ→∞ m(λ) ∈ P
−→
E
lc is the minimal solution (for the

lr ↑-order) of m(∞) = QG ◦ RG[m
(∞)].

Proposition 4.8 (BP estimate in finite graphs) In
a finite graph G, we have

lim ↑λ→∞
∑
v∈V

Dv[m
(λ)] =

∑
v∈V

Dv[m
(∞)]

=
∑
v∈V

Fv(α
(∞))

= inf
α=SG◦SG(α)

∑
v∈V

Fv(α),

where Fv(α) = min(bv, |α−→∂v|) + (bv − |α←−∂v|)
+.
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Remark 4.2. In a finite tree, there is only one possible
value for α−→e = S−→e ◦S∂−→e [α], where ◦ is the composition
operation, when −→e is an edge outgoing from a leaf v: it
is α−→e = min{bv, ce}. It is then possible to compute
the whole, unique fixed-point vector α = SG ◦ SG(α)
in an iterative manner, starting from the leaves of the
tree and climbing up. This gives a simple, iterative way
to compute the maximum size of allocations in finite
trees, which is the natural extension of the leaf-removal
algorithm for matchings.

4.5 Infinite unimodular graphs This section ex-
tends the results obtained so far for finite graphs to
infinite graphs. As in [27, 19], we use for this the frame-
work of [1]. We still denote by G = (V,E) a possibly
infinite graph with vertex set V and undirected edge set

E (and directed edge set
−→
E ). We always assume that

the degrees are finite, i.e. the graph is locally finite. A
network is a graph G together with a complete sepa-
rable metric space Ξ called the mark space, and maps

from V and
−→
E to Ξ. Images in Ξ are called marks. A

rooted network (G, r) is a network with a distinguished
vertex r of V called the root. A rooted isomorphism
of rooted networks is an isomorphism of the underlying
networks that takes the root of one to the root of the
other. We do not distinguish between a rooted network
and its isomorphism class denoted by [G, r]. Indeed, it
is shown in [1] how to define a canonical representative
of a rooted isomorphism class.

Let G∗ denote the set of rooted isomorphism classes
of rooted connected locally finite networks. Define a
metric on G∗ by letting the distance between [G1, r1] and
[G2, r2] be 1/(1 + δ) where δ is the supremum of those
d ≥ 0 such that there is some rooted isomorphism of
the balls of graph-distance radius bdc around the roots
of Gi such that each pair of corresponding marks has
distance less than 1/d. G∗ is separable and complete in
this metric [1].

Similarly to the space G∗, we define the space G∗∗ of
isomorphism classes of locally finite connected networks
with an ordered pair of distinguished vertices and the
natural topology thereon.

Definition 4.1. Let ρ be a probability measure on G∗.
We call ρ unimodular if it obeys the Mass-Transport
Principle (MTP): for Borel f : G∗∗ → [0,∞], we have∫ ∑

v∈V
f(G, r, v)dρ([G, r]) =

∫ ∑
v∈V

f(G, v, r)dρ([G, r])

Let U denote the set of unimodular Borel proba-
bility measures on G∗. For ρ ∈ U , we write b(ρ) for
the expectation of the capacity constraint of the root
with respect to ρ. Our first result (whose proof can be

found in [18]) is that the BP updates admit a unique
fixed-point at finite activity parameter λ:

Proposition 4.9. Let ρ ∈ U with b(ρ) < ∞. Then,
the fixed point equation m = R(λ)[m] admits a unique
solution α(λ) for any λ ∈ R+ for ρ-almost every marked
graph G.

The proof differs from that in the finite graph case
in that we cannot sum Dv over all the vertices v ∈ V
anymore. Instead, we use the MTP for

f(G, r, v) =

∑
x∈N xm−−→vr(x)R−→rv[m

−](x)∑
x∈N m−−→vr(x)R−→rv[m−](x)

.

The rest of the reasoning goes as in the finite
graph case and the proofs can be found in [18] (using
the MTP again, instead of summing over all directed
edges): Proposition 4.7 is still valid and the following
proposition is analogous to Proposition 4.8:

Proposition 4.10 (BP estimate in unimodular
random graphs) Let ρ ∈ U with b(ρ) <∞,

lim ↑λ→∞
∫
Dr[m

(λ)]dρ([G, r])

=

∫
Dr[m

(∞)]dρ([G, r])

=

∫
Fr(α

(∞))dρ([G, r])

= inf
α=SG◦SG(α)

∫
Fr(α)dρ([G, r]),

where Fv(α) = min(bv, |α−→∂v|) + (bv − |α←−∂v|)
+.

4.6 From finite graphs to unimodular trees
Once Proposition 4.10 holds, the end of the proof for
sequences of (sparse) random graphs is quite systematic
and follows the same steps as in [5], [27] and [19]. We
first need to show that we can invert the limits in n and
λ (see Proposition 6 in [19]):

Proposition 4.11 (Asymptotic correctness for
large, sparse random graphs) Let Gn = (Vn, En)n
be a sequence of finite marked graphs with random weak
limit ρ concentrated on unimodular trees, with b(ρ) <
∞. Then,

lim
n→∞

2Mn

|Vn|
=

∫
Dr[m

(∞)]dρ([G, r])

= inf
α=SG◦SG(α)

∫
Fr(α)dρ([G, r]).

The second step uses the Markovian nature of the
limiting Galton-Watson tree to simplify the infinite re-
cursions α = SG ◦ SG(α) into recursive distributional
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equations as described in Theorem 2.1. Finally, the
fact that the sequence of graphs considered in the intro-
duction converges locally weakly to unimodular Galton-
Watson trees follows from standard results in the ran-
dom graphs literature (see [15] for random hypergraphs
or [8] for graphs with fixed degree sequence). The de-
tails of the rest of the proof of Theorem 2.1 can be found
in the appendix.
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5 Appendix:

The main theorem follows quite straightforwardly from
Propositions 4.10 and 4.11. The missing steps are
standard and can be found in [19]; they resemble much
the computation done in the proof of Proposition 4.10.

Proof. (Proof of Theorem 2.1) Propositions 4.10 and
4.11 together give that

lim
n→∞

2M(Gn)

|An|+ |Bn|
= inf

α=SG◦SG(α)

∫
Fr(α)dρ([G, r])

=

∫
Dr[m

(∞)]dρ([G, r])

We introduce the probability measures ρA and ρB

on U by conditioning on the root being in A or B:

ρA([G, r]) = ρ([G, r])1(r ∈ A)
E[DA] + E[DB ]

E[DB ]
,

and similarly for ρB .
For λ ∈ R+, applying the MTP to ρ ∈ U with

fA(G, r, v) =

∑
x∈N xm

(λ)
−→vr (x)R−→rv[m(λ)](x)∑

x∈N m
(λ)
−→vr (x)R−→rv[m(λ)](x)

1(r ∈ A),

we obtain∫
Dr[m

(λ)]dρA([G, r])

=
E[DA] + E[DB ]

E[DB ]

∫ ∑
v

fA(G, r, v)dρ([G, r])

=
E[DA] + E[DB ]

E[DB ]

∫ ∑
v

fA(G, v, r)dρ([G, r])

=
E[DA] + E[DB ]

E[DB ]

∫ ∑
v

fB(G, r, v)dρ([G, r])

=
E[DA]

E[DB ]

∫
Dr[m

(λ)]dρB([G, r])

Letting λ→∞ yields in turn∫
Dr[m

(∞)]dρA([G, r]) =
E[DA]

E[DB ]

∫
Dr[m

(∞)]dρB([G, r])

= lim
n→∞

M(Gn)

|An|
.

We then follow exactly the steps in the proof of
Proposition 4.10 for ρA instead of ρ. This gives∫

Dr[m
(∞)]dρA([G, r])

= inf
α=SG◦SG(α)

{∫
min(br, |α−→∂r|)dρ

A([G, r])

+
E[DA]

E[DB ]

∫
(br − |α←−∂r|)

+dρB([G, r])

}
As G is an unimodular tree, for any vertex v ∈ V ,

all the components of α−→
∂v

can be chosen independently

(as they are independent in α
(∞)
−→
∂v

, which achieves the

infimum). Then, for −→e incoming to v, α−→e is determined
only from the subtree stemming from the tail of −→e ;
furthermore it satisfies α−→e = S−→e ◦ S∂−→e [α]. However,
the distribution of the subtree at the tail of an −→e ′ which
is an input to S∂−→e is the same as that of the subtree
at the tail of −→e , by the two-step branching property of
the bipartite Galton-Watson tree G. This implies that,
for −→e incoming to a root r ∈ A, α−→e is solution of the
two-step RDE given in the statement of the theorem. As
detailed in Lemma 6 of [3], there is actually a one-to-one
mapping between the solutions of α = SG ◦ SG[α] on
a Galton-Watson tree G and the solutions of the RDE
considered here. This completes the proof.

We now show how Theorem 3.1 follows from The-
orem 2.1. The proof follows the same lines as that in
[19].

Proof. (Proof of Theorem 3.1) For any h-uniform hy-
pergraph Hn on n vertices, we let Gn = (An ∪ Bn, En)
be the associated bipartite graph, where Bn contains
the vertices of Hn and An the hyperedges of Hn. Let
|Bn| = n, and |An| = m = bτnc for some τ . First-of-all,
it is clear by coupling that τ 7→ M(ΦA,ΦB

τ ) as defined
in Theorem 2.1, is a non-decreasing function. Let then
τ > τ∗h,k,l,r. Then, by Theorem 2.1, we have

lim
n→∞

M(Gn)

|An|
< l,

which immediately implies that Gn is a.a.s. not (k, l, r)-
orientable.

Let now τ < τ∗h,k,l,r. According to Theorem 2.1

again, we have limn→∞
M(Gn)
|An| = l but there may
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still exist o(n) hyperedges which are not (l, r)-oriented.
We will then rely on specific properties of Hn,m,h to
show that a.a.s. all hyperedges are (l, r)-oriented. We
follow here a similar path as in [14, 19]. It is easier
to work with a different model of hypergraphs, that
we call Hn,p,h, and that is essentially equivalent to
the Hn,bτnc,h model [15]: each possible h-hyperedge is
included independently with probability p, with p =
τh/

(
n−1
h−1
)
.

We let τ̃ be such that τ < τ̃ < τ∗h,k,l,r, and consider

the bipartite graph G̃n = (Ãn ∪Bn, Ẽn) obtained from
Hn,p̃,h with p̃ = τ̃h/

(
n−1
h−1
)
. Consider a maximum

allocation x̃ ∈ NẼn of G̃n. We say that a vertex
of w ∈ Ãn (resp. a vertex w ∈ Bn) is covered if∑

e∈∂w x̃e = l (resp.
∑

e∈∂w x̃e = k); we also say that

an edge e ∈ Ẽn is saturated if x̃e = c.
Let v be a vertex in Ãn that is not covered. We

define K(v) as the minimum subgraph of G̃n such that:

• v belongs to K(v);

• all the unsaturated edges adjacent to a vertex in
Ãn∩K(v) belong toK(v) (and thus their endpoints
in Bn also belongs to K(v));

• all the edges e for which x̃e > 0 and that are
adjacent to a vertex in Bn ∩K(v) belong to K(v)
(and so do their endpoints in Ãn).

The subgraph K(v) defined in this way is in fact
constitued of v and all the paths starting from v and
alternating between unsaturated edges and edges e with
x̃e > 0 (we call such a path an alternating path). It
is then easy to see that all the vertices in Bn ∩ K(v)
must be covered, otherwise we could obtain a strictly
larger allocation by applying the following change: take
the path (e1, . . . , e2t+1) between v and an unsaturated
vertex in Bn ∩ K(v); add 1 to each x̃ei for i odd, and
remove 1 from each x̃ei for i even; all these changes are
possible due to the way the edges in K(v) have been
chosen, and the resulting allocation has size larger by 1
than |x̃|.

We will now show that the subgraph K(v) is dense,
in the sense that the average induced degree of its
vertices is strictly larger than 2. We first show that
all the vertices in K(v) have degree at least 2. We have
(h − 1)r ≥ l and v is not covered, hence v has at least
two adjacent edges in G̃n which are not saturated, thus
the degree of v in K(v), written degK(v) v, is at least 2.
Let w be a vertex in Bn ∩K(v). By definition, there is
an edge e ∈ ∂w∩K(v) through which w is reached from
v in an alternating path, and x̃e < r. Then, because∑

e∈∂w x̃e = k and k ≥ r there must be another edge e′

adjacent to w such that x̃e′ > 0; such an edge belongs to

K(v) and thus w is at least of degree 2 in K(v). Let now
w be a vertex in Ãn∩K(v), w 6= v. By definition, there
must exist an edge e ∈ ∂w ∩ K(v) such that x̃e > 0.
Because (h− 1)r ≥ l and x̃e > 0 there must be another
edge e′ adjacent to w such that x̃e′ < r; e′ belongs to
K(v) and thus degK(v) w ≥ 2.

Consider a path (e1 = (v1v2), . . . , et = (vtvt+1)) in
K(v) such that v1 ∈ Ãn∩K(v) and any two consecutive
edges in the path are distinct. We will show that at
least one vertex out of 2r consecutive vertices along this
path must have degree at least 3 in K(v), by showing
that x̃e2(i+1)+1

< x̃e2i+1 provided v2(i+1) and v2(i+1)+1

have degree 2 in K(v) for all i. v2(i+1) ∈ Bn ∩ K(v)
must be covered, so if degK(v) v2(i+1) = 2 we must have
x̃e2(i+1)

= k − x̃e2i+1 . Then, if degK(v) v2(i+1)+1 = 2,
all the edges adjacent to v2(i+1)+1 except e2(i+1) and
e2(i+1)+1 must be saturated, thus we must also have
(h − 2)r + x̃e2(i+1)

+ x̃e2(i+1)+1
≤ l. This immediately

yield x̃e2(i+1)+1
+ {k + (h− 2)r − l} ≤ x̃e2i+1 , and thus

x̃e2(i+1)+1
< x̃e2i+1 as claimed. But x̃e2i+1 < r and so

x̃e2i+2r+1 ≤ −1 if the hypothesis that all the vertices
encountered meanwhile have degree 2 in K(v) is correct,
which is thus not possible. Note that we did not need
to assume that the path considered was vertex-disjoint,
hence it is not possible that K(v) is reduced to a single
cycle.

We will now count vertices and edges of K(v) in
a way that clearly shows that the number of edges in
K(v) is at least γ times its number of vertices, with
γ > 1. We can always see K(v) as a collection P
of edge-disjoint paths, with all vertices interior to a
path of degree 2 in K(v) and the extremal vertices
of a path having degree at least 3 in K(v). To form
K(v) we would simply need to merge the extremal
vertices of some of these paths. We have shown before
that each path in P has at most 2r vertices. Let
p = (e1 = (v1v2), . . . , et = (vtvt+1)) be a path in P ,
we let θE(p) = t be the number of edges in p and
θV (p) =

∑
ei∈p

1
degK(v) vi

+ 1
degK(v) vi+1

be a partial count

of the vertices in p (all the interior vertices are counted
as 1 but the extremal vertices are only partially counted
in θV (p), as they belong to many different paths). We
have θV (p) = t− 1+ 1

degK(v) v1
+ 1

degK(v) vt+1
≤ t−1+ 2

3 .

Hence,

θE(p)

θV (p)
≥ t

t− 1 + 2
3

≥ 1

1− 1
6r

> 1.

Furthermore, it is easy to see that∑
p∈P

θE(p) = number of edges in K(v),

∑
p∈P

θV (p) = number of vertices in K(v),
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which shows that the number of edges inK(v) is at least
γ = 1

1− 1
6r

> 1 times the number of vertices in K(v).

Now, it is classical that any subgraph of a sparse
random graph like G̃n with a number of edges equal
to at least γ > 1 times its number of vertices must
contain at least a fraction ε > 0 of the vertices of G̃n,
with probability tending to 1 as n → ∞ (see [15, 14]).
Therefore, K(v) contains at least a fraction ε′ > 0 of
the vertices in Ãn.

There exists a natural coupling between Hn,p,h and
Hn,p̃,h: we can obtain Hn,p,h from Hn,p̃,h by removing
independently each hyperedge with probability p̃− p >
0. This is equivalent to removing independently with
probability p̃ − p each vertex in Ãn. We let gapn =
l|Ãn| − M(G̃n) = o(n). For any uncovered vertex v
in Ãn we can construct a subgraph K(v) as above. If
we remove a vertex w in Ãn ∩K(v) for such a v, then
either this vertex w is itself uncovered, and then gapn
is decreased by at least 1, or w is covered and then it
must belong to an alternating path starting from v and
we can construct a new allocation with size equal to that
of x̃ and in which w is uncovered and there is one more
unit of weight on one of the edges adjacent to v, hence
removing w will also reduce gapn by 1. We proceed
as follows: we attach independently to each hyperedge
a of Hn,p̃,h a uniform [0, 1] random variable Ua. To
obtain Hn,p,h we remove all hyperedges a such that
Ua ≤ p̃− p. This can be done sequentlially by removing
at each step the hyperedge corresponding to the lowest
remaining Ua. Then, at each step, assuming there are
still uncovered vertices v in Ãn we can consider the
union K of the subgraphs K(v), which has size at least
ε′τn. Hence, with positive probability the hyperedge
removed will decrease the value of gapn. By Chernoff’s
bound, the number of hyperedges removed is at least
τn p̃−p

2 with high probability as n→∞, therefore gapn
will reach 0 with high probability as n → ∞ before
we remove all the hyperedges that should be removed.
Hence, Hn,p,h (and thus Hn,bτmc,h) is (k, l, r)-orientable
a.a.s.
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