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Introduction

Our work falls within the scope of real-time systems programming. Usually, real-time systems developers design a system as a set of runnables with real-time constraints. A runnable is a block of code corresponding to a high-level functionality, typically a function. Implementing such systems requires to map each runnable to a real-time task (thread). On one hand, the number of runnables is quite high. For instance, it ranges from 500 to 1000 in the flight control system of an aircraft or of a space vehicle [START_REF] Boniol | A framework for distributing real-time functions[END_REF][START_REF] Forget | A Synchronous Language for Critical Embedded Systems with Multiple Real-Time Constraints[END_REF]. On the other hand, the number of tasks supported by real-time operating systems is limited, rarely over one hundred, for efficiency reasons. Thus, developers cannot map each runnable to a different task. This mapping is currently mainly performed manually and, given the number of runnables to process, this work can be tedious and error-prone.

In our work, we address this question from the scheduling point of view. We model our system as a set of tasks with real-time constraints, where each task is characterized by an execution time, an activation period and a deadline, in the same way as Liu and Layland's task model [START_REF] Cheng | Scheduling algorithms for multiprogramming in a hardreal-time environment[END_REF]. With respect to this model, runnables can simply be considered as finer grain tasks, while threads are just coarser tasks. Thus, mapping runnables to tasks amounts to gathering several tasks into a single one, which we call task clustering. Clustering several tasks implies to choose only one deadline for the cluster, which effectively reduces some task deadlines. As a consequence, we have to check that the system schedulability is preserved after the clustering. Our objective is to automatize the clustering, so as to reach a minimal task number, while preserving the system schedulability.

Related Work

In the literature, task clustering is most often studied in the context of distributed systems implementation, where it consists in distributing a set of tasks over a set of computing nodes (processors or cores). In that context, a cluster corresponds to the set of tasks allocated to the same computing resource. For instance, [START_REF] Ramamritham | Allocation and scheduling of precedence-related periodic tasks[END_REF][START_REF] Ahmadinia | Temporal task clustering for online placement on reconfigurable hardware[END_REF] aim at minimizing communications by clustering tasks that communicate a lot. [START_REF] Palis | Task clustering and scheduling for distributed memory parallel architectures[END_REF][START_REF] Guodong | Task clustering and scheduling to multiprocessors with duplication[END_REF] cluster tasks based on communications, in order to reduce the system makespan. The number of tasks of the resulting implementation is however not reduced by the clustering.

Runnable-to-task mapping is identified as a step of the development process in the augmented real-time specification for AUTOSAR (AUTomotive Open System ARchitecture) [START_REF]RTE Standard Specifications[END_REF]. This document and [START_REF] Scheickl | Automotive real time development using a timing-augmented AUTOSAR specification[END_REF] also provide guidelines defining under which conditions runnables can be mapped to the same tasks. [START_REF] Zhang | Optimization issues in mapping AUTOSAR components to distributed multithreaded implementations[END_REF] proposes an automated mapping in that context, but that work is restricted to runnables that have deadlines equal to their periods. In [START_REF] Curic | Implementing Lustre Programs on Distributed Platforms with Real-time Constrains[END_REF][START_REF] Pagetti | Multitask implementation of multi-periodic synchronous programs[END_REF], the authors study the multi-task implementation of multi-periodic synchronous programs and must allocate the different elements of the program to tasks. The clustering is out of the scope of [START_REF] Pagetti | Multitask implementation of multi-periodic synchronous programs[END_REF], while the heuristic proposed in [START_REF] Curic | Implementing Lustre Programs on Distributed Platforms with Real-time Constrains[END_REF] is very specific to the language structure. This research The number of possible clusterings of a task set is equal to the number of partitions of the set, which is the Bell number [START_REF] Rota | The number of partitions of a set[END_REF]. The Bell number is exponential with respect to the cardinality of the set, so given the huge number of possibilities to explore, we make two choices. First, to check the schedulability of a clustering, we rely on sufficient conditions that have linear time complexity, rather than necessary and sufficient conditions, which are exponential. Second, we use a greedy heuristic to search the partitions space. For now, we do not consider communications and the execution platform is made up of a single processor. These are strong restrictions, which will be lifted in future work. The aim of the present paper is to properly define the problem and to study it in a simple setting, so as to serve as a basis for future work.

Organization The rest of the paper is organized as follows. In Section 2, we describe our clustering model. Section 3 is dedicated to the verification of cluster schedulability. We describe the way we generate solutions and the heuristic applied in Section 4. Section 5 contains the experimental results conducted on large sets of tasks, randomly generated. Finally, we expose our conclusion and the future work involved in the Section 6.

Problem definition

Our model, illustrated in Figure 1, is based on Liu and Layland's model [START_REF] Cheng | Scheduling algorithms for multiprogramming in a hardreal-time environment[END_REF]. A system consists of a synchronous set of real-time tasks S = ({τ i (C i , D i , T i )} 1≤i≤n ) where C i is the worst-case execution time (WCET) of τ i , T i is the activation period, D i is the relative deadline with D i ≤ T i . We denote τ i.k the (k + 1) th (k ≥ 0) instance, or job, of τ i . The job τ i.k is released at the date o i.k = kT i . Every job τ i.k must be completed before its absolute deadline

d i.k = o i.k + D i o i.0 C i d i.0 D i o i.1 C i d i.1 D i o i.2 0 T i T i Figure 1: Task Diagram.

Scheduling

In this paper, we focus on priority-based scheduling policies, either fixed-job (Earliest Deadline First [START_REF] Cheng | Scheduling algorithms for multiprogramming in a hardreal-time environment[END_REF]) or fixed-task priority policies (Deadline Monotonic [START_REF] Joseph | On the complexity of fixed-priority scheduling of periodic, real-time tasks[END_REF]).

Let J denote the infinite set of job J = {τ i.k , 1 ≤ i ≤ n, k ∈ N}. Given a priority assignment Φ where 0 is the lowest priority, we define two functions s Φ , e Φ : J → N, where s Φ (τ i.k ) is the start time and e Φ (τ i.k ) is the completion time of τ i.k in the schedule produced by Φ. Definition 1. Let S = ({τ i } 1≤i≤n ) be a task set and Φ be a priority assignment. S is schedulable under Φ if and only if:

∀τ i.k , e Φ (τ i.k ) ≤ d i.k ∧ s Φ (τ i.k ) ≥ o i.k
Sufficient and necessary tests to check task set schedulability can for instance be found in [START_REF] Leung | A note on preemptive scheduling of periodic, real-time tasks[END_REF][START_REF] Sanjoy | Feasibility problems for recurring tasks on one processor[END_REF]. In the sequel, we will also rely on the notion of laxity. Laxity is a weaker, necessary but not sufficient condition of schedulability. Definition 2. Laxity L (or slack time) indicates the maximum delay that can be taken by the task without exceeding its deadline:

L i = D i -C i .

Clustering

Clustering τ i and τ j with D i ≤ D j produces a cluster τ ij with the following parameters:

C ij = C i + C j T ij = T i = T j D ij = D i
The cluster deadline is the shortest of the two. Taking the minimum deadline ensures we respect both initial deadlines, even though the constraints will be, in general, more stringent than initial constraints.

We call host task, the task with the shortest deadline and guest task the other. In notation τ ij , the first index i corresponds to the host task (shortest deadline) and the second index j to the guest task (longest deadline). We only regroup tasks of identical periods. This is explained below. Definition 3. Let task set S = ({τ i } 1≤i≤n ), the cluster τ xy and S the resulting task set after clustering. We say that τ xy is a valid cluster if and only if:

1. T x = T y 2. L x ≥ C y

S is schedulable

In industrial practices, runnables of different periods are sometimes mapped together, especially when these runnables interact a lot, to minimize communication as explained in [START_REF] Schliecker | System level performance analysis for real-time automotive multicore and network architectures[END_REF]. This possibility makes the clustering more complex because it requires to manage scheduling inside a cluster. For this reason, we do not deal with this option in this paper. This assumption could be relaxed later in extensions via, e.g., hierarchical scheduling [START_REF] Lipari | A methodology for designing hierarchical scheduling systems[END_REF].

The laxity test is just an optimization. It is redundant with the schedulability test but it is simpler to check (constant time). Laxity is depicted in Subfigure 2(a).

A schedulable system might become non schedulable after clustering, as illustrated in Figure 2. Indeed, we notice in Subfigure 2(b) that the task τ b misses its first deadline after the clustering of tasks τ a and τ c . Thus, we must check the resulting task set schedulability after clustering. 

Checking cluster schedulability

Conditions 1 and 2 adressed earlier can be checked trivially in constant time. Nevertheless, condition 3 is more complex. Indeed, existing necessary and sufficient schedulability tests are exponential. As we intend to check schedulability of a large number of solutions (i.e. at each step of the clustering process), using these exact tests is not reasonable. Therefore, we rely on sufficient but not necessary schedulability tests that are in linear complexity. Those tests are more pessimistic than exponential exact tests. It means that we might not get the minimum number of clusters but we are sure to obtain a valid clustering. We think that this trade-off is acceptable in view of the large number of possibilities to explore.

In this section, we present the sufficient tests applied and measure the influence of clustering on these tests for DM and EDF scheduling policies.

Sufficient schedulability conditions

Deadline Monotonic In the DM policy, the task with the shortest deadline is assigned the highest priority. Audsley proposes in [START_REF] Audsley | Deadline monotonic scheduling[END_REF] a sufficient but not necessary schedulability test for DM, with a complexity of O(n). As far as we know, there is no more efficient test for DM in linear complexity. Moreover, results show that this test behaves well for clustering. Assuming tasks sorted in ascending deadline order, we must check that:

∀i, (1 ≤ i ≤ n) : C i D i + I i D i ≤ 1 where I i = i-1 j=1 D i T j • C j (1) 
I i denotes the interference on τ i and corresponds to the maximum time during which the task τ i is prevented from running by higher priority tasks arriving simultaneously in the system.

Earliest Deadline First With EDF, the job with the earliest deadline is always executed first. Devi [START_REF] Devi | An improved schedulability test for uniprocessor periodic task systems[END_REF] proposes a sufficient but not necessary test in O(n) complexity. As far as we know, there is no other more accurate test in linear complexity for EDF, even though experimental results are not as good as those obtained with DM test. Assuming tasks sorted in ascending deadline order, we must check that:

∀i, (1 ≤ i ≤ n) : i j=1 C j T j + 1 D i • i j=1 T j -min(T j , D j ) T j • C j ≤ 1 (2)

Impact of the clustering on schedulability

The goal of this subsection is to deduce schedulability of a task set S obtained after a single clustering on a task set S. We will consider in this subsection a task set S = ({τ i } 1≤i≤n ) sorted in ascending deadline order in which we regroup τ x (C x , D x , T x ) and τ y (C y , D y , T y ) with D x ≤ D y into a cluster τ xy , that produces S . Thereafter, we use the following definition:

Definition 4. Let S be a task set and τ x , τ y ∈ S. Given a priority assignment Φ: 

∆ x y = {τ i |Φ(τ x ) > Φ(τ i ) > Φ(τ y )} 3 
+ Ix Dx • ∀τ i ∈ (∆ n x ∪ ∆ y 0 ), t DM (i) = t DM (i) • ∀τ i ∈ ∆ x y , t DM (i) = C i D i + I i D i with I i = I i + D i Ty • C y
Proof.

• The cluster τ xy takes the interference of the task with the highest priority τ x . Thus, • τ x and τ y have lower priorities than tasks of ∆ n x so they do not interfere on tasks of ∆ n x , and:

I
∀τ i ∈ ∆ n
x , t DM (i) = t DM (i) Similarly, τ x and τ y have higher priorities than tasks of ∆ y 0 both before and after clustering so their interference on tasks of ∆ y 0 does not change. So, ∀τ i ∈ ∆ y 0 , t DM (i) = t DM (i)

• After the clustering, τ y has higher priority than other tasks from ∆ x y . Thus, after clustering τ y interferes on tasks of ∆ x y for D i Ty • C y and ∀τ i ∈ ∆ x y ,

I i = I i + D i Ty • C y .
Remark 1. In a counterintuitive manner, if a task set is not considered valid by the sufficient test (1) for DM, then a clustering of this task set can be valid according to this same test. This is illustrated in Example 1 and might be explained by the suboptimality of test used. Indeed, exact tests show that the task set is schedulable before and after clustering.

Example 1. Table 1 displays values of the DM test applied on each task when we cluster tasks τ b and τ e . We observe that the task set becomes schedulable according to the sufficient test because no test exceeds 1, while the task set was not considered schedulable before clustering. 

τ i C i D i T i t DM (i) t DM (i) a 2 
t EDF (i) = i j=1 C j T j + 1 D i • i j=1 T j -min(T j ,D j ) T j
• C j and let function t EDF denote this test applied after the clustering (i.e. in S ).

Property 2. • ∀τ i ∈ ∆ n x , t EDF (i) = t EDF (i) • ∀τ i ∈ (∆ x y ∪ {τ x , τ y }), t EDF (i) = t EDF (i) + Cy Ty + 1 D i • Ty-min(Ty,Dx) Ty • C y • ∀τ i ∈ ∆ y 0 , t EDF (i) = t EDF (i) + 1 D i • min(Dy,Tx)-min(Dx,Tx) Tx • C y Proof.
• τ x and τ y have lower priorities than tasks of ∆ n x so they do not interfere on tasks of ∆ n x , then ∀τ i ∈ ∆ n x , t EDF (i) = t EDF (i)

• ∀τ i ∈ ∆ x y , as τ y now has higher priority than tasks of ∆ x y , τ y interferes on τ i . Thus, the test varies as follows:

t EDF (i) = t EDF (i) + Cy Ty + 1 D i •
Ty-min(Ty,Dx) Ty

• C y

• Now, we consider tasks belonging to ∆ y 0 . The first sum of the test remains unchanged because:

Cx Tx + Cy Ty = Cx+Cy T xy
Then, in the second part of the test, we have to substract the effect of τ y in the sum and to add that of τ x , which receives execution time of τ y in the computation. So we have ∀τ i ∈ ∆ y 0 :

t EDF (i) = t EDF (i) + 1 D i • T x -min (D x , T x ) T x • C y - 1 D i • T y -min (D y , T y ) T y • C y Now as T y = T x , =⇒ t EDF (i) = t EDF (i) + 1 D i • (T x -min (D x , T x )) -(T x -min (D y , T x )) T x • C y =⇒ t EDF (i) = t EDF (i) + 1 D i • min (D y , T x ) -min (D x , T x ) T x • C y Corollary 1.
If a task set is not considered valid by the sufficient test (2) for EDF, then no clustering of this task set is valid according to this same test.

Proof. Suppose that the task set S = ({τ i } 1≤i≤n ) is not schedulable under EDF. Then there exist a task τ i such that t DM (i) > 1. Suppose we try to cluster τ x and τ y into τ xy .

• if τ i ∈ (∆ n x ∪ ∆ x y ∪ ∆ y 0 ), t EDF (i) ≥ t EDF (i) > 1 • if τ i = τ x , t EDF (i) = t EDF (xy) > t EDF (x) > 1 • if τ i = τ y , τ y-1 ∈ ∆ x y , t EDF (y) = y-1 j=1 C j T j + C y T y + 1 D y • y-1 j=1 T j -min(T j , D j ) T j • C j + 1 D y • T y -min(T y , D y ) T y • C y From Property 2, t EDF (y -1) = y-1 j=1 C j T j + 1 D y-1 • y-1 j=1 T j -min(T j , D j ) T j • C j + C y T y + 1 D y-1 • T y -min(T y , D x ) T y • C y

Now as 1

Dy-1 > 1 Dy and D x ≤ D y , then t EDF (y -1) > t EDF (y) and t EDF (y -1) > 1 Thanks to Property 1 and Property 2, we can deduce schedulability of a task set S after clustering from the task set S without reapplying the test on the entire task set.

Minimizing the number of tasks

In this section, we detail our approach for minimizing the size of the initial task set by successive clusterings. Due to size of the search space, we rely on a heuristic instead of an exact algorithm.

Our problem consists in finding a partition of the task set that is schedulable and with a minimum number of subsets. A partition of a set X is a set of nonempty subsets of X such that every element n in X is in exactly one of these subsets. The number of partitions of a set is the Bell number [START_REF] Rota | The number of partitions of a set[END_REF]. The Bell number is exponential with respect to the size of X and can be computed by the following recurrence relation:

B n+1 = n k=0 n k B k with B 0 = 1
To give a better idea of the size of the search, notice that for instance, B 500 10 844 .

Partitions enumeration

Our technique is derived from a simple recursive method found in Section 17.1 of [START_REF] Arndt | Matters Computational: Ideas, Algorithms, Source Code[END_REF] (this method is described in Algorithm 1). For instance, for the set {{A}, {B}, {C}} we generate the following 3 partitions in the first call of Algorithm 1:

{{A}, {B, C}} {{A, C}, {B}} {{A, B}, {C}}
We apply recursively this principle for each partition generated until we obtain a partition with a unique element. This situation corresponds having all tasks regrouped in a single cluster. This enumeration produces a tree as illustrated in Figure 3. Notice that this recursive algorithm generates many duplicates. For example, we can observe in the Figure 3 that the partition {{A}, {B, C, D}} appears twice. However, our heuristic always selects a single child by recursive call so we do not encounter duplicates.

Algorithm 1 Partitions enumeration Function enumerate(S)

Require: S = ({τ i } 1≤i≤n ): initial set of tasks in ascending deadline order

for i = n -1 to 0 do for j = i -1 to 0 do S ← {S \ {τ i , τ j }} ∪ τ ij print(S )
enumerate(S ) end for end for

Heuristic

Our heuristic is based on greedy best-first search (greedy BFS) [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF] and is detailed in Algorithm 2. At each recursive call we choose the most promising local child (partition generated as in Section 4.1) according to a heuristic evaluation function h(S), such that Indeed, both for DM and EDF, the test applied on each task must not exceed 1. In addition, the closer to 1 we are, the less we have margin to regroup the task with another. This is why we consider the sum of tests as heuristic evaluation function.

h(S) = |S| k=0 t(k) where t is either t DM or t EDF
Lemma 1. The complexity of Algorithm 2 is O(n 4 ).

Proof. The number of children generated with Algorithm 1 from a partition of i elements is equal to i× (i -1)/2. We only explore one among all visited children at each step with our greedy heuristic. Thus, the maximum number of visited partitions is equal to

n i=0 i×(i-1) 2 
. This sum corresponds to the sum of the first n triangular numbers (also called tetrahedral numbers) and its closed-form expression is f (n) = n(n+1)(n+2) 6 [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF]. Hence, this sequence complexity is O(n 3 ). We apply a sufficient schedulability test in O(n) complexity (whether with DM or EDF) on each visited partition, so the heuristic complexity is

O(n 3 ) × O(n) = O(n 4 ).
Algorithm 2 Automated task mapping algorithm Function mapping(S) Require: S = ({τ i } 1≤i≤n ): initial set of tasks in ascending deadline order minSumTests ← n + 1 minSet ← null for i = n -1 to 0 do //find the best child 5 Experimental results

for j = i -1 to 0 do if T i == T j then if C i + C j ≤ min(D i , D j ) then //

Task set generation

We chose the following model to generate random task sets:

• U i : each task utilization is computed following the classic UUnifast [START_REF] Bini | Biasing effects in schedulability measures[END_REF] method. We denote u the overall utilization factor of the processor.

• T i : each task period is uniformly distributed between a set of 10 periods. We observed that in industrial real-time embedded systems, the number of different tasks periods is usually limited (most often less than 10).

• C i = T i × U i • D i = round((T i -C i ) × rand(d1, d2
)) + C i with 0 ≤ d1 ≤ d2. This computation comes from [START_REF] Goossens | Limitation of the hyper-period in real-time periodic task set generation[END_REF]. We notice that d1 = d2 = 1 corresponds to implicit deadlines and d1 ≤ d2 = 1 to constrained deadlines.

Results

We have implemented the heuristic in Scala [START_REF] Odersky | Programming in Scala, 2/e. Artima Series[END_REF]. Task sets range from 50 to 500 tasks by step of 50 tasks. Maximum utilization factor is fixed at 0.70 for DM and at 0.75 for EDF. Indeed, our tests show that there is almost no schedulable task set (according to the sufficient tests used) generated above those values. We only take into account task sets that are initially schedulable in our computations. We compute average results by executing several times the heuristic on randomly generated task sets with the same parameters. We observe in Figure 4(a) that the technique is efficient under DM. Indeed, the number of tasks obtained after clustering is approximately linear in the number of tasks and the slope of the curve is rather limited. However, results under EDF test in Figure 4(b) are not as satisfying. Clustering is less efficient, especially when the utilization goes over 0.6. This difference probably comes from the fact that the clustering affects more the test under EDF than the test under DM. Indeed, the latter only alters the test on intermediary tasks when the former alters the test on all tasks with lower priority than the guest task. Finally notice that, the higher the utilization factor is, the less the tasks are clustered.

Figure 5 and 100% of the period minus the execution time. We can see in Figure 5(a) that the number of clusters is minimal (equal to the number of different periods) when the deadline lower bound is about 40% of the period minus the execution time. Figure 5(b) shows that no clustering is possible before that the upper bound gets to around 60%. Above that bound, the efficiency of the clustering improves steadily (the number of clusters decreases).

Figure 6(a) and Figure 6(b) present the clustering for the same deadline variations with EDF. The overall trends of the curves are similar, though the clustering is overall less efficient.

These results show that the deadline bounds have the most significant impact on the clustering (even more than the number of tasks for DM). Both with DM and EDF, the clustering is the most efficient with deadlines in the interval [0.5,1]. Indeed, the closer deadlines are to the period, the more margin is left for the clustering. The clustering is even maximal in that interval because we get as many tasks as the number of different periods, both for DM and EDF. Notice that according to further experiments, this remains true for a higher number of distinct periods.

Conclusion and future work

We proposed a heuristic to automatically reduce a large set of independent tasks to a smaller set, while preserving the schedulability of the task set. The current assumption that tasks are independent is quite restrictive and will be lifted in future work. The present work is meant to lay the foundations of automated task clustering, which, as far as we know, has not been studied formally before.

Experimental results point out that under some ranges of deadline bounds, the clusterings are maximal (i.e. the number of tasks equals the number of periods). Now, as these ranges are actually realistic, it would be interesting to try to formally proove that we can always reach maximal clusterings for this bounds. Such a property would allow to directly gather all the tasks with the same periods without using any complex clustering algorithm.
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  DM denote this test applied after the clustering (i.e. in S ).

	Property 1.	Cx+Cy Dx

.2.1 Deadline Monotonic Let function t DM denote test (1) applied to a single task in S, i.e. t DM (i) = C i D i + I i D i and function t • t DM (xy) =

Table 1 :

 1 Values of DM tests before and after clustering of tasks τ b and τ

			6 15	0.33	0.33
	b	4	7 20	0.86	-
	c	3 15 19	0.6	0.67
	d	4 17 17	0.88	0.94
	e	1 18 20	1.11	-
	be 5	7 20	-	1.0

e

3.2.2 Earliest Deadline First

Let function t EDF denote test (2) applied to a single task in S, i.e.