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Abstract

In this paper, we are interested in parallel identical machine scheduling problems

with preemption and release dates in case of a regular criterion to be minimized.

We show that solutions having a permutation flow shop structure are dominant

if there exists an optimal solution with completion times scheduled in the same

order as the release dates, or if there is no release date. We also prove that, for

a subclass of these problems, the completion times of all jobs can be ordered

in an optimal solution. Using these two results, we provide new results on

polynomially solvable problems and hence refine the boundary between P and

NP for these problems.

Keywords: Scheduling, Identical machines, Preemptive problems, Dominant

structure, Agreeability, Common due date

1. Introduction

1.1. Definition of the problem

The problem considered in this paper can be expressed as follows: there are

n independent jobs 1, 2, . . . , n and m identical machines M1,M2, . . . ,Mm. Each

job has a processing time pj and can be processed on any machine, but only
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on one machine at a time. Preemption is allowed, meaning that a job can be

interrupted and resumed on an other machine. There exists a release date rj

for each job j, i.e. no job can start before its release date. We are interested

in minimizing a regular (i.e. non-decreasing) function f . Usually, f is either
∑

fj or max fj , fj being any regular function of the completion time Cj of

job j. Using the standard scheduling classification (Graham et al. (1989)), this

problem is denoted P |pmtn, rj |f .

1.2. Related works

Parallel identical machine scheduling problems are one of the most stud-

ied topic in scheduling theory. For complexity results, the authors may refer

to the websites maintained by Dürr (2013) and Brucker and Knust (2013). A

very recent survey on parallel machine problems with equal processing times,

with or without preemption, is produced by Kravchenko and Werner (2011).

For different classical criteria, setting equal processing times makes a prob-

lem become polynomial-time solvable. For example, Baptiste et al. (2007)

prove that P |pmtn, rj , pj = p|
∑

Cj can be solved in polynomial-time whereas

P |pmtn, rj |
∑

Cj is NP-Hard (Du et al. (1990)). For the total number of late

jobs
∑

Uj criteria, the exact same behavior happens: Baptiste et al. (2004)

prove that P |pmtn, pj = p|
∑

Uj is polynomial-time solvable, and P |pmtn|
∑

Uj

is NP-Hard (see Lawler (1983)). For the total tardiness
∑

Tj , P |pmtn, pj =

p|
∑

Tj is solvable in polynomial-time (see Baptiste et al. (2004)) but P |pmtn|
∑

Tj

is NP-Hard (see Kravchenko and Werner (2013)). Adding weights on criteria

make problems much more difficult since P2|pmtn|
∑

wjTj and P |pmtn, pj =

p|
∑

wjUj are NP-Hard (see Bruno et al. (1974) and Brucker and Kravchenko

(2006)) Note that the complexity status of P2|pmtn, pj = p|
∑

wjTj is still

open. Finally, by using linear programming techniques, results provided in

Lawler and Labetoulle (1978), and also in Blazewicz et al. (1976) and Slowinski

(1981), imply that P |pmtn, rj |Lmax is solvable in polynomial-time. For a survey

on mathematical programming formulations in machine scheduling, the reader

can refer to Blazewicz et al. (1991).
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1.3. Contribution of the paper

Baptiste et al. (2007) proved the existence of a dominant structure which

allows to solve the problem P |pmtn, rj , pj = p|
∑

Cj in polynomial-time by

linear programing. In this paper, we extend this result to more general criteria

and to some problems with non identical processing times, which implies new

polynomial-time results, such as, to mention a few, for problems P |pmtn, dj =

d|
∑

Tj , or P |pmtn, rj , pj = p, dj = d|
∑

wjUj .

More precisely, in section 2, we provide a dominant structure for all the

problems of the form P |pmtn, rj |f for which there exists an optimal solution

such that the completion times follow the same order as the release dates. Note

that our result implies that, for any problem of the type P |pmtn|f (i.e. without

release dates), the structure is dominant. We also prove that, if we are able to

compute an order between optimal completion times of the different jobs, we

can solve these problems in polynomial-time by linear programming. Section 3

is dedicated to finding problems for which such an order exists. We discuss the

implications of our results in term of complexity on classical criteria in section 4

and make some conclusions in section 5.

2. A dominant structure

We are looking at solutions having a Permutation Flow Shop-like structure.

In order to define this kind of schedules, we introduce some notations and con-

cepts.

A piece of a job is a part of the job that is scheduled without interruption.

We say that a job j is processed at time t if there is a machine on which a piece

of j starts at time t1 ≤ t and ends at time t2 > t. We denote by C(j, t) (resp.

M(j, t)) the completion time (resp. machine) of j when it is processed at time

t. For any time t, J(t) denotes the set of jobs processed at time t.

A non-delay schedule (called originally “permissible left shift”, see Giffler

and Thompson (1960)) is such that, if a machine is idle during a time interval

[t, t+ ǫ[ (ǫ > 0), no piece of length ǫ′ ≤ ǫ of a job processed at a time t′ > t can

be processed at time t.
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We also define a vertically ordered schedule in the following manner: at any

time t, if J(t) = {j1, j2, . . . , jk} and j1 < j2 < · · · jk, we have M(ji, t) = Mi,

i = 1, 2, . . . , k.

Figure 1 illustrates these properties: job j2 verifies the non-delay property

since none of its pieces can be processed earlier. On the contrary, the property

is not verified by job j1 because one piece can be scheduled at time 1. The

schedule is vertically ordered during time interval [3, 4], but it is not during

time interval [2, 3].

M
1

2
M

3 4

2 1

2

r r
1 2

10 2

1

Figure 1: Non-delay and vertical order properties

Remark 1. When preemption is allowed, non-delay schedules are dominant

for regular criteria since it is always possible to move a piece of a job to an

earlier idle time interval without increasing the objective function. Moreover,

vertically ordered schedules are also dominant since the completion times of the

jobs remain the same if the pieces of jobs scheduled in the same time interval

are reassigned to processors in order to respect the vertical order.

We assume without loss of generality that r1 ≤ r2 ≤ · · · ≤ rn for the

remainder of the paper. Now, let us characterize the structure:

Definition 1. A schedule is said to be Permutation Flow Shop-like (PFS −

like) if

1. it is vertically ordered,

2. no machine processes more than one piece of each job,

3. the scheduling order on the different machines is the same.
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Figure 2: A PFS − like schedule for P |pmtn, rj |f

An example of PFS − like schedule is given in Figure 2.

It is interesting to mention that for the problem P |pmtn, rj , pj = p|
∑

Cj ,

Baptiste et al. (2007) show that a similar structure is dominant. This result

is very specific since it deals with equal processing times and the considered

objective function is the total completion time. In this paper, we prove the

existence of such a structure for more general problems.

Now, we express our central result:

Theorem 1. If P |pmtn, rj |f has a solution S with completion times C1 ≤ C2 ≤

· · · ≤ Cn, there exists a non-delay PFS − like solution S′ such that C ′

1 ≤ C ′

2 ≤

· · · ≤ C ′

n and C ′

j ≤ Cj for 1 ≤ j ≤ n.

Proof. By Remark 1, we assume without loss of generality that S is a

non-delay schedule which is vertically ordered. Let us define the following two

properties:

A(j): If i and i′ are two jobs such that 1 ≤ i ≤ j and i < i′ no machine processes

a piece of job i′ before a piece of job i.

B(j): No machine processes more than one piece of job i, for 1 ≤ i ≤ j.

If A(n) and B(n) are true, S is a non-delay PFS− like solution. Otherwise,

we prove by induction on the job number that S can be transformed into a

non-delay and vertically ordered schedule S′ such that A(n) and B(n) are true.

Base step.
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Figure 3: The basic transformation used in Theorem 1.
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By Remark 1, vertically-ordered schedules are dominant and hence each

piece of job 1 is processed by machine M1.

If A(1) is true then B(1) must be true: otherwise M1 processes two pieces of

job 1 that are separated by an idle time interval, which contradicts the non-delay

assumption.

So, suppose A(1) is false and consider the smallest t such that a job k > 1

starts onM1 at t before a piece of job 1. Let t′ be the starting time of this piece of

job 1 (see case 1 of Figure 3). The non-delay property implies that all machines

are busy during time interval [t, t′[. Since |J(t)| = m, and |J(t′)−{1}| ≤ m−1,

there is a piece of a job l processed at time t that is not processed at time

t′. Moreover, since C1 ≤ Cl (by definition of S), there is also another piece

of job l that starts at time t′′ > t′. Let δ = min(t′′ − t′,mini∈J(t){C(i, t) −

t},mini∈J(t′){C(i, t′) − t′}). We exchange the piece of job l processed during

time interval [t, t + δ[ with the piece of job 1 processed during time interval

[t′, t′ + δ[. Finally, we reassign pieces of jobs processed during time interval

[t, t+ δ[ and pieces of jobs processed during time interval [t′, t′ + δ[ respectively,

so that the schedule remains vertically ordered. Only the completion time of job

1 may decrease and the new schedule is still a non-delay one. Moreover, there

is now a piece of job 1 processed on machine M1 during time interval [t, t+ δ[.

If t > r1, the non-delay property of S and the definition of t imply that there is

a piece of job 1 processed during time interval [r1, t[, so there is now one single

piece of job 1 processed during time interval [r1, t+ δ[ by machine M1. If A(1)

is true, so is B(1). Otherwise, we consider again the smallest τ such that a job

k > 1 starts on M1 at τ before a piece of job 1: since τ ≥ t + δ and δ > 0 we

have τ > t. Therefore, by repeating this procedure, either we do not find such

a τ or we reach the end of the schedule: in both cases A(1) becomes true, so

does B(1).

Induction step.

Now, suppose there is a non-delay and vertically ordered schedule such that

A(j − 1) and B(j − 1) are true for j ≥ 2, and assume that at least one of the

properties A(j) and B(j) is false.
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If A(j) is true then B(j) must be true. Indeed, suppose for the sake of

contradiction that B(j) is false. In this case, there is one machine Mq which

processes two pieces of job j. Let t and t′ > t be their completion and starting

times, respectively. If the machine is idle during time interval [t, t′[, we get a

contradiction. Indeed, if q = 1 the non-delay assumption is not verified. If

q > 1, let i be a job processed at time t′ on a machine Mp, with p < q: since the

schedule is vertically ordered, we have i < j, and since A(j−1) is true, no piece

of job j can be processed by machine Mp during time interval [r1, t
′[. Hence, no

piece of job j is processed by machines M1,M2, . . . ,Mq−1 during time interval

[t, t′[, and the piece of job j starting at time t′ can start earlier at time t, which

contradicts the non-delay assumption.

So, suppose A(j) is false, and let us consider the smallest value t such that a

piece of a job k > j starts at time t, and a piece of job j starts at time t′ > t, on

a machine Mq (see case 2 of Figure 3). Since k > j and the schedule is vertically

ordered, no piece of job j can be processed by machines Mq+1,Mq+2, . . . ,Mm

during time interval [t, C(k, t)[. If q = 1, no piece of job j can be processed

during this time interval. Else, let i and i′ be the jobs processed respectively at

time t and t′ by machine Mq−1. Since the schedule is vertically ordered, we have

i′ < j, and since A(j − 1) is true we have i ≤ i′, so we get i < j. Consequently,

no piece of job j can be processed by machines M1,M2, . . . ,Mq−1 during time

interval [t, C(k, t)[.

Since it is a non-delay schedule and rj ≤ rk ≤ t, all machines are busy

during time interval [t, t′[: therefore there is a piece of a job l > k processed

at time t that is not processed at time t′. Since Cj ≤ Cl (by definition of

S), there is also another piece of job l that starts at time t′′ > t′. Let δ =

min(t′′ − t′,mini∈J(t){C(i, t) − t},mini∈J(t′){C(i, t′) − t′}). We exchange the

piece of job l processed during time interval [t, t + δ[ with the piece of job j

processed during time interval [t′, t′ + δ[. Finally, we reassign pieces of jobs

processed during time interval [t, t+ δ[ and pieces of jobs processed during time

interval [t′, t′ + δ[ respectively, so that the schedule remains vertically ordered.

Again, only the completion time of job j may decrease, and we still have
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a non-delay schedule. Moreover there is a piece of job j processed on machine

Mq during time interval [t, t + δ[. If there is also a piece of job j processed by

Mq before time t, it must end at time t (by definition of t and because of the

non-delay assumption). Hence, machine Mq processes no piece of a job k > j

and only one single piece of job j during time interval [0, t+ δ[. Since δ > 0, we

can repeat the procedure, as in the ”base step”, and get a schedule with A(j)

and B(j) being true. �

Remark 2. For problems without release date, i.e. of the form P |pmtn|f , non-

delay PFS − like schedules are dominant since, by renumbering the jobs, there

always exists an optimal solution such that C∗

1 ≤ C∗

2 ≤ · · · ≤ C∗

n.

This theorem gives a very precise structure on an optimal solution for prob-

lems of the form P |pmtn, rj |f for which there exists an optimal solution S∗

such that rj < rk =⇒ C∗

j ≤ C∗

k . Moreover, this structure is very interest-

ing combined with a dominant order for the jobs’ completion times, because

it can lead to the time-polynomiality of a large class of problems. Indeed, the

linear programming approach proposed by Baptiste et al. (2007) for problem

P |pmtn, rj , pj = p|
∑

Cj can be extended to regular criteria which are separa-

ble piecewise continuous linear, such as
∑

wjTj for example.

Let us modify their linear program. The value p is replaced with pj in the job

processing time constraints, and the objective function is replaced with a regular

criterion f which is a separable piecewise continuous linear function. Properties

of f ensure that it can be handled by a linear program (see for instance Dantzig

and Thapa (1997)). We then get:
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minimize f(C1, C2, . . . , Cn)

subject to

m∑

l=1

plj = pj ∀j = 1, . . . , n (1)

tl+1
j + pl+1

j ≤ tlj ∀j = 1, . . . , n, ∀l = 1, . . . ,m− 1 (2)

tlj + plj ≤ tlj+1 ∀j = 1, . . . , n− 1, ∀l = 1, . . . ,m− 1 (3)

tmj ≥ rj ∀j = 1, . . . , n (4)

t1j + p1j = Cj ∀j = 1, . . . , n (5)

plj , t
l
j ≥ 0 ∀j = 1, . . . , n, ∀l = 1, . . . ,m (6)

Cj ≥ 0 ∀j = 1, . . . , n (7)

The O(nm) variables tlj , p
l
j , and Cj are defined respectively as the starting

time of job j on machine Ml, the processing time of job j on machine Ml, and

the completion time of job j. Equalities (1) guarantee the processing time of

each job, whereas inequalities (2) ensure that a job is first processed on the

different machines in the order Mm, Mm−1, . . . , M1. Inequalities (3) ensure

that jobs are scheduled on each machine following order 1, 2, . . . , n.

Theorem 2. The problem P |pmtn, rj |f can be solved in polynomial time if f is

a separable piecewise continuous linear function computable in polynomial time

and if there exists an optimal solution such that C∗

1 ≤ C∗

2 ≤ · · · ≤ C∗

n.

Proof. We use Theorem 1 with the idea of the proof in Baptiste et al. (2007).

Theorem 1 implies that there exists an optimal non-delay PFS − like solution

such that the order of the jobs on each machine is 1, 2, . . . , n. If we denote by z∗

its value, and by w∗ the minimum value of a PFS− like solution which verifies

order 1, 2, . . . , n for the jobs, we have z∗ ≤ w∗. Now, observe that any solution

of the linear program defines a PFS − like schedule. Hence, if f∗ is the value

of an optimal solution of the linear program, we get f∗ ≥ w∗, that is f∗ ≥ z∗.

However, in a PFS− like schedule a job j may have a completion time less than

10



Cj because there may be no piece of j on machine M1. So, let us show that the

optimal non-delay PFS − like solution (denoted by σ) verifies the constraints

of the linear program. Suppose there is a job j in σ that completes at time Cσ
j

and whose last piece is processed by machines Mq with q > 1. By Theorem 1 we

know that there is no job i < j such that Cσ
i > Cσ

j , and also that σ is vertically

ordered, so no job i > j is scheduled by processors M1,M2, . . . ,Mq before time

Cσ
j : therefore, we can define a solution of the linear program such that plj = 0

for 1 ≤ l < q, that is such that Cj = Cσ
j . By applying this procedure to any

job j whose last piece is not processed by machine M1, we get a solution of the

linear program of value z∗, which implies z∗ ≥ f∗. From z∗ ≤ f∗ we deduce

that f∗ = z∗: the optimal solution of the linear program is also an optimal

solution of the problem P |pmtn, rj |f . �

Note that a more general LP formulation is proposed in Kravchenko and

Werner (2012), since it is dedicated to solve the problem Q|rj , pmtn,Dj , C1 ≤

· · · ≤ Cn|F , where C1 ≤ · · · ≤ Cn means that we are only looking for an optimal

schedule among the class of schedules for which C1 ≤ · · · ≤ Cn holds. Neverthe-

less, notice that the formulation introduced here is interesting for two reasons:

first, this LP formulation involves only O(nm) variables and O(nm) constraints,

whereas the one proposed in Kravchenko and Werner (2012) uses O(n3m) vari-

ables and constraints. Secondly, the approach provided in Kravchenko and

Werner (2012) does not allow us to use the PFS − like structure proposed in

this paper.

The next section is dedicated to finding subproblems of P |pmtn, rj |f for

which a total order on jobs’ completion times can be obtained, in order to

conclude that they are solvable in polynomial time.

3. Ordering the jobs’ completion times

Extending notations on the agreeability introduced in Tian et al. (2009),

in the β-field, we write (r+j , p
+
j ) if rj ’s and pj ’s are in the same order, i.e.

p1 ≤ p2 ≤ · · · ≤ pn. Note that, for a problem with equal processing times, or

11



without release dates, this condition is always fulfilled. This notation can also

be used for more than two inputs; for example, (r+j , p
+
j , d

+
j , w

−

j ) means that

rj ’s, pj ’s and dj ’s are in an increasing order whereas wj ’s are decreasing.

Under some specific conditions on the objective functions and the input data,

it is possible to know the order of the jobs’ completion times in an optimal

solution:

Theorem 3. The following problems are solvable in polynomial time:

1. P |pmtn, (r+j , p
+
j )|

∑
fj, when fj’s are regular functions and fj − fk is

non-decreasing if j < k.

2. P |pmtn, (r+j , p
+
j )|max fj, when fj’s are regular functions and fj − fk is

non-negative if j < k.

3. P |pmtn, (r+j , p
+
j , w

−

j ), dj = d|
∑

wjUj.

Proof. We first show that there exists an optimal schedule such that C∗

1 ≤

C∗

2 ≤ · · · ≤ C∗

n. Let S be an optimal schedule. For the sake of contradiction,

assume that there exist two jobs j < k, such that rj ≤ rk, pj ≤ pk and Cj > Ck,

and let us prove that we can find another optimal schedule S′ such that C ′

j ≤ C ′

k.

This exchange argument is illustrated with Figure 4.

The schedule S′ is constructed in the following manner: all the pieces of jobs

but j and k remain exactly at the same position. All pieces of job j processed

before rk stay at the same place, and on any time interval where jobs j and

k are both processed in S, we schedule them in the same manner in S′. For

the remaining available slots, starting from time rk, we schedule the remaining

part of job j and then the one of k. By construction, we ensure that no overlap

exists in S′ by scheduling jobs j and k in S′ when j and k are simultaneously

processed in S. Using the fact that pj ≤ pk, the completions times of j and k

are C ′

j ≤ Ck and C ′

k = Cj .

Now, let us consider the three cases:

1. Since fj − fk is a non-decreasing function, by considering time points

Cj and Ck, we can write (fj − fk)(Cj) ≥ (fj − fk)(Ck), which means that

fj(Ck) + fk(Cj) ≤ fj(Cj) + fk(Ck).

12
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Figure 4: An optimal solution and the corresponding optimal solution after the exchange.

2. We have max(fj(C
′

j), fk(C
′

k)) ≤ max(fj(Cj), fk(Cj)) and, using the fact

that fj − fk is a non-negative function, we can write max(fj(Cj), fk(Cj)) =

fj(Cj) ≤ max(fj(Cj), fk(Ck)).

3. We have to consider three cases according to the value of d; if d ≥ Cj ,

we have U ′

j = Uj = 0 and U ′

k = Uk = 0. If Ck > d then U ′

j ≤ Uj = 1 and

U ′

k = Uk = 1. In both cases we get wjU
′

j + wkU
′

k ≤ wjUj + wkUk Finally, if

Cj > d ≥ Ck then U ′

j = Uk = 0 and U ′

k = Uj = 1, so we get wjU
′

j + wkU
′

k =

wk ≤ wj = wjUj + wkUk .

Hence, S′ is also optimal in all cases, and there exists an optimal schedule

such that C∗

1 ≤ C∗

2 ≤ · · · ≤ C∗

n. Therefore, problems of cases 1 and 2 are

solvable in polynomial time by Theorem 2. For case 3, Theorem 2 cannot be

used because fj ’s functions are not continuous. However, we only need to find

the first job k that cannot be on time, since jobs l > k will be also late, by

Theorem 1. This can be done by testing the feasibility of successive modified

versions of the linear program of Theorem 2: for k = 1, 2, . . . , n, only on-time

jobs 1 ≤ j ≤ k are considered, and constraints t1j + p1j ≤ d, for 1 ≤ j ≤ k, are

13



added. �

These results are used in the next section to derive time-polynomially solv-

able problems according to different classical criteria.

4. Consequences on classical criteria problems

Figure 5 shows the new complexity hierarchy of parallel identical machine

scheduling problems with preemption and release dates for criteria based on

the
∑

wjTj . Previously minimal NP-hard and maximal time-polynomially

solvable problems are included with their references, and shaded results are the

ones proved with the unified approach proposed in this paper.

For the four types of input data rj , pj , dj and wj there exist many agreeable

combinations. In order to present a synthetic view, we consider cases where

some of the data are constant, i.e. rj = 0, pj = p, dj ∈ {0, d} or wj = 1. Thus,

we distinguish the two following cases:

a) Three types of data have constant values: all the problems are solvable

in polynomial time, by Theorem 3. More precisely, if dj = 0 or if dj is not

fixed, these results were already known. It is interesting to notice that some of

them were proved more than 30 years ago, whereas the others are very recent

(Baptiste et al. (2004) and Baptiste et al. (2007)). We extend these results and

prove the time-polynomiality of the six problems we get by the combinations of

parameters and criteria when dj = d, which is known in the literature as the

’common due date’ case.

b) Two types of data have constant values: if the remaining data verify

the condition of Theorem 3, then the corresponding problem is in P we hence

provide a polynomial-time algorithm for different problems with agreeable con-

ditions, for which very few results were known. Otherwise, i.e. if the remaining

data do not necessary satisfy the condition of Theorem 3, using a literature re-

view, we observe that the problem is either NP-hard or open. For flow-time or

tardiness criteria, all problems are NP-hard, except P |pmtn, pj = p|
∑

wjTj :

that is why we conjecture it is NP-Hard.
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Our approach also defines new problems with common due dates for which

complexity issues are interesting for criteria related to weighted total number

of late jobs. When we have to deal with common due dates and a criterion

based on
∑

wjUj , it is possible to look at the reverse problem and hence pro-

vide directly complexity results. For example, P |rj , dj = d, pmtn|
∑

Uj is

equivalent by symetry to P |pmtn|
∑

Uj and is hence NP-Hard. In the same

way, problem P |pmtn, rj , pj = p, dj = d|
∑

Uj is equivalent to P |pmtn, pj =

p|
∑

Uj , for which a polynomial time algorithm was given in Baptiste et al.

(2004). Our approach leads to a slightly more general result since we show that

P |pmtn, (r+j , p
+
j , w

−

j ), dj = d|
∑

wjUj is solvable in polynomial time.

One can also note that our approach does not perform well for a crite-

rion of type f = max fj . Indeed, we can only prove that P |pmtn|Cmax and

P |pmtn, pj = p|Lmax are in P, whereas it was independently proved in Lawler

and Labetoulle (1978) and Slowinski (1981) that R|pmtn, rj |Lmax can be solved

in polynomial time.

5. Conclusion

In this paper we proved that there exists a type of schedules (named PFS−

like) which is dominant for problem P |pmtn, rj |f if there exists an optimal

solution with completion times scheduled in the same order as the release dates,

or if there is no release date. By interchange arguments, we proved that, for a

large subclass of these problems, it is possible to order the optimal completion

time of all jobs. Using these two results, we showed that problems satisfying

the condition of Theorem 3 are polynomially solvable. In particular, we proved

the polynomiality of different problems having agreeable data and/or a common

due date dj = d.

An interesting question consists in finding a less restrictive condition for

the existence of PFS − like schedules. Indeed, on the one hand, PFS − like

schedules are not dominant if condition (r+j , p
+
j ) does not hold (see left chart

of Figure 6) but, on the other hand, there exist PFS − like schedules that are

optimal, even if the condition (r+j , p
+
j ) is not verified (right chart of Figure 6).
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Figure 6: Finding a better characterization of PFS − like schedules

Hence, we should seek for a better characterization of the conditions implying

the existence of PFS − like schedules.

Another research avenue lies in using the PFS − like structure in NP-

Hard problems to derive approximation algorithms or to improve resolution

methods; indeed, the existence of PFS − like schedules drastically reduces the

combinatoric of problems since, whatever the number of machines, there are at

most n! orders to test.

Finally, polynomial-time cases for problem P |pmtn, rj |f that were already

solved in the literature are also polynomially solvable when we generalize to the

uniform machine case Q|pmtn, rj |f , leading to the natural following question:

is the PFS− like structure also dominant for some problems in case of uniform

machines?

Acknowledgements

We would like to thank the anonymous referees for their valuable suggestions

and constructive comments that improved this paper.

References

Baptiste, P., Brucker, P., Chrobak, M., Dürr, C., Kravchenko, S., Sourd, F.,
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