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Direct path from microscopic mechanics to Debye shielding and Landau damping

D. F. Escande, Fabrice Doveil and Yves Elskens!

TUMR 7345 CNRS-Aiz-Marseille-Université, Facultés de Saint-Jéréme, case 321,
av. esc. Normandie—Niemen, FR-13397 Marseille CEDEX 20

An equation is derived for the linearized electrostatic potential of a system of IV electrons with a
neutralizing ionic background. Two successive smoothings first reveal this potential to be the sum
of the shielded Coulomb potentials of the individual particles, and then yield the classical Vlaso-
vian expression including initial conditions for contour calculations of Landau damping. Thereby,
shielding and collisional transport now appear as two related aspects of the repulsive deflections of
electrons. This unifies and simplifies the introduction of two important concepts of plasma physics.

PACS numbers: 52.,52.25.Dg,52.35.Fp

INTRODUCTION

In plasma physics, learning Debye shielding and Landau damping from a fundamental point of view traditionally
implies following a hard path through the use of fluid and kinetic models which require themselves specific chapters
to be derived from first principles (see e.g. [1] and chapter 5 of [2]), and both phenomena are derived independently.
In contrast, this paper provides a novel, compact, unified introduction to these basic phenomena without appealing
to fluid or kinetic models, or to a body of extraneous mathematics, but with using Newton’s second law for a system
of N electrons coupled through Coulomb interaction. This shorter and elementary approach is easily accessible to
researchers in other disciplines and opens new avenues for teaching and thinking, as it unifies and simplifies basic
microscopic plasma physics.

In particular, this paper proposes a novel intuitive interpretation of Debye shielding for plasma particles. It is
shown to occur for a single realization of the plasma, as a mere dynamic consequence of the independent Coulomb
deflections of particles. Furthermore, our new path to Landau damping goes first through Debye shielding, a totally
unexpected fact as classical texts present these concepts in different, unrelated chapters. Calculations are elementary
and start with the derivation of the general fundamental equation (11) for the electrostatic potential.

FUNDAMENTAL EQUATION FOR THE POTENTIAL

This paper deals with the One Component Plasma (OCP) model [3-5], which considers the plasma as infinite with
spatial periodicity L in three orthogonal directions with coordinates (x,y, z), and made up of N electrons in each
elementary cube with volume L3. Ions are present only as a uniform neutralizing background, enabling periodic
boundary conditions. This choice is made to simplify the analysis which focuses on ¢(r), the potential created by the
N particles at any point where there is no particle. The discrete Fourier transform of ¢, readily obtained from the
Poisson equation, is given by ¢(0) = 0, and for m # 0 by

@(m) = — > exp(—ikm - 1)), (1)
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where —e is the electron charge, ¢ is the vacuum permittivity, r; is the position of particle j, S = {1,...N},
¢(m) = [ ¢(r) exp(—ikm - r)d®r, with m = (m,,m,, m.) a vector with three integer components running from —oo

to 400, kyy = %’T m, and kpm, = ||Kkm||. Reciprocally,
p(r) = 73 3 Glm) explik 7). 2
The dynamics of particle [ follows Newton’s equation
i) = miwl(rl), (3)

e
with m, the electron mass, and ¢; the electrostatic potential acting on particle [, i.e. the one created by all other
particles and by the background charge. Its Fourier transform is given by Eq. (1) with the restriction j # . Let

I'l(O) =10+ Vit (4)
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be a ballistic approximation of the motion of particle [, and let ér; = r; — rl(o). In the following, we first consider cases

where the dr;’s are small. So we approximate ¢;(m) by its expansion to first order in the dr;’s
> 66;(m), (5)
JES;j#L

with (Approximation 1)

565 (m) = ——— exp(—ikem - 1) (1 — ik - 5r;). (6)
60]411211

We further consider ¢ to be small, and the dr;’s to be of the order of ¢ (Approximation 2). At lowest order, the
particles dynamics defined by Eq. (3) is given by

0F; = n) exp(iky, - rl(o)). (7)
We denote with a caret the time Laplace transform which maps a function f(t) to f fo t) exp(iwt)dt (with
w complex). The Laplace transform of Eq. (7) is
w2t (w) = (ikn - T10) &y(10,w + wny) + iwdr; (0) — 5i(0), (8)
where wy,; = kn - v; comes from the time dependence of rl(O) in the exponent of Eq. (7). The Laplace transform of
Egs (5)-(6) yields
2 2 300 ie ; -
k ¢z(m w)=k ¢z (m,w) + = Z exp(—ikm * Tjo) Km - 0T (w — wm,j), (9)
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where wp, ; comes from the rﬁo) in Eq. (6); ¢, (m,w) is the Laplace transform of ¢;(m) computed from Egs (5) and
(6) by setting dr; = 0 for all j’s in the latter. Substituting the r;’s with their expression, Eq. (9) yields
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where ¢; (m,w) is the Laplace transform of ¢;(m) computed from Eqgs (5) and (6) by setting now dr; = dr;(0)+01,(0)¢
for all j’s in the latter.
Summing Eq. (10) over [ = 1,...N and dividing by N — 1 yields

~(0)
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k2,0(m,w) - mzk K Z¢ S T 23) expli(ln — kun) - 150] = Ko (mw), (1)
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= ~(0 = ~(0
where ¢(m,w) and ¢ (m,w) are respectively ¢;(m,w) and ¢; (m,w) complemented with the missing I-th term.
Equation (11) is the fundamental equation of this paper. This fundamental equation is of the type 5¢~) = source term,

where £ is a linear operator, acting on the infinite dimensional array whose components are all the (£(m7 w)’s.
The above Approximation 1 of ¢ by ¢ corresponds to substituting the true dynamics in Eq. (3) with an approximate
one ruled by

5ty = mivasl(rl(o) +61)), (12)

where ¢;(r) = 3 ;cg.; 6¢;(r) is the inverse Fourier transform of Eq. (5), so that

(0)
e eérj (r—=r3")
lim d0¢;(r) = ) (Oj) .
L—o0 47r50|\r7r | Ameollr —r;7 (3




The j-th contribution to the approximate electric field acting on particle [ turns out to be due to a particle located

at r§0)
cross-over between these two parts occurs for ||r; — r;o) || on the order of ||dr;]|, i.e. when the distance between particle
I and the ballistic particle j is about the distance between the latter and the true particle j. For larger values of

instead of r;, and is made up of a Coulombian part and of a dipolar part with a dipole moment —e dr;. The

lr; — r§0)||, the dipolar component is subdominant. For smaller ones, it is dominant, but with a direction which is

a priori random with respect to the Coulombian one ((r; — r§0)) is almost independent from dr;). Since the ||dr;||’s

are assumed small, the latter case should be rare as it corresponds to a very close encounter between particle [ and
the ballistic particle j. As a result, the approximate electric field stays dominantly of Coulombian nature, but with a
small mismatch of the charge positions with respect to the actual ones.

SHIELDED COULOMB POTENTIAL

We introduce a smooth function f(r,v), the smoothed velocity distribution function at ¢ = 0 such that the distri-
bution

Se= // of(r,v)d’r d®v + W (e), (14)

les

where the distribution W yields a negligible contribution when applied to space dependent functions which evolve
slowly on the scale of the inter-particle distance; there the spatial integration is performed over the elementary cube
with volume L3, and the velocity integration is over all velocities.

On replacing the discrete sums over particles by integrals over the smooth distribution function f(r,v) (Approxi-
mation 3), Eq. (11) becomes

o~

P(n,w+ (kn — km) - v)
(W—km V)2

> ~(0) e2
2 _ 1.2
k2, @(m,w) =kZ,¢ (m,w)+ TPmee En ky, - kn/

f(n —m,v) d®v, (15)

where ® is the smoothed version of g/b\ resulting from Approximations 1 to 3, and f is the spatial Fourier transform
of f. We further assume the initial distribution f to be a spatially uniform distribution function fy(v) plus a small
perturbation of the order of ® (in agreement with Approximation 2). Then operator £ becomes diagonal with respect

to both m and w (a complex quantity), and linearizing Eq. (15) for ® yields

~(0)

e(m,w)d(m,w) = ¢  (m,w), (16)
where
e(m,w) =1— LS:neeo / = _fi:’)' o d3v. (17)

This shows that the smoothed self-consistent potential @ is determined by the response function e(m,w). The
latter is the classical plasma dielectric function. A first check of this can be obtained for a cold plasma: then
e(m,w) = 1 — w?/w?, where w, = [(e?n)/(mec€o)]'/? is the plasma frequency (n = N/L3 = L=3 [[ f(r,v)d*rd®v is
the plasma density). The classical expression involving dfy/Jv obtains by a mere integration by parts.

To lowest order, the contribution of particle j to ¢(*)(m) is 6q3§.0)(m) = — 7z exp[—ikm " (rjo +v;t)], with Laplace
transform
~(0) i ik T,
6¢] (me) _ 1€ eXp( 1 r]O) (18)
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The corresponding part of ®(m,w) is §®;(m,w) = d¢; (m,w)/e(m,w), which turns out to be the shielded potential
of particle j [6-8]. By inverse Fourier-Laplace transform, after some transient whose duration is estimated later at the
end of the calculation with Picard iteration technique, the potential due to particle j becomes the shielded Coulomb
potential

d0Pj(r) = 0®(r —rjo — vjt, v;), (19)



where

5(r,v) = e exp(ikm - 1)

— . 20
L3¢ o kZ e(m, ky, - V) (20)

Therefore, after this transient, the dominant contribution to the full potential in the plasma turns out to be the
sum of the shielded Coulomb potentials of individual particles located at their ballistic positions. Let Ap =
[(eoksT)/(ne?)|"/? = [kBT/me]l/leg1 be the Debye length, where kg is the Boltzmann constant and T the tempera-
ture. The wavenumbers resolving scale ||r|| are such that km||r]| 2 1. If ||r|| < Ap, the corresponding wavenumbers
are such that kmAp > 1. Therefore, there is no shielding for ||r|| < Ap, since e(m, kpy, - v) — 1 =~ (kpmAp) 2.

In the following, Eq. (19) is used by substituting d®(r — rjo — v;t,v;) with d®(r — r;,v;): the shielded potential
of particle j is computed by taking into account its actual position, since it is the original Coulomb one close to r;.
The error made for r — r; of the order of Ap is small as long as the mismatch of r; from the ballistic orbit is much
smaller than Ap. As was done for the bare potential of Eq. (1), the field acting on a given particle [ is obtained by
removing its own divergent contribution d®; from &.

DEBYE SHIELDING AND LANDAU DAMPING

~(0)
We now apply the smoothing using distribution function f to ¢ (m,w) too in Eq. (16). Neglecting dr; to lowest

order in Eq. (6), this yields a ®© (m) whose Laplace transform is

© ie [ f(m,v)

o (m,w) =— d3v. (21)
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This shows that this second smoothing makes Eq. (16) to become the expression including initial conditions in Landau
contour calculations of Langmuir wave growth or damping, usually obtained by linearizing Vlasov equation and using

Fourier-Laplace transform, as described in many textbooks. Therefore, in these calculations, P (m, w) turns out to
be the smoothed version of the actual shielded potential in the plasma.

It is interesting to compare the above derivation with that used by classical textbooks when they start with the
N-body description to derive rigorously both Debye shielding and the combination of Eqs (16) and (21). Debye
shielding is exhibited in the equilibrium pair correlation function which is rigorously computed after deriving the
first two equations of the BBGKY hierarchy (see e.g. chapter 12 of [9]). The combination of Eqs (16) and (21) is
obtained independently by linearizing Vlasov equation about a uniform velocity distribution function, and by using
the Fourier-Laplace transform. A prerequisite is the derivation of Vlasov equation by two main rigorous approaches:
a mean-field derivation [2], or the BBGKY hierarchy that involves statistical arguments (see e.g. [1]). This path
is so hard that most textbooks instead provide more qualitative derivations either of Debye shielding or of Vlasov
equation. In contrast, the present derivation performs the Laplace transform in time of the linearized dynamics of a
single realization of the N-body system. This yields Eq. (11) which keeps the full granularity of the system. A first
smoothing involving a velocity distribution function yields Eqgs (19-20), and a second one Eq. (21) combined with Eq.
(16). This provides a much shorter connection between these equations and the underlying N-body problem. In this
derivation, the smoothed velocity distribution is introduced after particle dynamics has been taken into account, and
not before, as occurs when kinetic equations are used. This avoids addressing the issues of the exact definition of
the smoothed distribution for a given realization of the plasma, and of the uncertainty as to the way the smoothed
dynamics departs from the actual N-body one [2].

MEDIATED INTERACTIONS IMPLY DEBYE SHIELDING

In the above derivation of Debye shielding, using the Laplace transform of the particle positions does not provide
an intuitive picture of this effect. We now show that such a picture can be obtained directly from the mechanical
description of microscopic dynamics with the full OCP Coulomb potential of Eq. (1). To compute the dynamics, we

use Picard iteration technique. From Eq. (3), rl(n)7 the n-th iterate for r;, is computed by

=(n € n—1 n—1
i = e e, (22)



where gol(nﬂ) is computed by the inverse Fourier transform of Eq. (1) with the r;’s substituted with the r;nfl)’s.

The iteration starts with the ballistic approximation of the dynamics defined by Eq. (4), and the actual orbit of Eq.

(n) n
1= rl( )

(3) corresponds to n — oo. Let dr - rl(o) be the mismatch of the position of particle I with respect to the

ballistic one at the n-th iterate. It is convenient to write Eq. (22) as 6§\ = Y jesijzl 5i‘l(;l), with

oty = ac(rf" Y — "7V (23)
and
_ ie? _2 .
ac(r) = ] Z ke km exp(ikm - ). (24)
m#0

Let 51'1(;'1) = fg fot/ 5'1"1(;) (#")dt"dt’. For n > 2 one finds

5" = 3 [(5f§;> + Ml(j”’l)) +2Vac(r}” —rl”). 51«5;*1)] +0(d%), (25)
JES;j#L

where a is the order of magnitude of the total Coulombian acceleration, and

MG = Vo —xf)- 37 (orp ™0 - e (26)
i€S5i#£l,j

is the modification to the bare Coulomb acceleration of particle j on particle [ due to the following phenomenon:
particle j modifies the position of all other particles, which implies the action of the latter ones on particle [ is
modified by particle j. Therefore Ml(jn_l) s the acceleration of particle | due to particle j mediated by all other
particles. The last term in the bracket in Eq. (25) accounts for the fact that both particles j and [ are shifted with
respect to their ballistic positions.

Since the shielded potential of the previous paragraph was found by first order perturbation theory, it is felt in the
acceleration of particles computed to second order. This acceleration is provided by Eq. (25) for n = 2. Therefore its
term in brackets is the shielded acceleration of particle I due to particle j. As a result, though the summation runs
over all particles, its effective part is only due to particles j typically inside the Debye sphere (sphere with radius
Ap) about particle I. Starting from the third iterate of the Picard scheme, the effective part of the summation in
Eq. (25) ranges inside this Debye sphere, since the (51‘[(;71)’5 are then computed with a shielded acceleration. This
approach clarifies the mechanical background of the calculation of shielding using the equilibrium pair correlation
function which shows shielding to result from the correlation of two particles occurring through the action of all the
other ones (see e.g. section 12.3 of [9]).

The preceding calculation yields the following interpretation of shielding for a particle in the bulk of the distribution
function. At ¢ = 0, consider a set of randomly distributed particles. Consider a particle [. At a later time t, it has
deflected all particles which made a closest approach to it with an impact parameter b < vt where vy, is the thermal
velocity. This part of their global deflection due to particle ! reduces the number of particles inside the sphere S(¢) of
radius vyt about it. Therefore the effective charge of particle | as seen out of S(t) is reduced: the charge of particle
[ is shielded due to these deflections. This shielding effect increases with ¢, and thus with the distance to particle [.
As a result, the typical time-scale for shielding to set in, when starting from random particle positions, is the time
for a thermal particle to cross a Debye sphere, i.e. w; 1 which sets the duration of the transients occurring in the
inverse Laplace transform leading to Eq. (19); this order of magnitude is correct for a plasma close to equilibrium.
Furthermore, shielding is a cooperative dynamical process: it results from the accumulation of almost independent
repulsive deflections with the same qualitative impact on the effective electric field of particle I (if ions were added,
the attractive deflection of charges with opposite signs would have the same effect). It is a cooperative effect, but
not a collective one (it does not involve any synchronized motion of particles). Basic plasma physics textbooks show
the accumulation of almost independent repulsive deflections to produce collisional transport of particles in plasmas.
Unexpectedly, it turns out that Debye shielding is another aspect of the same two-body repulsive process.

CONCLUSION

One might think about trying to apply the above approach to plasmas with more species, or with a magnetic field,
or where particles experience trapping and chaotic dynamics. The first generalization sounds rather obvious, and



the third one is under way, at least in one dimension (see a pedestrian introduction in [10] and more specific results
in [11-13]). As in many textbooks, linearization was applied in this paper without questioning deeply its range of
validity. However, as reviewed in Ref. [14], the smallness of the perturbation is not a sufficient criterion. In reality,
there is a (more intricate) version of the fundamental equation (11) that does not involve linearization [15]. It might
be used to study the effect of the coupling of Fourier components with both coherent and incoherent effects.
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