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Abstract

This paper defines the problem of Scalable Secure computing in a Social network: we call it the S 3 problem. In short,
nodes, directly reflecting on associated users, need to compute a symmetric function f : Vn → U of their inputs in
a set of constant size, in a scalable and secure way. Scalability means that the spatial, computational and message
complexity of the distributed computation does not grow too fast with the number of nodes n. Security encompasses
(1) accuracy and (2) privacy: accuracy holds when the distance from the output to the ideal result is negligible with
respect to the maximum distance between any two possible results; privacy is characterized by how the information
disclosed by the computation helps faulty nodes infer inputs of non-faulty nodes, which we capture in our context by
the very notion of probabilistic anonymity.

We first prove that under mild regularity conditions the problem of computing an arbitrary function can be reduced
to that of component-wise addition of vectors of integers. More specifically, if the function f is Lipschitz-continuous
and the maximum distance between two possible results is Ω(n), any protocol that S 3-computes component-wise
addition of vectors of integers S 3-computes f .

We then present AG-S3, a protocol that S 3-computes a class of aggregation functions, that is that can be expressed
as a commutative monoid operation on U: f (x1, . . . , xn) = x1 ⊕ · · · ⊕ xn, assuming the number of faulty participants
is at most

√
n/ log2 n. We further prove that AG-S3 S 3-computes component-wise addition of vectors of integers

thus extending its application spectrum to regular functions. Key to our protocol is a dedicated overlay structure that
enables secret sharing and distributed verifications which leverage the social aspect of the network: nodes care about
their reputation and do not want to be tagged as misbehaving.
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1. Introduction

The past few years have witnessed an explosion of online social networks and the number of users of such networks
is still growing by the day, e.g., Facebook boasts by now more than 400 millions users. These networks constitute huge
live platforms that are exploited in many ways, from sharing personal information to conducting polls about political
tendencies. An illustrative example of computation in a social network is crowdsourcing which exploits human-based
computation capabilities and subjective and personal information of a group of users as a source of knowledge or
ideas, e.g., Amazon Mechanical Turk. It is clearly appealing to perform large-scale general purpose computations on
such platforms and one might be tempted to use a central authority for that, namely one provided by the company
orchestrating the social network. Yet, this poses several privacy problems, besides scalability. For instance, there is
no guarantee that Facebook will not make any commercial usage of the personal information of its users. In 2009,
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Facebook tried to change its privacy policy to impose new terms of use, granting the company a perpetual ownership
of personal contents—even if the users decide to delete their account. The new policy was not adopted eventually, but
highlighted the eagerness of such companies to use personal and sensitive information.

We argue for a decentralized approach where the participants in the social network keep their own data and
perform computations in a distributed fashion without any central authority. A natural question that arises then is
what distributed computations can be performed in such a decentralized setting. Our primary contribution is to lay
the ground for expressing the question precisely. We refer to the underlying problem as the S 3 problem: Scalable
Secure computing in a Social network. Whereas scalability characterizes the spatial, computational and message
complexity of the computation, the secure aspect of S 3 encompasses accuracy and privacy. Accuracy refers to the
robustness of the computation and aims at ensuring accurate results in the presence of dishonest participants. This
is crucial in a distributed scheme where dishonest participants might, besides disrupting their own input, also disrupt
any intermediary result for which they are responsible. The main challenge is to limit the amount of bias caused by
dishonest participants. Privacy is characterized by the amount of information on the inputs disclosed to other nodes
by the computation. Intuitively, achieving all three requirements seems impossible. Clearly, tolerating dishonest
players and ensuring privacy calls for cryptographic primitives. Yet, cryptographic schemes, typically used for multi-
party computations, involve too high a computation overhead and rely on higher mathematics and the intractability
of certain computations [2, 3, 4]. Instead, we leverage users’ concern for reputation using an information theoretical
approach and alleviate the need for cryptographic primitives. A characteristic of the social network context is indeed
that the nodes are in fact users who might not want to reveal their input, nor expose their misbehavior if any. This
reputation concern, as illustrated in the figure below, determines the extent to which dishonest nodes act: up to the
point where their misbehavior remains discrete enough not to be discovered. In a system where users report on the
misbehaviors they detect, dishonest node might be tempted to issue spurious reports on other users. However, in the
context of social networks, two key factors help thwarting such a threat: First, reports are intended to be read by users
(not programs) who can assess the credibility of the reports and decide whether to take them into account; Second,
the knowledge of the social ties between users can be leveraged. For instance, reports from an enemy or a joint report
issued by users that are connected in the social network could be disregarded. Such techniques proved efficient in
areas as diverse as on-line games [5], recommendation systems [6], and spam filtering [7].

Solving the S 3 problem is challenging, despite leveraging this reputation concern: to ensure privacy, an algorithm
must ensure that the information obtained by the coalition of faulty nodes during the protocol is not enough to deter-
mine with certainty a node’s input. This property should hold even when all the non-faulty nodes except one have the
same inputs: faulty nodes taking part in the computation must not know which non-faulty node had a different input.
This requires the existence of two configurations of inputs that differ for two non-faulty nodes having different inputs,
which with high probability lead to the same sequence of messages received by the faulty nodes. In turn, this comes
down to swapping two nodes’ inputs transparently (from the standpoint of the faulty nodes), which is challenging
when the protocol needs to be also scalable and accurate. The scalability requirement (i.e., each node communicates
with a limited number of nodes) makes it difficult to find a chain of messages that can be swapped transparently be-
tween any two nodes in the system. The trade-off between privacy and accuracy can be illustrated by the following
paradox: on the one hand verifying that nodes do not corrupt the messages they receive (without digital signature)
requires the verifier to gather some information about what the verified node received; on the other hand the more the
nodes know about the messages exchanged the more the privacy of the nodes is compromised.

Our contributions are twofold:

• Firstly, we define the Scalable Secure computing problem in a Social network, namely the S 3 problem and
prove that it can be reduced, for regular functions, to that of computing component-wise addition of vectors
of integers with exactly one nonzero component, which is equal to 1. More specifically, if the function f is
Lipschitz-continuous and the maximum distance between two possible results is Ω(n), any protocol that S 3-
computes component-wise addition of vectors of integers S 3-computes f .

• Secondly, we present a distributed protocol, we call AG-S3 (i.e., S 3 for AGgregation), that solves the problem
for a class of aggregation functions that derive from a monoid operation on U: f (x1, ..., xn) = x1 ⊕ · · · ⊕ xn,
under the assumption that the number of faulty nodes is upper-bounded by

√
n/ log2 n. We further prove that

AG-S3 S 3-computes component-wise addition of vectors of integers thus extending its application spectrum to
regular functions. At the core of our protocol lie (1) a structured overlay where nodes are clustered into groups,
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(2) a homomorphic secret sharing scheme that allows the nodes to obfuscate their inputs, and (3) a verification
procedure which potentially tags the profiles of suspected nodes.

Beyond these contributions, our paper can be viewed as a first step toward characterizing what can be computed in a
large scale social network while accounting for the human and social nature of its users.

2. The S3 Problem

This section defines the problem of Scalable Secure computing in a Social network: the S 3 problem. The problem
involves a S 3 candidate, namely the function to be computed, and a set of nodes Π = {p1, . . . , pn}. We assume the
number n of nodes to be known by the nodes.

2.1. Candidates
Definition 1 (S 3 candidate). A S 3 candidate is a quadruple ( f ,V,U, d), where V is an arbitrary set, f is a function
f : V∗ → U such that f (v1, . . . , vn) = f (vσ(1), . . . , vσ(n)) for any permutation σ of the inputs, and (U, d) is a metric
space.

Each node in Π has an input value in the set V , and a S 3 candidate maps the inputs of the nodes to a value in
a metric space. The function f is assumed to be symmetric in the sense that the output depends on the multiset of
inputs but not on their assignment to nodes. For example, a binary poll over Π can be modeled by the S 3 candidate
((v1, v2, . . . , vn) 7→ v1 + · · · + vn, {−1,+1},Z, (z1, z2) 7→ |z1 − z2|). Indeed, in a binary poll, each node starts with a
value coding either the “yes” or the “no” options and the result of the poll is the proportion of participants who chose
each of the two options. The result of the poll can be computed by encoding the options with the integers +1 and −1
respectively and by summing them (yielding an integer output r in Z). More specifically, the proportion of participants
who chose the “yes” option is (n + r)/2n and the majority is determined by the sign of r (e.g., with 8 participants,
an output of 2 means that the “yes” option has the majority and that 62.5% of the participants chose it). A natural
distance on the output space (i.e., U = Z) — used to quantify the accuracy of the computation as we shall see — is the
absolute difference (z1, z2) 7→ |z1 − z2|. In the case of m-ary polling, one could consider the component-wise addition
on U = Zm, where V is the set of all vectors of length m with exactly one nonzero component, which is either +1 or
−1. The distance function is then just `1 (or Manhattan distance).

The nodes considered in the S 3 problem are users of a social network, able to (1) communicate with private
message passing and (2) tag the public profile of each other. As such, every node directly reflects on the associated
user. Nodes care about their privacy and their reputation: a user wants neither the private information contained in her
input, nor her misbehavior, if any, to be disclosed. This reputation concern is crucial to make the problem tractable.

To ensure security, part of the computation consists in checking the correctness of other nodes’ behavior. The
output of a node p is a value in U, i.e., the result of the distributed computation of the S 3 candidate, plus a set Fp

of nodes that p detected as faulty. This information is eventually reported on the public profile of the involved nodes
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by means of tags of the form “p detected nodes in Fp as faulty”. Nodes are allowed to report only on the nodes they
communicate with and the the number of reports a node can issue is limited to limit the impact of spurious reports
against non-faulty nodes.

Faulty nodes are considered rational: their goal is only to bias the output of the computation and infer the inputs of
the users taking part in the computation. Also, they never behave in such a way that their misbehavior is exposed with
certainty. As such, their behavior is more restricted than that of Byzantine users [8].2 To achieve their goal, faulty
nodes may collude.

In our context, a protocol D to perform the distributed computation of a S 3 candidate on the set of nodes Π is a
sequence of message exchanges and local computations such that any non-faulty node p eventually outputs a value op.
The content of the message and the nodes’ outputs are random variables whose values are determined by the random
choices made by the nodes during the computation. In the following, we define the desirable properties of a protocol
in a social network, namely scalability and security, itself encompassing privacy and accuracy.

2.2. Scalability
Scalability means intuitively that the computation is able to handle a large number of nodes (i.e., large values of

n), that is that the amount of resources needed by the protocol grows reasonably with the number of input values.
Consequently, the properties are expressed in the form of asymptotic bounds.

Definition 2 (g-Scalability). A protocol to perform a distributed computation is said to be g-scalable (for a function
g : N → N) if the message, spatial and computational complexities at each node are O(g(n) · polylog n) in the worst
case.

The logarithmic factor comes from the fact that representing a node identifier ranging from 1 to n requires log2 n
bits. Therefore, storing an identifier or comparing two identifiers requires log2 n basic operations. A g-scalable
protocol can therefore involve O(g(n)) operations on node identifiers.

Note that g-scalability may not be a desirable property for any function g. In particular, exp-scalability is of little
interest, 1-scalability is best, log-scalability is very desirable and

√
-scalability (achieved in this paper as we shall see

in Section 3) is acceptable.

2.3. Accuracy
The definition of the accuracy of a computation relies on the metric space structure of the output space U as

the distance measure enables to quantify the gap between the result of the computation and the actual result, that is
f (v1, . . . , vn). To render it meaningful, we normalize this distance by the maximum distance between any two possible
results, namely the diameter of f (Vn) (where f (Vn) denotes the image, w.r.t. f , of the set of sequences of n values in
V), for a distributed computation over n nodes.

Definition 3 (g-Accuracy). A distributed computation is said to g-accurately compute a S 3 candidate ( f ,U,V, d) if:

1
∆(n)

· max
p non−faulty

d(op, f (v1, . . . , vn)) = O

(
1

g(n)

)
,

where vi is the input of the i-th node and

∆(n) = max
(x1, . . . , xn)
(y1, . . . , yn)

d( f (x1, . . . , xn), f (y1, . . . , yn)).

This definition highlights the importance of carefully specifying the distance measure of a S 3 candidate: endowing
the output space with the coarse grain distance d(x, y) = 0 if x = y, and 1 otherwise, will restrict the class of S 3

computations to those that output the exact result of f . Meanwhile, for binary polling for instance, considering
the natural distance (i.e., d(x, y) = |x − y|) and a function g that tends to infinity when n tends to infinity includes
computations for which the error on the tally is negligible when compared to the sample size n, as ∆(n) = 2n.

2The fault model considered in the paper is indeed more restricted than the Byzantine fault model. However, the problem addressed, i.e. S 3, is
not directly comparable to that of Byzantine consensus as S 3 includes scalability and privacy and relaxes the accuracy requirement. Consequently,
the maximum number of faulty nodes tolerated by solutions to S 3 may be less than for the Byzantine consensus problem (i.e., (n − 1)/3).
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2.4. Privacy
The privacy of users can be compromised by the information exchanged by the nodes during the course of the

computation. We characterize the privacy leaks of a distributed computation by the manner in which the information
gained by curious nodes taking part in the distributed computation enables them to recover with certainty the input
of a particular non-faulty node. The information acquired by a coalition of curious nodes is composed of (1) their
input values, (2) the output of the computation and (3) the pieces of information contained in the messages exchanged
during the computation (specified by the protocol). Only the information from (3) is inherent to the computation.
Clearly, the cases where an input can be inferred from only the output and the inputs of the faulty nodes must be
ignored when looking at the privacy leaks of a computation. In a perfectly private distributed computation, a coalition
of faulty nodes should be able to recover the input of a non-faulty node if and only if its input can be inferred from
the output of the computation and the inputs of the faulty nodes alone. Such configurations of inputs are captured by
the notion of non-ambiguous input configuration that we formalize below.

Consider for instance that all the non-faulty nodes have the same input value, say v0, and that this configuration of
inputs for non-faulty nodes is the only one which, when combined with the inputs of faulty nodes, yields the observed
output. Then, the faulty nodes know that all non-faulty nodes had input v0, which breaks privacy. More concretely,
consider the case of binary polling in a system of five nodes, two of them being curious and colluding. If these two
curious nodes voted respectively for −1 and +1 and the outcome of the poll is +3 then they know with certainty that
all the three other nodes voted +1. In general, when all the non-faulty nodes have the same input, be it −1 or +1, the
outcome of the poll minus the sum of the votes of faulty nodes is equal to the number of non-faulty nodes and thus
the vote of non-faulty nodes can be inferred with certainty by the coalition.

Definition 4 (Non-ambiguous input configuration). An element v = {vp}p∈Π of Vn is said to be a non-ambiguous input
configuration for a coalition B if there exists a node p < B such that for all input configuration v′ that matches v for
all nodes in B, f (v) = f (v′) implies vp = v′p.

Definition 5 (Trivial input configuration). An element v of Vn is said to be a trivial input configuration for a coalition
B if all the nodes that are not in B have the same input.

Since S 3 candidates are symmetric by definition, all the non-faulty nodes have the same input in a non-ambiguous
input configuration, otherwise it would not possible to map two different inputs to the corresponding non-faulty nodes:
a non-ambiguous is necessarily trivial. However, a trivial input may be ambiguous. Consider for illustration the case
of addition with the input set V = {1, 2, 3}. The configuration where all the non-faulty nodes have 2 as input is trivial
but ambiguous for the faulty nodes as it yields the same output as the configuration where half of the non-faulty nodes
have 1 as input and the other half has 3.

We say in our context that a distributed computation is private if the probability of recovering the input of at least
one non-faulty node decreases as 1/nα for some positive α (referred to as with high probability). We capture this notion
more formally through the notion of probabilistic anonymity, itself based on the very notion of message trace. We
distinguish between weak and strong probabilistic anonymity depending on whether all trivial input configurations
are ignored or only non-ambiguous ones. In the context of the S 3 problem where the functions to be computed
are symmetric, strong probabilistic anonymity implies weak probabilistic anonymity. Note that for binary polling,
i.e., addition of input values in {−1,+1}, the trivial input configurations are all non-ambiguous: the trivial input
configurations (all −1 or all +1) are the only input configurations that yield an output of −n and +n respectively (note
that to be able to infer the input values of non-faulty nodes, the coalition needs to know the total number n of nodes).
Weak and strong probabilistic anonymity are therefore equivalent in this case.

Definition 6 (Message trace). A message trace (or trace for short) of a distributed computation is a set of messages
sent and received in a possible execution of the computation. A partial trace is the set of the messages sent or received
by a subset of a the nodes. A partial trace is said to be compatible with an input configuration v if it can be obtained
from v with nonzero probability. We say that two traces are equivalent with respect to a coalition B of faulty nodes if
each node in B receives the exact same messages in both traces, i.e., the two partial traces restricted to the nodes of
B are equal.

We are now ready to introduce the concepts of weak and strong probabilistic anonymity, which encapsulate the
degree of privacy we require in the S 3 problem.
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Definition 7 (Weak probabilistic anonymity). A distributed computation is said to be weakly probabilistically anony-
mous if for any coalition B of faulty nodes, for any non-faulty node p, and for any trace T compatible with a non-trivial
(w.r.t. B) input configuration v, there exists with high probability a trace T ′ compatible with an input configuration v′

(w.r.t. B) such that (1) T and T ′ are equivalent w.r.t. B and (2) v and v′ differ on the input value of node p.

Definition 8 (Strong probabilistic anonymity). A distributed computation is said to be strongly probabilistically
anonymous if for any coalition B of faulty nodes, for any non-faulty node p, and for any trace T compatible with
an ambiguous (w.r.t. B) input configuration v, there exists with high probability a trace T ′ compatible with an input
configuration v′ (w.r.t. B) such that (1) T and T ′ are equivalent w.r.t. B and (2) v and v′ differ on the input value of
node p.

The intuition behind these definitions is that one can change the values of the non-faulty nodes in such a way
that, with high probability, the messages received by the coalition remain unchanged. Consequently, the coalition of
faulty nodes cannot distinguish between different executions of a computation in which non-faulty nodes had different
inputs. Thus the coalition hesitates between at least two input values for each node and cannot infer their inputs with
certainty.

Note that possible disruptions committed by faulty nodes are not taken into account in the definitions of anonymity.
However, such disruptions can only increase the privacy of the nodes as they would confuse the faulty nodes that try
to infer other nodes’ inputs and lead them to incorrect conclusions.

Definition 9 (S 3 computation). A distributed computation is said to (g, h,weak) S 3-compute (resp. (g, h, strong) S 3-
compute) a S 3 candidate C if it is g-scalable, it h-accurately computes C and it is weakly probabilistically anonymous
(resp. strongly probabilistically anonymous) for a set Π of nodes tight to users of a social network.

2.5. Reduction to the addition problem

This sub-section shows that a protocol that (g, h,weak/strong) S 3-computes component-wise addition of vec-
tors of integers with exactly one nonzero component which is equal to 1, (g, h,weak) S 3-computes any Lipschitz-
continuous candidate such that V is finite and the diameter ∆(n) is Ω(n). The goal of this theorem is to show that,
by solving the problem for one specific S 3 candidate we solve it for a much wider class of candidates as well. In
particular, it motivates our choice to focus on aggregation functions (which include component-wise addition) in this
paper, as we shall see in Section 3.

The reduction of the S 3 problem relies on a compact representation of the multiset of input values in a finite set V
using integer vectors such that the union of the multisets corresponds to the component-wise addition of their vector
representation. Therefore, if a protocol computes accurately the multiset of input values and if the function to be
computed is regular enough, i.e., a small deviation on the multiset of input values translates into a small deviation on
its output, then each node can locally et accurately compute the output. We now formalize the notions of Lipschitz
continuity and compact representation and prove the reduction theorem.

Definition 10 (Lipschitz continuity). A function f : A → B is said to be Lipschitz-continuous with respect to the
distance measures dA and dB, if for any two elements x and y in A the distance between f (x) and f (y) is within a
constant factor of the distance between x and y. That is, there exists a constant number k such that for all x, y in A:

dB( f (x), f (y)) ≤ k · dA(x, y) .

Consider now a S 3 candidate ( f ,V,U, d) as in Definition 1. Since f is symmetric, it can be thought of as a function
that maps a multiset of input values in V to a value in U. A natural distance between multisets, that we denote dms, is
the number of elements that appears in only one of the two multisets. For instance, dms({{1, 1, 2, 2, 3}}, {{2, 3, 3, 4}}) is
5: 2 because of the 1s, 1 because of the 2, 1 because of the 3, and 1 because of the 4.

Provided that V is of finite size, i.e., V = {v1, . . . , v|V |}, a way to represent a multiset is to use a vector of |V |
integers where the i-th component represents the multiplicity of vi in the multiset, i.e., the number of occurrences
of vi. Basic operations on multisets such as union and the natural distance dms can be directly computed from the
compact representation: union corresponds to component-wise addition and distance corresponds to the `1 norm of the
component-wise difference. Consider for the sake of illustration the set V = {v1, v2} and the multisets S 1 = {{v1, v1}} and
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S 2 = {{v1, v2}}. The compact representations of S 1 and S 2 are (2, 0) and (1, 1) respectively. The distance dms(S 1, S 2) is
2 which is equal to ‖(2, 0) − (1, 1)‖1 = ‖(1,−1)‖1 = |1| + | − 1| = 2. The union of S 1 and S 2 is {{v1, v1, v1, v2}} which
corresponds to the compact representation (2, 0) + (1, 1) = (3, 1). The following diagram illustrates the concept of
compact representation on this sample example.

{{v1, v1}}, {{v1, v2}}
∪ms //

��

{{v1, v1, v1, v2}}

(2, 0), (1, 1) .+. // (3, 1)

OO {{v1, v1}}, {{v1, v2}}

dms

&&

��

2

(2, 0), (1, 1)

‖.−.‖1

88

That being said, we can now define a Lipschitz-continuous S 3 candidate:

Definition 11 (Lipschitz-continuous S 3 candidate). A S 3 candidate ( f ,V,U, d) is said to be Lipschitz-continuous if f
is Lipschitz-continuous with respect to the distances dms and d.

Theorem 1 (Reduction of the S 3 problem). Let C = ( f ,V,U, d) be a Lipschitz-continuous S 3 candidate such that
(1) V is of finite size, (2) the diameter ∆(n) is Ω(n) and (3) there exists an algorithm A that locally computes f
from the compact representation of the multiset of inputs in O(g(N) · polylog (n)) basic operations. If a protocol
D, (g, h,weak) S 3 computes (w.r.t. to the `1 norm) component-wise addition of vectors of integers with exactly one
nonzero component which is equal to 1, then there exists a protocol that (g, h,weak) S 3-computes f .

Proof. To prove the theorem, we build a protocol and prove that it meets the scalability, accuracy and privacy re-
quirements of the S 3 problem. Consider the following protocol: each node p transforms its input vp into the compact
representation of the multiset {{vp}} and runs protocolD that outputs the compact representation msp of the multiset of
the nodes’ inputs. Using a compact representation of the multiset is possible as V is finite. Each node p then locally
computes op = f (msp) using algorithmA which takes the compact representation as input.

• Scalability Protocol D is g-scalable by assumption. Therefore, its complexity is in O(g(n) · polylog (n)). So
is the complexity of A by assumption. Building the compact representation of an input value is O(log n) as it
consists in building a constant-size vector of integers coded on log2 (n) bits. The complexity of the proposed
protocol is therefore O(g(n) · polylog (n)), which proves the g-scalability property.

• Accuracy By assumption, the multiset of inputs is h-accurately computed at each node by protocol D. The
candidate C is Lipschitz-continuous, which ensures that the error on the final result is within a constant factor
of the the error on the multiset of inputs. The diameter ∆me(n), with respect to the distance measure dme, for the
computation of the multiset is 2n as the multisets are of size n. Finally, we have ∆(n) = Ω(n), with respect to
distance d, for candidate C. Putting everything together, we get:

1
∆(n)

· max
p non−faulty

d(op, f (v1, . . . , vn)) =
1

∆(n)
· max

p non−faulty
d( f (msp), f (v1, . . . , vn))

≤ k ·
1

∆(n)
· max

p non−faulty
dms(msp, {{v1, . . . , vn}})

≤ 2k ·
n

∆(n)
·

1
∆ms(n)

· max
p non−faulty

dms(msp, {{v1, . . . , vn}})

1
∆(n)

· max
p non−faulty

d(op, f (v1, . . . , vn)) = O(1) · O
(

1
h(n)

)
.

Therefore, the proposed protocol h-accurately computes candidate C.

• Privacy First note that for the computation of the multiset of inputs, as for binary polling, trivial inputs are
non-ambiguous. The proposed protocol can therefore, at best, achieve weak probabilistic anonymity since
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the inputs of the non-faulty nodes can be inferred from the multiset when the input configuration is trivial.
Since the local computation does not bring any further information to faulty nodes, the weak probabilistic
anonymity of protocolD implies the weak probabilistic anonymity of the proposed protocol for the computation
of candidate C.

Theorem 1 is an incentive to focus on the special case of component-wise vector addition and to extend the
application spectrum of existing protocols which can compute component-wise vector addition.

3. Protocol

In this section, we focus on a class of aggregation functions and propose a protocol, namely AG-S3 (S 3 for
AGgregation), which (

√
,
√
,weak) S 3-computes such functions for |B| ≤

√
n/ log2 n faulty nodes. We further prove

that the proposed protocols satisfies the conditions of Theorem 1, thus extending the application spectrum of AG-S3 to
regular functions. The point (

√
,
√
,weak) in the design space is of practical interest as it constitutes a quite scalable

and private solution providing relatively fast asymptotic accuracy, i.e., the error on the output tends quite rapidly to
zero when n tends to infinity. In this paper, we focus on the formal definition of the problem and on the theoretical
analysis of the solution. Regarding the practical aspects of the protocol, an experimental analysis of the Dpol protocol
(which makes use of many building blocks and basic techniques common with AG-S3, as described in the related
work in Section 4), reporting on its deployment on the PlanetLab testbed in the presence of faulty nodes, message
loss, synchronization issue, etc., can be found in [9].

3.1. Assumptions
We consider S 3 candidates for which the function f is an aggregation function, i.e., deriving from an associative

binary operation on U: f (v1 . . . , vn) = v1 ⊕ · · · ⊕ vn. Because a S 3 candidate must be symmetric, the ’⊕’ operation
is commutative. This induces a commutative monoid structure on (U,⊕) and it implies that V is a subset of U. We
further assume that the ’⊕’ operation is compatible with the distance measure d in the sense that

d(v1 ⊕ v2, v′1 ⊕ v′2) ≤ d(v1, v′1) + d(v2, v′2) . (1)

As an example, note that the S 3 candidate ((v1, v2, . . . , vn) 7→ v1 + · · · + vn, {−1,+1},Z, (z1, z2) 7→ |z1 − z2|),
introduced in the previous section, satisfies the compatibility condition described above. A simple example of S 3

candidate which cannot be expressed as an aggregation is the one given by the sum of products of pairs of inputs, i.e.,
f (x1, . . . , xn) =

∑
i
∑

j,i xi · x j. This function is symmetric, and choosing U = Z turns this function into a valid S 3

candidate, but it is clearly not an aggregation function.
We assume the size of the set of possible inputs to be constant and the size of the output space to be polynomial

in n, implying that any input or output can be represented by O(log n) bits. The computational complexity of ⊕ and d
are assumed to be linear in the size of their operand, i.e., O(log n). In addition, we assume that the diameter ∆(n) of
the output space is Ω(n). Due to this assumption, bit operators do not fall into our definition. Finally, we assume that
V is closed with respect to inverses: if v is in the input set V then 	v is in V as well, where 	v denotes the inverse of
v with respect to the ’⊕’ operation. We denote by δV the diameter of V: δV = maxv,v′∈V d(v, v′).

3.2. Design rationale
The main challenge of S 3 computing is the trade-off between scalability, accuracy and privacy. We describe below

this trade-off and how we address it before describing the protocol in details.
To ensure scalability, we cluster the nodes into groups of size

√
n, and require that a node sends messages only

to other nodes in a small set of neighboring groups. We introduce two parameters of the protocol, κ and l. A node
p is allowed to send messages to any other node in its own group, and to exactly l nodes in each of κ other groups.
For scalability, l and κ need to be low, since they are directly proportional to message complexity. The same for
accuracy: intuitively, the larger l and κ, the more opportunities a node has to cheat (i.e., corrupt the unique pieces
of information it receives before forwarding them), which entails a higher impact on the output. To preserve privacy
(i.e., probabilistic anonymity), we need a mechanism which, for any node p, transforms any trace into another trace,
in such a manner that all messages received by the coalition of faulty nodes are preserved, and p has a different input
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Figure 1: Overview of the overlay

in the two traces. This prevents the coalition from determining the input value of p. It will become apparent in our
proof of privacy that both κ and l need to be large in order to obtain reasonable privacy requirements. To summarize,
accuracy and scalability require the parameters κ and l to be small, whereas privacy requires them to be large. As a
trade-off, we pick them both to be Θ(log n), which ensure good S 3 properties, that is

√
-scalability,

√
-accuracy and

weak anonymity.

3.3. Protocol

We describe AG-S3 which computes general aggregation in a S 3 manner. The protocol is composed of two
interleaved components: one computes the aggregation function while the other checks the behavior of users. The
pseudo-code of all is given in Algorithm 1.

Structure. AG-S3 uses a special structure inspired from [10], where the n nodes are distributed into groups of size
√

n.
Such an overlay can be obtained in a distributed fashion with strong guarantees on the randomness of nodes placement
in the groups even in the presence of faulty nodes [11]. The groups (or offices) are placed on a ring, with nodes from a
particular group sending messages to either nodes from the same office (called officemates) or to selected nodes from
the next offices on the ring (called proxies). More specifically, a node is connected to its

√
n − 1 officemates and to l

proxies in each of the next κ groups on the ring. If a node p′ is a proxy of p, then p is said to be a client of p′. The
partitioning into groups and their placement on the ring are chosen uniformly at random. We further assume a perfect
client-proxy matching that ensures that a proxy has exactly κ · l clients. For example, we can index the nodes inside
each group and assign to the i-th node of a group the nodes i + 1, . . . , i + l mod

√
n as proxies in each of the next κ

groups on the ring. We set κ = 3/2 ·
⌊
log n

⌋
and l = 5 · |V | · blog nc + 1. These choices will become clear in the proofs

of the next section.

Aggregation. In the first phase, each participant splits its input into κ · l shares in V and sends them randomly to its
assigned proxies. The randomized scheme ensures that the aggregate of the shares is the input value. The shares are
generated as follows: (κ · l− 1)/2 are chosen uniformly at random, (κ · l− 1)/2 are the inverses of the randomly chosen
shares, and one is the actual input of the node.

In the counting phase, each proxy aggregates the shares received in the previous phase to obtain an individual
aggregate. Each node then broadcasts its individual aggregate to all its officemates. Each node computes the aggregate
of the individual aggregates of its officemates and obtains a local aggregate. If all nodes are non-faulty, then all local
aggregates computed in an office are identical and equal to the sum of the shares sent to proxies in the group.

In the forwarding phase, the local aggregates are disseminated to other nodes thanks to tokens forwarded along
the ring, as explained below. The forwarding phase is bootstrapped by a special group (that can be determined by
the social networking infrastructure at random). The nodes in this special group send a token containing the local
aggregate computed in their group to their proxies in the next group only. The tokens are further forwarded along the
ring. The first time a token reaches a node in a particular group, this node aggregates the local aggregate to the token
and forwards it to its proxies in the next group only. When a node receives a token for the second time, the node sets
its own output to the value of the token and forwards it. The third time a node receives a token, it discards it.

9
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Figure 2: Illustration of the phases of protocol.

Verifications. The purpose of verifications is to track nodes that deviate from the protocol. This is achieved by
leveraging the value attached by the nodes to their reputation. The basic mechanism is that misbehaviors are reported
by the participants who discover a faulty node and subsequently tag the latter’s profile. The verifications are performed
in each phase of the protocol. In the sharing phase, each proxy verifies that the shares received are valid input values.
In the second phase, each node checks whether the distance between the individual aggregates sent and some random
valid individual aggregate is at most κ · l ·δV . The reason for this is that due to the compatibility of the distance function
with the monoid operation, for any v1, . . . , vk, v′1, . . . , v

′
k ∈ V , we have that

d(v1 ⊕ · · · ⊕ vk, v′1 ⊕ · · · ⊕ v′k) ≤ d(v1, v′1) + · · · + d(vk, v′k) ≤ k · δV .

The verification in the third phase works as follows: if all the tokens received by a node in a given round (remember
that tokens circulate up to three times around the ring) are not the same, then an alarm is raised and the profiles of the
involved nodes are tagged. Otherwise, the node broadcasts the unique value of the tokens it received to its officemates.
If it is not the case that all values broadcast are equal, again an alarm is raised.

3.4. Correctness
We prove here that AG-S3 satisfies the S 3 conditions for |B| ≤

√
n/ log2 n.

Theorem 2 (Scalability). The AG-S3 protocol is
√

-scalable.

Proof. The nodes need to maintain a list of officemates, a list of proxies, a list of clients and a fixed number of
elements of U. This amounts to O(

√
n · log n) space complexity as nodes’ identifiers can be represented using O(log n)

bits. A node performs O(
√

n) ’⊕’ operations each of them having a complexity in O(log n). The message complexity
is similarly O(

√
n) arising from the following components: a node sends κ · l = O(log2 n) shares during the sharing

phase, O(
√

n) copies of its individual aggregate in the counting phase, and O(
√

n) in the forwarding phase. Due to the
peer-to-peer nature of the protocol, a node receives as many messages as it sends.

Theorem 3 (Accuracy). The AG-S3 protocol is
√

-accurate in the presence of at most
√

n/ log2 (n) faulty nodes tight
to a social network.

Proof. A faulty node can bias the output of the computation by either sending an invalid set of shares, changing
the value of its individual aggregate, or corrupt the aggregate during the forwarding phase. However, a node never
misbehaves in a way that this is exposed with certainty (by the verifications presented in the previous section).

Sharing: Not to be detected, a node must send shares in V . Therefore, the distance between the sum of a node’s
shares and a valid input is at most κ · l · δV .

Counting: Suppose that a faulty node changes its individual aggregate from v = v1 ⊕ · · · ⊕ vκ·l to some value
u. When its officemates receive its individual aggregate u they compute the distance between this aggregate and an
arbitrary aggregate w = w1 ⊕ · · · ⊕ wκ·l. If this distance is larger than κ · l · δV then the misbehavior is reported. If
the distance is within the bound, the triangular inequality yields an upper-bound on the maximum impact: d(u, v) ≤
d(u,w) + d(w, v) ≤ 2κ · l · δV .

Forwarding: To corrupt a token without being detected, the coalition of faulty nodes must fool (i.e., make a node
decide and forward a corrupted token without raising an alarm) all the non-faulty nodes of a group. Otherwise the
corruption is detected by the verification consisting in a node broadcasting the token received to its officemates. To
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Algorithm 1 Pseudo-code version of the AG-S3 protocol.
Input: an input value v ∈ V
Variables: individual aggregate u′′ = 0U

local aggregate u′ = 0U

procedure share(v) :
1: for i = 1 to (l · κ − 1)/2 do
2: bi = rand(V) # insertion of a random value in V (uniformly)
3: bi+(κ·l−1)/2 = 	si # insertion of the inverse
4: end for
5: bl·κ = v # insertion of the input value
6: σ = rand(Sl·κ) # share dissemination following a random permutation
7: for igroup = 1 to κ do
8: for iproxy = 1 to l do
9: send[Share, bσ(igroup·l+iproxy)](pigroup,iproxy )

10: end for
11: end for

upon event 〈 reception | [Share, b] 〉 do
12: check that sender is a legitimate client
13: check that received share is a valid value # b ∈ V
14: u′′ = u′′ ⊕ b

procedure local counting(u′′) :
15: for all officemate do
16: send[LocalAggregate,u′′](officemate)
17: end for

upon event 〈 reception | [LocalAggregate, u] 〉 do
18: check that sender is a legitimate officemate
19: check that received aggregate is a possible aggregation of κ · l input values
20: # d(u,w1 ⊕ · · · ⊕ wκ·l) ≤ κ · l · δV where the w1 ⊕ · · · ⊕ wκ·l are random values in V
21: u′ = u′ ⊕ u

fool a single non-faulty node, all the l tokens it received from its clients (remember that nodes forward tokens only to
their proxies in the next group) must be equal. Since nodes have l proxies in the next group, f faulty nodes can fool up
to f non-faulty nodes. Assuming that a group contains f non-faulty nodes (and

√
n− f faulty nodes), then corrupting

a token without being detected requires another f faulty nodes in preceding groups. That is a total of
√

n faulty nodes
which cannot happen under the assumption |B| ≤

√
n/ log2 n. To conclude, the local aggregates cannot be corrupted

during the forwarding phase.
The impact of a faulty node on the output of the computation is bounded by 3κ · l · δv. We have |B| ≤

√
n/ log2 n,

κ = O(log n), l = O(log n) and ∆(n) = Ω(n). Putting everything together, we get that the accuracy of definition 3 is
O(
√

n/ log2 n · log n · log n/n) = O(1/
√

n), which concludes the proof.

Theorem 4 (Weak probabilistic anonymity). The AG-S3 protocol is weakly probabilistically anonymous.

Proof. We need to show that, with high probability, there exists a mechanism that for any node p, transforms any
trace in such a way that the coalition of faulty nodes receives the same messages, but p has a different input. We first
give an outline of the proof.

The transformation mechanism consists in changing the values transmitted between non-faulty nodes, in such
a way that any subsequent message sent by non-faulty nodes to the nodes in the coalition does not change. As a
result, the coalition receives the same information. Remember that the coalition knows (1) the inputs of all the faulty
nodes, (2) the shares received by all the faulty nodes, (3) the individual aggregates of all the faulty nodes’ officemates,
and (4) possibly all the local aggregates. We focus on weak privacy. Therefore we consider a non-trivial input
configuration, with respect to the coalition. That is that at least two non-faulty nodes have different inputs. The basic
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idea of this mechanism is to swap the inputs of two nodes p1 and p2, provided that there is a non-compromised group
g (i.e., a group with no faulty nodes) that contains proxies of both p1 and p2. In this case, we can modify the shares
sent by p1 and p2 to proxies in g, in such a way that the local aggregate of g is maintained. Since we assume that all
nodes in g are non-faulty, the coalition does not have access to information exchanged in g during the counting phase.
The coalition only sees what the nodes in g decide to broadcast in the forwarding phase, but that is identical to what
is sent in the original trace. To modify the shares of p1 and p2, we assume that both send a share containing their own
input to some proxies in g. Each of p1 and p2 has l proxies in g, so the larger l, the larger the probability that our
assumption is true. Then the aforementioned shares of p1 and p2 are swapped, resulting a consistent trace, where p1
and p2 swapped input values.

In case there is no such common non-compromised group g for p1 and p2, we may still find a chain of nodes with
endpoints p1 and p2, such that two consecutive nodes in the chain can swap input values. The larger κ, the larger the
probability that such a chain exists. Afterwards, the nodes can swap shares along the chain, resulting in a consistent
configuration where p1 has as input the old input value of p2. The rest of the proof is concerned with making our
outline description precise.

Let T be a trace of AG-S3 generated from a non-trivial input configuration v, B be a coalition of faulty nodes
(|B| ≤

√
n/ log2 n) and p be a non-faulty node. Since the input is non-trivial, there exists a node p′ whose input is

different from the input of p in v. We prove that with high probability there exists a trace equivalent to T from the
stand-point of the coalition and compatible with an input configuration v′ which is the same as v, except that the inputs
of p and p′ have been swapped.

We say that a group is compromised if it contains at least one faulty node. The coalition of faulty nodes knows
the local aggregates of all the groups, the individual aggregates of the proxies in the compromised groups, the shares
they received and their own inputs.

We first prove the following lemma.

Lemma 1. The probability that in any sequence of κ − 1 consecutive groups there is at least one non-compromised

group is at least 1 −
√

n
(
|B|
√

n

)κ−1
.

Proof. This probability is minimized if no two faulty nodes lie in the same group, i.e., there are |B| compromised
groups. Fix κ − 1 consecutive groups. The number of configurations in which these groups are compromised is(√

n−κ+1
|B|−κ+1

)
. The total number of configurations is

(√
n
|B|

)
, so the probability that all the fixed k consecutive groups are

compromised is given by the ratio of the two binomial coefficients, which is upper-bounded by
(
|B|/
√

n
)κ−1

. We
use the union bound to upper-bound the probability that there is at least one such sequence of κ − 1 consecutive
compromised groups. There are

√
n sequences of κ − 1 consecutive groups, which proves the lemma.

Since κ = 3/2 ·
⌊
log n

⌋
and |B| ≤

√
n/ log2 n, we get that the probability of having κ consecutive compromised

groups is at most 1/n.

Lemma 2. Given x ∈ V, the probability that a node sends at least one share of value x to a proxy situated in a given
group, assuming this node has proxies in that group, is at least 1 − 1/n5/2.

Proof. The l shares sent to a group by a node are randomly picked from a set of κ · l shares in which (κ · l − 1)/2 are
random, (κ · l − 1)/2 are the inverses of the random shares, and one is the actual input of the node. At least (l − 1)/2
of them are independent, and drawn uniformly at random from V . Thus, the probability that a is not one of them is at
most (1 − 1/|V |)(l−1)/2. Since (l − 1)/2 = 5/2 · |V | · blog nc, this probability is upper-bounded by 1/n5/2, which proves
the lemma.

Consider two non-faulty nodes p and p′ in two consecutive groups, such that vp , v′p. Both of them have proxies
in the κ groups following their respective groups on the ring. Since they lie in consecutive groups, there are κ − 1
groups in which both of them have proxies. We assume that one of these groups is not compromised (Lemma 1
gives a lower bound on the probability that this situation occurs). We call this group g. We further assume that at
least one share sent by p (resp. p′) is equal to its input value vp (resp. v′p) (Lemma 2 gives a lower bound on the
probability that this situation occurs). Swapping these two shares maintains a valid trace (in which the input of p is v′p
and the input of p′ is vp) that is equivalent to the original trace from the stand-point of the coalition. This guarantees
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Figure 3: Illustration of the swapping of two non-faulty nodes’ inputs located in two consecutive groups.

the probabilistic anonymity of non-faulty nodes with different inputs and located in consecutive groups. Figure 3
illustrates this transformation.

We now extend our result to non-faulty nodes in arbitrary groups. Let g(·) denote the index of a group in which a
node lies. Without loss of generality, we assume that g(p) = 0. Since we assume that the input v is not trivial, let p′ be
a node such that its input v′p is different from the input of p. Let i1, . . . , iM be a sequence of group indexes such that:
(1) group gim is non-compromised for all m, (2) 0 < i1 < κ, (3) 0 < im+1 − im < κ for all m, and (4) 0 < iM − g(p′) < κ.
Such a sequence exists with high probability according to Lemma 1. For all 1 ≤ m < M, we define pm as an arbitrary
non-faulty node in group gim−1. Additionally, we set p0 = p and pM = p′. Since all nodes have proxies in the κ groups
succeeding them, we have that for all 1 ≤ m ≤ M, pm−1 and pm both have proxies in gim as depicted in Figure 4.

Using Lemma 2 and using an union bound on the 1 ≤ m ≤ M, we get that the probability that for all 1 ≤ m ≤ M,
pm−1 sends a share of value vp to a proxy in gm and pm sends a share of value vp to a proxy in gm, is at least 1−2M/n5/2.
Since M is bounded by the number of groups, namely

√
n, this probability is lower-bounded by 1 − 2/n2.

Assuming that this event occurs, we exhibit a trace compatible with a configuration of inputs where the inputs of
p and p′ are swapped: for all 1 ≤ m ≤ M, the vp share sent by pm−1 to gim is replaced by v′p and the v′p share sent by
pm to gim is replaced by vp, as illustrated in Figure 4. This trace is equivalent to T with respect to the coalition B as no
share sent to a compromised group is changed and all local aggregates remain the same.
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Figure 4: Illustration of the proof of privacy: pairs of shares sent in the same group can be swapped ((a) → (b)) leading to an equivalent trace
compatible with a different configuration of inputs.
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We complete the proof by showing that this trace is indeed compatible with the modified configuration of inputs.
In the case of AG-S3, compatible means that the set of shares sent by a node is composed of (κ · l − 1)/2 values of
V , their inverses, and the actual input of the node. For p and p′, we only change the value of one share equal to their
inputs. Therefore, their set of shares remains compatible with their new inputs. For the other nodes pm, 0 < m < M,
two of their shares are simply swapped.

We proved that the privacy of a given non-faulty node p is preserved with probability at least 1 − 2/n2, given that
the event of Lemma 1 occurs. Since the probability of this event is large (according to Lemma 1), using Bayes’ Rule
it is clear that 1 − 3/n2 is an upper bound on the probability that privacy of a particular node is preserved. Using a
union bound over the whole set of at most n non-faulty node nodes, we obtain that probabilistic anonymity as defined
in Definition 7 is preserved with probability 1 − 2/n.

It can be seen from the previous proofs that the proposed solution trades accuracy for privacy. This is captured
by parameters κ and l: privacy requires these parameters to be O(log n), which entails a higher impact on the output
which, in turn, reduces the maximum number of faulty-node the protocol can tolerate. Note that large values of κ and l
also decrease scalability. In our case however, the overhead is proportional to κ · l, which fits into the poly-logarithmic
factor of Definition 2.

3.5. Generalization

In this sub-section we prove that AG-S3 verifies the conditions of Theorem 1. To do so, we prove that, using a
compact representation of multisets, the union of all singleton multisets representing the nodes’ inputs is an aggrega-
tion function that meets the requirements of AG-S3.

Proof. Let V be the input set of the S 3 candidate to compute, V ′ be the set of vectors of integers which components
are all null except one that is in {−1,+1}, and U′ be the set of vectors of integers of size |V | whose components are in
{−n · κ · l, . . . , n · κ · l}. We equip U′ with the binary operator ⊕ defined as:

(x1, . . . , x|V |) ⊕ (y1, . . . , y|V |) =
(
(x1 + y1)/[−n·κ·l,n·κ·l], . . . , (x|V | + y|V |)/[−n·κ·l,n·κ·l]

)
,

where (x)/[−n·κ·l,n·κ·l] = max (min (x,−n · κ · l), n · κ, l). In short, ⊕ is component-wise addition of vectors of integers
where values outside of the interval {−n · κ · l, . . . , n · κ · l} are truncated. The computational complexity of ⊕ and ‖. − .‖
is linear in the size of their operands. At the end of the computation, negative components are set to 0 and components
greater than n are truncated. Note that this does not decrease accuracy (w.r.t. ‖. − .‖) as a valid representation of a
multiset has all its components in {0, . . . , n}.

It can now be seen that, under this formalism, the S 3 candidate (V ′,U′,⊕, ‖. − .‖) corresponding to the computation
of the multiset of inputs falls into the conditions of use of AG-S3. Indeed, V is a fixed-size set, closed with respect to
the inverse. The set U′ is of size 2n · κ · l, which is upper-bounded by a polynomial of n as κ and l are O(log (n)). Also,
the diameter is 2n which is a Ω(n). Finally, the distance measure ‖. − .‖ is compatible with ⊕.

We have now shown that AG-S3 satisfies the condition of application of Theorem 1, which implies that AG-S3
can be used to compute a wider class of functions, that is Lipschitz continuous functions f on a finite size set such
that the diameter of the image space is Ω(n) and such that f can be computed locally from the compact representation
of the multiset of inputs in a

√
-scalable way.

4. Related Work

Cryptographic primitives and secure multi-party computation [2, 3, 4] allow to compute aggregation functions in
a secure way. This however comes at the price of limited scalability (at least linear in the number of nodes) as these
protocols usually do not compromise on accuracy, i.e., they compute the exact result. Assuming trust relationships
between users of a social network, Vu et al. [12] proposed an improved secret sharing scheme to protect privacy. In
that scheme, the actual relationships between nodes are used to determine the trustworthy participants, and the shares
are only distributed to those. In contrast, AG-S3 exploits solely the human nature of social networks without making
any assumptions on the social relationships themselves.
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The population protocol model of Angluin et al. [13] provides a theoretical framework of mobile devices with
limited memory, which relates to the scalability requirement of the S 3 problem. The model however can only compute
first order formulas in Presburger arithmetic [14] and can tolerate only a constant number of benign failures [15]. The
community protocol model [16] relaxes the scalability requirements on the memory sizes of tiny agents which enables
powerful computations and Byzantine fault-tolerance. Yet, the model breaks anonymity as agents are assigned unique
ids. This illustrates the trade-off between the power and security of a model on one hand and privacy on the other
hand. The problem of privacy in population protocols was also tackled in [17]. The sharing scheme of AG-S3 is
inspired by the obfuscation mechanism proposed in that paper, namely adding unit noise (+1 or -1) to their inputs,
upon a state exchange. Dpol [9], itself also inspired by [17], can be be viewed as a restricted form of AG-S3. Dpol
is restricted to binary polling: it aggregates values in {−1,+1} and it uses a rudimentary secret sharing scheme and
overly structure that assume (i) a uniform distribution of inputs, and (ii) a built-in anonymous overlay. These are the
two main difficulties of the privacy challenge as defined in the S 3 problem.

Differential privacy [18] and k-anonymity [19] are two common ways to express privacy in the context of dis-
tributed computations on sensitive databases. Contrary to AG-S3, where faulty nodes take part in the computation,
those techniques aim at protecting the privacy of inputs from an external attacker that queries the database. Differential
privacy characterizes the amount of information disclosed by the output by bounding the impact of a single input on
the output. It is typically achieved by adding noise to the output. However, as pointed out in [20], differential privacy
does not capture the cases of rare input configurations due to the multiplicative bounds in its formulation, which is
precisely the difficult case we need to address in the S 3 problem, i.e., the case where everybody but one node have the
same inputs. The obfuscating technique consisting in adding noise to intermediate results cannot be used directly in
the context of S 3 computing as it gives more opportunities to faulty nodes to bias the output of the computation. On
the other hand, k-anonymity guarantees that any input value maps to at least k input nodes. In the S 3 problem, privacy
can be seen as 2-anonymity with high probability, expressed in a distributed setting. With AG-S3, faulty nodes cannot
map any input to a restricted subset of nodes as any two non-faulty nodes can swap their inputs transparently. It thus
ensures n − B-anonymity with high probability.

5. Conclusion

Social networks now constitute huge platforms on which it is very tempting to perform large scale computations.
Yet, such computations are challenging for they require privacy, scalability and accuracy. We leverage the very fact
that, in such platforms, behind every node lies a respectable user who cares about her reputation, in order to make
the problem tractable. We define what the notion of computation means in that context and propose a protocol
that computes a class of regular functions. This is a first step toward understanding what can be computed in a
social network and many open questions are left open: What is the maximum number of faulty nodes a S 3 protocol
can tolerate? What else besides aggregation functions can be computed in a S 3 manner? Indeed, while this paper
exhibited in a constructive way an achievable trade-off, namely (

√
,
√
,weak) with less than

√
n/ log2 n faulty-nodes,

the boundaries of the design space are yet to be determined.
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Appendices

Symbol Definition
Π = {p1, . . . , pn} set of nodes
V input set
v = {vp}p∈Π input configuration
U output space
⊕ monoid operation on U
f : V∗ → U function to be computed
op ∈ U output of node p
d : U → R+ distance measure on the output space
δV diameter of V (when V ⊆ U)
∆(n) diameter of the image space f (Vn)
B coalition of faulty nodes (|B| its size)
T execution trace
dms natural distance on multi-sets

(size of the symmetric difference)
k parameter of Lipschitz continuity
κ number of next groups on the ring (param. of AG-S3)
l number of proxies in each group (param. of AG-S3)

Table 1: Table of notations.
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