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Abstract

The purpose of this paper is to develop the macroscopic model of hydro-mechanical coupling for
the case of a porous medium containing isolated cracks or/and vugs . In the development we ap-
ply the asymptotic expansions homogenization method. It is shown that the general structure of
Biot’s model is the same as in the case of homogeneous medium but the poro-elastic parameters
are modified. Two numerical examples are presented. They concern the computations of Biot’s
parameters in isotropic and anisotropic cases. It can also be seen how the presence of near-zero-
volume cracks influences Biot’s parameters of the porous matrix. It can significantly affect the
coupled hydro-mechanical behaviour of damaged porous medium.

1 Introduction

Microporous media with cracks or/and vugs represent a class of natural and/or damaged geo-
materials (soils, rocks or cement-based materials). They may be considered as special cases of
double porosity media, if the criterion of classification is a large contrast between the average size
of pores in the microporous matrix and the average size of the cracks or vugs. However, this
criterion is insufficient for the precise description and classification when we analyze the coupled
hydro-mechanical behaviour of saturated cracked media. It turns out that additional morphological
information about the connectivity of cracks is needed. This conclusion comes from the study of
hydraulic behaviour of microporous media with connected and disconnected cracks. ”Diconnected”
means here that the crack or vug system do not percolate in the absence of microporosity.
The homogenization using asymptotic developments [1] showed that the macroscopic fluid filtra-
tion in a rigid porous medium is very different in case of closed fissures, from the one when they
are connected. When the fissures (cracks) are disconnected, the velocity of filtration depends on
the average size of pores in the porous matrix. On the contrary, in case of connected fissures the
porous matrix plays a secondary role (negligible) and the flow velocity is governed by the network
of fissures at the first order of approximation.
In addition, in case of unsaturated water flow through a rigid porous medium with connected
fissures it was shown by using the homogenization technique [2] that memory effects are present
during the transient phase of flow : i.e. the macroscopic equivalent model is non-local in time.
This kind of behaviour is commonly associated with the existence of double porosity. The memory
effect is absent, if the fissures are disconnected [3, 4].
The modelling is also complex when the porous medium through which filtrates an incompressible
fluid is deformable. The coupled hydro-mechanical behaviour of deformable double porosity media
was studied by using the homogenization technique (asymptotic development method) in a series
of papers [5, 6, 7]. In that analysis it was assumed that the porous medium contains fractures that
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are connected. By double changing of scales three different macroscopic models were obtained, ac-
cording to the ratio between pores, fractures and global scales. One of these models shows memory
effects which are related to fluid filtration through the micro-porosity.
Historically, the term double porosity was firstly introduced by Barenblatt, Zheltov and Kochina
[8], who studied the effect of fissures and matrix porosity in the rock-mass- seepage problem by us-
ing the phenomenological approach. They introduced the assumption that the mass flow between
the two porosity systems is determined by the pressure jump in the two systems. The further
significant contributions are Warren and Root [9], and Wilson and Aifantis [10]. Afterwords, the
modern homogenization theory for materials with periodic structures [11, 12], offered the possibility
for a detailed analysis of the upscaling process and the relationship between the microstructure,
in particular phase connectivity, and the macroscopic behaviour. It is also important that we can
identify the local fields and to precise the domain of validity of the modelling.
There exist also in the literature a large number of contributions regarding other homogenization
techniques. They are essentially applied to determine the poro-mechanical or hydraulic properties,
and the constitutive laws of materials containing heterogeneities like cracks or vugs. Two groups
of such homogenization techniques can be distinguished:
i) The homogenization method based on the analysis of the behaviour of an assumed pattern repre-
senting an idealized microstructure.Among them are: the self-consistent approach, the Mori-Tanaka
scheme, etc...[13].
ii) The numerical homogenization methods that use the volume averaging of the behaviour of a
statistical ensemble of particles (particle-type models). Among these methods one can cite: the dis-
crete element method (DEM), the lattice Boltzmann (LB) method, the molecular dynamics method
(MDM), the contact dynamics method (CDM). A review of the state of the art is presented in [14]
The aim of this paper is to develop a macroscopic model of hydro-mechanical coupling for the case
of a porous medium containing non-connected cracks (or vugs). Such a model will be an extension
of the classical Biot model [15, 16]. The analysis will start at the mesoscopic scale (i.e. the scale of
the period Ω). It will be assumed that at that scale the medium was subjected to a damage, so that
a network of non-connected cracks (vugs) appeared. The poro-elastic behaviour will be studied by
using the asymptotic expansions homogenization method. It will be shown that the structure of the
macroscopic equivalent model is similar to the Biot’s model that is assumed at the mesoscopic scale,
but the effective parameters are modified. In particular, the hydromechanical coupling variables α
(Biot’s tensor) and β (Biot’s coefficient) are significantly affected by the presence of cracks (vugs).
The paper is organized as follows. In Section 2 the formulation of the problem at the mesoscopic
scale is presented. Sections 3 and 4 show the homogenization process. A numerical example is
presented in Section 5. Finally, Section 6 contains the conclusions.

2 Crack (vug) scale description

We consider an elastic saturated microporous medium which contains saturated cracks or vugs
(macropores). Crack (or vug) volumes are not connected: the fluid flows from a crack (or vug)
to another one through the microporous medium. The saturating fluid is viscous Newtonian and
incompressible. And we look for the equivalent macroscopic behaviour of this two-phase medium
at a scale L which is large compared to the scale l of the cracks (or vugs): l/L = ε � 1, when
the micropore size lp itself is small with respect to the crack (vug) size, with a ratio lp/l = ε. Due
to this separation of scales, periodic and non-periodic media show similar macroscopic equivalent
behaviour [17]. Therefore, without loss of generality, the heterogeneous medium is assumed as
periodic of period Ω. The microporous part of Ω is noted Ωm, Ωp is the micropore domain at
the pore scale and for the simplicity of the presentation the period contains a single crack (vug)
Ωc. Γ is the boundary of the crack (vug) (Figure 1). We admit Biot’s model for the deformable
microporous medium [16]



Figure 1: Schematic view of the period of a porous medium with a crack (vug)

∂σM
ij

∂Xj
= 0, (1)

where
σM

ij = σS
ij − αpP , σS

ij = cijkleXkl(uS) in Ωm, (2)

∂

∂Xi
(vP

i − φP ∂uS
i

∂t
) = −α

∂eS
Xii(u

S)
∂t

− β
∂pP

∂t
, (3)

vP
i − φP ∂uS

i

∂t
= −K

µ

∂pP

∂Xi
in Ωc. (4)

For the sake of simplicity, tensors α and K are assumed as isotropic and α and β are constant. X
is the space variable, σM the total stress in Ωm, σS the partial solid stress in Ωm, pP the micropore

pressure, vP the average fluid velocity in Ωm (We note vD = vP − φP ∂uS

∂t
is Darcy’s velocity),

uS the displacement in the microporous matrix, eS
X(uS) the corresponding deformation tensor, c

the elastic tensor and φP = Ωp/Ωm the micro-porosity. Recall that the permeability is of the order
K = O(l2p), where lp is the micropore characteristic size. In the Ωc domain, the fluid verifies the
Stokes equation

∂σC
ij

∂Xj
= 0, σC

ij = 2µeXij(vC)− pCIij , (5)

∂vC
i

∂Xi
= 0 in Ωc, (6)

where vC is the fluid velocity in Ωc, pC the crack (vug) pressure, eX(vC) is the rate of deformation
tensor and µ is the dynamic viscosity,

On the boundary Γ of the crack (vug), we have the continuity of the total stress and of the
pressure

σM
ij nj = σC

ijnj , (7)

pP = pC , (8)

and the average velocities in Ωm and Ωc are equal (Auriault and Boutin, 1992)

(vP − φP ∂uS

∂t
)︸ ︷︷ ︸

Average fluid velocity relative to the solid

+
∂uS

∂t︸ ︷︷ ︸
Solid velocity

= vC on Γ, (9)

where n is the unit normal to Γ exterior to Ωm.



3 Estimations and dimensionless equations

We consider a macroscopic sample of characteristic size L made of a large number of periods
Ω, with a view to verfy ε = l/L � 1. We assume that σS , pP and pC are of similar order of
magnitude. Displacements of the solid S and the fluid are also considered of similar order of
magnitude, ∂uS/∂t = O(vP ) = O(vC). From (4) we have

vP = O(
l2p
µ

pP

L
).

Therefore, the ratio of the viscous term to the pressure term in (5) can be evaluated at the macro-
scopic level as

(
|2µeXij(vC)|

|pC |
)L = O(

2µvC

LpC
) = O(

l2p
L2

) = O(ε4).

Finally, using x = X/L as the dimensionless space variable and keeping similar notations for
dimensionless physical quantities yield the dimensionless local description in the following form.
We have in Ωm,
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σM
ij = σS

ij − αpP , σS
ij = cijklexkl(uS), (11)
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in Ωc,
∂σC

ij

∂xj
= 0, σC

ij = 2ε4µexij(vC)− pCIij , (14)

∂vC
i

∂xi
= 0, (15)

and on Γ
σM

ij nj = σC
ijnj , (16)

pP = pC , (17)

vC = vP + (1− φP )
∂uS

∂t
on Γ. (18)

4 upscaling process

By following the classical method of multiscale asymptotic expansions, we look for uS , vP , pP , vC

and pC in the form

ϕ = ϕ(0)(x,y, t) + εϕ(1)(x,y, t) + ε2ϕ(2)(x,y, t) + · · · , (19)

where y = x/ε, and the ϕ(i)’s are Ω-periodic with respect to y. Variable y is well suited to de-
scribing the behaviour at the period scale whereas x shows the macroscopic variations at scale L.
Introduction of such expansions in the system (10-18) and equating like powers of ε yield boundary
value problems to be investigated over the period Ω.



4.1 Pressures pP (0) and pC(0)

Equations in (14) at the ε−1 order yields

∂pC(0)

∂yi
= 0, thus pC(0) = pC(0)(x, t). (20)

Equation (12) at the ε−2 order and (17) at the ε0 order give

∂

∂yi
(
K

µ
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∂yi
) = 0 in Ωm, pP (0) = pC(0) on Γ (21)

We deduce that
pP (0) = pC(0) = p(0)(x, t). (22)

4.2 Displacements uS(0) and uS(1)

Equation (10) at the ε−2 order and (16) at the ε−1 order are in the form

∂

∂yi
(cijkleykl(uS(0))) = 0 in Ωm, cijkleykl(uS(0))nj = 0 on Γ. (23)

Therefore
uS(0) = uS(0)(x, t). (24)

Equation (10) at the ε−1 order and (16) at the ε0 order are written

∂

∂yi
(cijkl(exkl(uS(0)) + eykl(uS(1)))) = 0 in Ωm, (25)

cijkl(exkl(uS(0)) + eykl(uS(1)))nj = −(1− α)p(0)ni on Γ. (26)

That gives uS(1) in the form

u
S(1)
i = ξlm

i (y)exlm(uS(0))− ηi(y)(1− α)p(0) + ūS(1)(x, t), (27)

where ūS(1)(x, t) is an y-independent arbitrary displacement. The Ω-periodic vector ξpq, of zero
volume average over Ωm, is the solution of the boundary value problem

∂

∂yi
(cijkl(δkpδlq + eykl(ξpq))) = 0 in Ωm, (28)

cijkl(δkpδlq + eykl(ξpq))nj = 0 on Γ, (29)

where δkp and δlq are Kronecker symbols.
And the Ω-periodic vector η, of zero volume average over Ωm, is the solution of

∂

∂yi
(cijkleykl(η)) = 0 in Ωm, (30)

cijkleykl(η)nj = ni on Γ. (31)

Note that tensor ξ and vector η are similar to the ones obtained for saturated porous media
showing one pore characteristic size, only, by considering domain Ωm as non-porous (the classical
Biot’s model). Therefore they verify, see [17], p. 45, for details∫

Ωm

∂ξlm
i

∂yi
dΩ = −

∫
Ωm

cijlmeyij(η)dΩ. (32)



4.3 First pressure correctors pP (1) and pC(1)

The pressure pC(1) is obtained from (14) at the order ε0

∂p(0)

∂xi
+

∂pC(1)

∂yi
= 0, thus pC(1) = −yi

∂p(0)

∂xi
+ p̄C(1)(x, t), (33)

where p̄C(1)(x, t) is a y-independent arbitrary function. The pressure pP (1) is the solution of (12)
at the order ε−1 with (17) at the ε order

∂

∂yi
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K

µ
(
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∂xi
+
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∂yi
)) = 0 in Ωm, (34)

pP (1) = pC(1) = −yi
∂p(0)

∂xi
+ p̄C(1)(x, t) on Γ. (35)

That gives

pP (1) = −τi(y)
∂p(0)

∂xi
+ p̄P (1)(x, t), (36)

where p̄P (1)(x, t) is a y-independent arbitrary function, and

p̄C(1)(x, t) = p̄P (1)(x, t) = p̄(1)(x, t).

The Ω-periodic component τp, of zero volume average over Ωm, is the solution of the boundary
value problem

∂

∂yi
(
K

µ
(δip +
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∂yi
)) = 0 in Ωm,

τp = yp on Γ.

4.4 Macroscopic momentum balance

Consider (10) and (14) at the ε0 order

∂
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Let us integrate (37) on Ωm and (38) on Ωc, respectively, and apply the divergence theorem. We
obtain
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|Ω| denotes the volume of Ω and the symbol 〈a〉 stands for the volume average of a
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1
|Ω|
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adΩ.



Now, subtracting member to member the second equation from the first one and using (16) at the
ε order

(cijkl(exkl(uS(1)) + eykl(uS(2)))− αpP (1))nj = −pC(1)ni on Γ, (39)

give the macroscopic momentum balance in the form

∂σ
T (0)
ij

∂xj
= 0, (40)

where the σ
T (0)
ij = ceff

ijklexkl(uS(0))− αeff
ij p(0) are the components of the macroscopic total stress in

the microporous medium with cracks. The effective tensors ξeff and αeff are defined by

ceff
ijkl = 〈cijkl + cijmneymn(ξkl)〉, (41)

αeff
ij = (φC + (1− φC)α)Iij + 〈(1− α)cijkleykl(η)〉. (42)

In the above equations φC = Ωc/Ω is the volumetric fraction of the cracks (vugs).
Remark
Consider penny-shaped cracks O(l), of small thickness such that φc is small. Then we have

αeff
ij ≈ αIij + 〈(1− α)cijkleykl(η)〉 6= αIij ,

which means that the presence of cracks O(l), but with negligible volume influences the poro-
mechanical behaviour of the medium.

4.5 Macroscopic flow law

Equation (13) at the order ε0 gives

v
P (0)
i − φP ∂u

S(0)
i

∂t
= −K

µ
(
∂pP (1)

∂yi
+

∂p(0)

∂xi
). (43)

Consider a parallelepipedic period with surfaces perpendicular to the axes. It is easy to check that
the surface average fluid flow 〈vP (0)

i 〉S through any of the period surface Si normal to yi can be
written at the first order of approximation in the form

〈vP (0)
i 〉S =

1
|Ω|

∫
∂Ω

yiv
P (0)
k nk dS. (44)

Thus, multiplying (43) with i = k by yi and integrating over the period surface yield with the help
of the definition (36) of pP (1) to the macroscopic flow law

v
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= −

Keff
ij
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where vD(0) is the first order Darcy’s velocity and the effective permeability Keff is defined, after
using (36), as

Keff
ij =

1
|Ω|

∫
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µ
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yl
)nl dS. (46)

This result was already obtained by Levy [1], in the case of a rigid microporous matrix with
cracks. The macroscopic permeability depends on the matrix permeability and on the microstruc-
ture (through the solution for the vedtor τ).



4.6 Macroscopic mass balance

Balances (12) and (15) at the order ε0 write
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∂Ai

∂xi
+ B = (1− φC)(φP − α)

∂exii(uS(0))
∂t

− β(1− φC)
∂p(0)

∂t
, (49)

with
Ai =

1
|Ω|

(
∫
Ωm

v
P (0)
i dΩ +

∫
Ωc

v
C(0)
i dΩ),

B =
1
|Ω|

(
∫
Ωm

∂

∂yi
(vP (1)

i − φP ∂u
S(1)
i

∂t
)dΩ +

∫
Ωc

∂v
C(1)
i

∂yi
dΩ).

Equations (12) and (15) at the ε−1 order give
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On an other hand
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After using (18) at the ε order

v
P (1)
i − v

C(1)
i = (φP − 1)

∂u
S(1)
i

∂t
on Γ,

it comes
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+ 〈eyii(η)〉(1− α)
∂p(0)
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Introducing expressions (50) and (51) into (49) and using (45) yield the first order macroscopic
mass balance in the form
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i ) = −γeff
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with
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ij = (φC + (1− φC)α)Iij − (1− α)〈eyll(ξij)〉, (53)

βeff = (1− φC)β + (1− α)2〈eyii(η)〉. (54)

With the help of (32) we have
γeff

ij = αeff
ij . (55)

The first order macroscopic model shows the classical Biot symmetry [16]. However, note that the
values of the Biot parameters are strongly affected by the presence of cracks (vugs), see Section 5
Note that in the case of near-zero-volume cracks (vugs), when φc ≈ 0, then αeff 6= αIij and
βeff 6= β. It is an important result that confirms the influence of damage on the hydro-mechanical
coupling.

4.7 Dimensional equivalent macroscopic model

Returning to dimensional quantities, the equivalent macroscopic model writes

∂σT
ij

∂Xj
=
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∂Xi
(ceff

ijkleXkl(uS)− αeff
ij p) = O(ε), (56)
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i = −

Keff
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µ

∂p

∂Xj
+O(ε). (58)

The approximation O(ε) calls our attention to a generally imperfect separation of scales. As noted
above in (55), the macroscopic model of the microporous medium with cracks (vugs) shows the
symmetry of Biot’s model which describes deformable single porosity media.
On an other hand we have from (50) and (45)

〈v〉 = 〈vP 〉+ 〈vC〉 = vD + (φP + (1− φP )φC)
∂uS

∂t
+O(ε).

After noting that the porosity of the microporous media with cracks is

φ = φC + (1− φC)φP = φP + (1− φP )φC ,



Figure 2: The microstructure of the porous medium with a circular vug.

Figure 3: The solution ξ11 of the local problem (28-29) corresponding to a unit macroscopic strain
in the x-direction (horizontal).



Figure 4: The solution η of the local problem (30- 31) corresponding to (1 − α)p(0) = −1 at the
boundary Γ.

it comes

vD = 〈v〉 − φ
∂uS

∂t
+O(ε). (59)

It is important to note that Darcy’s flux vD is related to the volume average of the fluid velocity
〈v〉 = 〈vP 〉 + 〈vC〉 by the classical relation which is valid for single porosity media. When the
material of the microporous matrix is incompressible

α = 1, β = 0,

it is easy to check from (49) and (50) that the corresponding effective Biot’s parameters verify
similar relations

αeff
ij = Iij , βeff = 0.

Finally, let us recall that the macroscopic equivalent model was obtained under the conditions that
stresses and pressures in both fluid and solid, as well as displacements in the fluid and the solid,
are of similar order of magnitude.

5 Numerical examples

We investigate two different problems. Due to the symmetries of the period, the first one yields an
isotropic macroscopic model. The second one investigates the case of flat penny-shaped cracks (an
anisotropic orthotropic case).

5.1 A porous medium with circulars vugs

In order to study the influence of vugs on the poro-elastic behaviour of the porous material, let
us consider a porous material which microstructure is presented in Figure 2. This microstructure
was investigated in [18] with the assumption that the matrix is not porous, which is physically
inconsistent with the assumption of the validity of Biot’s model (no water flow is possible). We
assume that the porous matrix material is isotropic and homogeneous. The poro-elastic parameters
of the matrix are given in Table I.
The volumetric fraction of the vug is φc = 0.126. The determination of the macroscopic poro-

elasticity parameters αeff and βeff consists in solving the local problems (28-29) and (30- 31),
followed by the application of the definitions (42) and (54). The computations were performed
using the Comsol Multiphysics code and the Structural mechanics application mode (plane strain



Figure 5: The solution ξ11 of the local problem (28-29) corresponding to a unit macroscopic strain
in the x-direction (horizontal).

Figure 6: The solution ξ22 of the local problem (28-29) corresponding to a unit macroscopic strain
in the y-direction (vertical).



Figure 7: The solution η of the local problem (30- 31) corresponding to (1 − α)p(0) = −1 at the
boundary Γ.

Young modulus E [GPa] Poisson ratio ν [ ] Porosity n [ ] Biot parameter α [ ] Biot parameter β [GPa−1]

1 0.3 0.126 0.334 0.218

Table 1: Poro-elastic parameters of the porous matrix

conditions). Figure 3 represents the solution of the problem (28 -29). It shows the displacement
field ξ11 corresponding to the case of a unit macroscopic strain in the x-direction (horizontal).
Figure 4 presents the solution of the problem (30- 31). We can see the displacement field η for
which (1 − α)p(0) = −1 at the boundary Γ. By using definitions (42) and (54) we obtained the
following values of the poro-elastic Biot’s parameters: αeff = 0.556 and βeff = 0.287. It should
be noticed that there are significant modifications of both parameters, if we compare these values
with the values obtained in [18] for the case of the non-porous matrix, namely: αeff = 0.334 and
βeff = 0.218 (after correction of the sign in [18]). As expected both parameters are increased which
means that the hydro-mechanical coupling becomes stronger. This example shows the importance
of taking into account the porous nature of the matrix.

5.2 A porous medium with flat cracks

We consider the porous medium with the same parameters as in the example 5.1, but the crack
is now of penny-shaped form and negligible volume. The semi-axes of the crack are 0.2 in the
x-direction and 0.002 in the y direction. The volumetric fraction of the crack is φc = 0.0013.
The total porosity of the medium is almost the same as in the example 5.1, namely 0.127. Two
calculations were performed to solve the problem (28- 29) by applying a macroscopic unit strain
in the x-direction and in the y-direction. Displacement ξ11 is presented in Fig. 5. As a first
approximations the two lips of the crack can be considered as parallel to the x axis. Therefore the
boundary condition (29) for ξ11 reads

cijkleykl(ξ11)nj ≈ −λn2 = − Eν

(1 + ν)(1− 2ν)
n2 on Γ,



Figure 8: Model geometry with boundary conditions (after Leake and Hsieh, 1997)

whereas for ξ22 we have

cijkleykl(ξ22)nj ≈ −(λ + 2µ)n2 = − E(1− ν)
(1 + ν)(1− 2ν)

n2 on Γ,

where λ and µ are the Lamé constants. Therefore displacements ξ11 and ξ22 are approximately
parallel, that can be observed in figures 5 and 6 and we have

|ξ22|
|ξ11|

≈ 1− ν

ν
.

The obtained values of Biot’s parameters are α11 = 0.404 and α22 = 0.497. Note that both values
are greater than Biot’s parameter α = 0.334 of the porous matrix itself. The solution to the
problem (30- 31) is given in Fig. 7. It can be observed that the lips of the crack overlap. However,
remember that the displacement corrector uS(1) is equal to −η. Moreover, the actual displacement
corrector is εuS(1), ε � 1. The calculated Biot’s coefficient is βeff = 0.298. Again, it is greater
than Biot’s coefficient β = 0.218 of the porous medium itself.

5.3 Solution to a particular boundary value problem

In order to illustrate the importance of taking into account the corrections proposed in this paper
a particular boundary value problem was solved. The example was inspired by the problem pre-
sented in [19] and [20]. The initial problem aims at demonstrating how the pumping of water can
produce ground settlements and associated lateral fissures. Our additional objective is to show the
quantitative difference in the results obtained for two different cases: i) case 1: without taking into
account the presence of vugs in the matrix, and ii) case 2: with taking into account the presence
of vugs in the matrix.

5.3.1 Geometry and governing equations

The same geometry and initial and boundary conditions as in [19] and [20], were considered. Three
sedimentary layers overlay impermeable bedrock. A bedrock step is occurring as shown in Fig. 8.
The sediment thickness is 420 m at x = 0 and 120 m above the step (for x > 4000m). The top
two layers are each 20 m thick. The macroscopic boundary value problem is the extended Biot
model proposed in this paper, (56, 57). The boundary conditions are the same as in [19] and [20],



Figure 9: Case 2: the hydraulic head (colours), the fluid velocity field (arrows) and the fluid
streamlines (lines) after 10 years of water pumping

Figure 10: Case 1: the settlements of the surface ground y=0 for different times from 0 to 10 years



Figure 11: Case 2: the settlements of the surface ground y=0 for different times from 0 to 10 years

namely:
For the hydraulic problem:

n.K∇H = 0 ∂Ω base A
n.K∇H = 0 ∂Ω other B
H = H0 ∂Ω upper edge C
H = H0 ∂Ω surface D
H = H(t) ∂Ω outlet E

where H is the hydraulic head, n is the vector normal to the boundary. H0 = 0 and H(t) = 6
(m/year) * t.

For the mechanical problem

u = v = 0 ∂Ω base A
u = 0 ∂Ω other B
u = 0 ∂Ω upper edge C
free ∂Ω surface D
u = 0 ∂Ω outlet E

where u and v are the components of the solid displacement vector.

5.3.2 Model data.

The water flow is initially at steady state but pumping from the lower aquifer reduces hydraulic head
by 6 m per year at the profile x = 0. The fluid supply in the upper reservoir is assumed limitless.
The period of interest is 10 years.The materials are considered as homogeneous and isotropic within
each layer. In Table 2 the model data are presented. The two sets of Biot parameters for the



Figure 12: Case 1: The horizontal strain at the ground surface y=0 for different times from 0 to
10 years.

Figure 13: Case 2: The horizontal strain at the ground surface y=0 for different times from 0 to
10 years



Quantity Upper and lower layer (aquifers) Middle layer

Hydraulic conductivity 2.89 ∗ 10−4 m/s 1.16 ∗ 10−7 m/s

Fluid density 1000 kg/m3 1000 kg/m3

Solid density 2750 kg/m3 2750 kg/m3

Young modulus 800 MPa 80 MPa

Poisson ratio 0.25 0.25

Biot parameters:

Case 1: α = 1 α = 0.334
without vugs (see 5.1) β = 1.02 ∗ 10−10 Pa−1 β = 2.73 ∗ 10−9 Pa−1

Case 2: α = 1 α = 0.556
with vugs (see 5.1) β = 1.02 ∗ 10−10 Pa−1 β = 3.59 ∗ 10−9 Pa−1

Table 2: The model data

middle layer (case 1 and case 2) correspond to values of these parameters obtained from numerical
computations presented in the subsection 5.1.

5.3.3 Results.

The problem was implemented into Comsol Multiphysics code [21], using Earth Science module
and Structural Mechanics application mode (plane strain) of the standard set of options available
in Comsol. The results concerning the hydraulic problem are very similar in both cases (Case 1 and
Case 2). As an example, in Figure 9 the hydraulic head (colours), the fluid velocity field (arrows)
and the fluid streamlines (lines) after 10 years for Case 2, are shown. It can be seen that the
solution is as expected, with the maximum hydraulic head being negative and equal to −60 m at
x = 0.
The difference in the solutions in two cases of Biot parameters for the middle layer can be seen, if
we compare the settlements of the ground surface at y=0. Case 1 is presented in Figure 10, while
Case 2 is shown in Figure 11. The influence of the correction of the Biot parameters can also be
seen when we compare the horizontal strains at the ground surface at y = 0, Figures 12 and 13.
In both cases we observe negative strain (or compaction) on the left to the mountain step, and
positive strains (or tension) on the mountain side. But the maximum values of these strains are
different in each case. As pointed out in [20] these strains are related to the potential of fissuring or
collapse. Thus, this example clearly shows the importance of the modelling proposed in this paper.

6 Conclusion

In this paper the macroscopic model of hydro-mechanical coupling for the case of a porous medium
containing cracks or vugs, was developed. This model represents an extension of the classical
Biot’s model that was initially developed for a homogeneous isotropic elastic saturated porous
medium. In the development we applied the asymptotic developments homogenization method. It



was shown that the structure of the macroscopic equivalent model is similar to the Biot’s model,
but the poro-elastic parameters (the so called Biot’s parameters), are modified. In the present
investigation, Biot’s parameters of the porous matrix itself, as well as the volumetric fraction of
the cracks (vugs), are taken into account.
The numerical example showed quantitative differences in taking into account the presence of
isolated cracks (or vugs) in a porous matrix. It should also be emphasized that the connectivity of
the domains plays a primary role in the modelling of coupled phenomena. The micro-mechanical
approaches offer the opportunity to capture this feature since the microstructure is given explicitly.
The analysis presented in this paper can be easily extended to the case of local anisotropy of the
porous medium.
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