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The optical injection-locking properties of quantum cascade lasers (QCLs) are investigated 
theoretically via a simple low dimensional rate equation model. The modulation bandwidth 
is found to be primarily enhanced by increasing the injection strength, while the impact of 
the frequency detuning and the linewidth enhancement factor (LEF) is momderate. 
However, both positive frequency detuning and large LEF contribute to enhancing the 
magnitude of the relaxation oscillation frequency peak in the intensity modulation (IM) 
response. As opposed to traditional injection-locked interband lasers, no pre-resonance 
frequency dip occurs in the QCL’s IM response, and calculations show that the LEF can 
critically modify both the locking and stability regions on the optical detuning injection 
level map. 

 

 

I. INTRODUCTION  

     Quantum cascade lasers (QCLs) have been of great 
interest technologically since the first demonstration by 
Faist et al. in 19941. Because of the intersubband 
optical transitions, the spectra of QCLs ranges from 
mid-infrared down to terahertz2,3, which can be widely 
used in optical communication, high resolution 
spectroscopy, imaging, and remote sensing3. Indeed, 
due to the small carrier lifetime as compared to the 
photon lifetime, one particular feature of QCLs is the 
absence of relaxation oscillations in the electrical 
modulation response. Thus, because of the short 
stimulated lifetime and the cascade of photons, QCLs 
lead to ultra-wide modulation bandwidth, which is also 
highly desirable for free-space short-range 
communications4. On the other hand, the short non-
radiative lifetime can suppress the relaxation 
oscillations resulting in an over-damped oscillator with 
carrier equilibrium completely restored after one 
photon roundtrip. To this end, assuming a simplified 
rate equation model, the modulation bandwidth can be 
as large as of 100 GHz4,5. Values up to terahertz were 
even theoretically predicted in intersubband 
semiconductor lasers based on a triple quantum well 
structure6,7. However, these values get restricted to tens 
of gigahertz when using a full rate equation approach 
taking into account the ground level from which 
electrons leave the active region into the injector of the 
next stage and QCL periods8,9. Experimentally, R. 
Paiella et al. reported a 8 micron QCL without the 
relaxation oscillation resonance10, and its modulation  
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bandwidth is 10 GHz. Besides, modulation bandwidths 
of 13 GHz and 24 GHz have also been reported on 
terahertz QCLs with a test bench technique11,12.  
     Since the relaxation oscillation is responsible for the 
dynamic stability in the free-running laser, a slight 
external perturbation such as modulation, optical 
injection or self-injection is enough to induce sustained  
pulsating intensities13. Optical injection-locking 
technique is known to be an attractive approach for 
improving the modulation characteristics of directly 
modulated interband semiconductor lasers14,15. Indeed, 
optical injection can be very critical for increasing the 
modulation bandwidth, reducing the laser’s chirp, and 
suppressing the mode hopping phenomenon as well as 
the relative intensity noise16-18. For instance, a record 
relaxation resonance frequency of 72 GHz associated 
with a broadband response of 44 GHz has been 
reported in an injection-locked quantum well DFB 
laser. Such a bandwidth enhancement corresponds to a 
5.5 fold improvement when compared to the free-
running case17. A theoretical study has recently 
reported the impacts of optical injection on the 
modulation properties of QCLs19. Numerical results 
point that injection-locked QCLs show no unstable 
regime in the locking map while giant modulation 
bandwidths as large as 200 GHz can be reached with a 
10 dB injection level ratio. 

This paper aims to go a step beyond in examing the 
IM properties of injection-locked QCLs, by taking into 
account the influences of injection strength, frequency 
detuning and LEF with fast and slow carrier removal 
rate. Based on a second-order system model, the 
modulation transfer function of the injection-locked 



laser is obtained from a small signal analysis. 
Calculations show that the modulation bandwidth is 
mostly enhanced by increasing the injection strength, 
while it is little impacted by the frequency detuning 
and the LEF. However, both positive detuning and 
large LEF lead to the peak occurrence in the 
modulation response. In comparison with conventional 
injection-locked interband semiconductor lasers, no 
pre-resonance frequency dip occurs in the QCLs’ IM 
response.  

II. RATE EQUATION MODEL   

 
FIG. 1. Sketch of the simplified carrier dynamics model in injection-
locked QCLs. 

     The classical differential equation describing the 
complex field of an injection-locked laser is as 
follows20,21: 
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 where ( )E t  is the slave laser’s complex field, G is the 

gain, Pτ  is the photon lifetime, injA  is the injected field 

magnitude, Hα  is the LEF, injwΔ is the frequency 

detuning ( inj master slavew w wΔ = − ), ck  is the coupling 

rate of the master laser into the slave laser and defined 

such as / (2 )c rk c n L=  with rn  the refractive index and 

L  the cavity length. The complex rate equation (1) can 
be split into two coupled rate equations for the photon 
number and the phase, respectively, according to the 

relationship ( ) ( ) exp ( )E t S t j tφ= Δ  with the phase 

difference slave masterφ φ φΔ = − . Along with the simplified 

carrier rate equation7, the rate equations of injection-
locked QCLs are finally given by: 
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where upN  and lowN  are the carrier numbers in the 

upper and lower subbands, respectively. The QCL is 
assumed to be composed of one period as in Ref. 7, and 
the sketch of the carrier dynamics is shown in Fig. 1. 

The pump current I  is directly injected into the active 
region without through the injector. Then, the carriers 
enter the quantum well through the upper subband and 
leave only via the lower subband. Neither the carrier 
absorption process nor the ground level in the active 
region is taken into account in the simulations. Finally, 

let us note that Nτ  is the carrier relaxation time from 

the upper subband, Rτ  is the carrier removal time from 

the lower subband, spτ  is the spontaneous emission 

lifetime, β  is the spontaneous emission factor, and injS  

is the injected photon number. The linear gain 

0G G N= Δ
 
is proportional to up lowN N NΔ = −  as well 

as to the gain coefficient 0G , which corresponds to the 

differential gain multiplied by the group velocity. 
Although the approach used in this paper is rather 
simplified as compared to an actual QCL band 
structure, it is shown in the following that some 
preliminary insights regarding the high-speed 
properties of optically-injected QCLs can be extracted. 

III. STEADY-STATE RESPONSE 

     Neglecting the spontaneous term in Eq. (4) and 
setting the rate equations (2)-(5) to zero, the steady-
state solutions can be expressed as: 
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Let us stress that the expression of the carrier number 

for the lower subband /low RN I qτ=  is similar to the 

one occurring in the free-running laser. According to 
Eq. (7), NΔ  is found to be reduced by 

02 / cos /c injk S S GφΔ  from the free running 

value 01/ ( )fr pN G τΔ = . The bounds for the variation of 

the phase across the locking range can be derived from 

Eq. (7) and Eq. (8), which are 1cot Hα−  at the negative 

frequency detuning edge and / 2π−  at the positive 

frequency detuning edge22. Then, the locking regime 
can be obtained by rearranging Eq. (8): 



( )2 11 / sin taninj c H inj Hw k S Sα φ α−Δ = − + Δ +   (9)                              

In the simulations, the lasing wavelength is λ =8.0 ȝm 

and the other parameters are G0=2.5×105 s-1, Pτ =1 

ps, Nτ =1.5 ps,
 spτ =7 ns, β  =10-4, rn =3.27, kc=305.8 

GHz while the bias current is fixed at 1.2 thI I= . 

Although the typical cavity length of QCLs is in the 
order of millimetre8,23, shorter cavity is desirable for 
higher modulation bandwidth. In consequence, the 

cavity length in our simulation is set down to L =0.15 
mm as in Ref. 5. Fig. 2 shows the locking map as 
function of the detuning frequency and the injection 
ratio Rinj=Sinj/S. Recent experiments have shown that 
the above-threshold QCL LEF can range from 0 to 
about 2.523-26. To this end, calculations in this paper are 
conducted for LEF values of 0.1, 1, 2 and 3. The 
boundaries (solid line) between the locked and 
unlocked regimes are obtained from Eqs. (7)-(9). As 
for interband lasers, the locking range is found to 
increase with the injection ratio. Calculations also 
show that the LEF mainly influences the locking 
diagram especially for the negative frequency detuning 
boundary, which is reduced at larger LEFs. As it will 
be discussed in the next section, the stability boundary 
can be obtained from the pole extraction of the IM 
response (see Eq. (12)) via a stability analysis16. To this 
end, dashed lines in Fig. 2 indicate the stability 
boundary. The stable regime enlarges with higher LEF 
values. Interestingly, for LEF=0.1, the system is found 
always stable when the injection ratio gets larger than 
0.05 (the boundary for Rinj<0.05 is not shown since it 
overlaps others). Unlike the traditional locking map of 
interband lasers, simulations point out that in the case 
of injection-locked QCLs, there is no unstable regime 
in the locking range as already reported in Ref. 19. 
However, at this stage we believe that this conclusion 
has to be supported via a deeper non-linear dynamics 
analysis conducted on a full rate equation model. 
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FIG. 2. Optical injection-locking diagram as function of the detuning 
frequency and the injection ratio. Solid lines are the locking regime 
boundaries, the negative detuning frequency boundaries are 
calculated with LEF=0.1, 1, 2, 3, respectively; dashed line is the 
stability boundary. 

IV. MODULATION RESPONSE 

     In order to obtain the small-signal responses to a 

small current deviation 1I , the deviations of 

, , ,up lowN N S φΔ  are defined as 1 1 1, ,up lowN N S  and 1φΔ , 

respectively. Then, the differential rate equation can be 
derived from the rate equations (5)-(8) via a standard 
small-signal analysis as follows:    
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Then, the modulation transfer function can be extracted 
as follows: 
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where the zeros are 2 1/ 1/N Rz τ τ= −  

and ( )1 / sin cosc inj Hz k S S α φ φ= Δ − Δ , respectively. 

Parameter z1 is mainly determined by the injection 
condition while z2 is related to the difference between 
the carrier relaxation and carrier removal rates. The 
denominator of Eq. (12) represents a polynomial 
function whose expression comes from the determinant 
of the matrix located in Eq. (10). Because of the 
complexity of the transfer function, it is important to 
stress that the analytical expressions of the poles are 
too complicated to be extracted.  
      According to Ref. 7, for fast carrier removal rates, 
the IM response of the free-running QCLs does not 
exhibit a peak while in the case of slow carrier removal 
rates, a peak can arise in the free-running IM response. 
Let us note that this peak is not due to the traditional 
carrier-photon relaxation resonance as in interband 
lasers, but to the small zero occurring in the 
modulation transfer function. In what follows, optical 
injection-locking behaviours of QCLs have been 



investigated both for fast and slow carrier removal 
rates.  
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FIG. 3. IM response of optical injection-locked QCLs for fast carrier 

removal rate ( Rτ =0.21 ps) as a function of (a) Injection ratio at zero 

detuning with LEF=1, (b) detuning frequency at Rinj=10 dB with 
LEF=1, and (c) LEF at zero detuning with Rinj=10 dB. 

A. IM response with fast carrier removal rate 

     The carrier removal time is set to be Rτ =0.21 ps. 

Fig. 3(a)-(c) show the optical injection-locking IM 
response of the QCLs as a function of the injection 
ratio Rinj, frequency detuning and LEF, respectively. 
As depicted in Fig. 3(a) at zero detuning with LEF=1, 

the bandwidth 3dBf  increases with the injection ratio, 

and the modulation response remains relatively flat 
with no peak. At Rinj=10 dB, the modulation bandwidth 
(163 GHz) is 3.2 fold enhancement as compared to the 
free-running one (51 GHz). In comparison, in the case 
of injection-locked interband lasers, there is an 
optimum injection strength, above which the 
modulation bandwidth starts decreasing18.  

TABLE I. Poles, Zeros and Bandwidths (GHz) for Fig. 3(a) 

Rinj(dB) p1 p2 p3 p4 z1 z2 f3dB

Free  
-

35.3 
-93.2 

-
777.9 

 
-

651.8 
50.9 

-10 
-

24.3 
-

47.5 
-87.5 

-
793.6 

-
16.7 

-
651.8 

84.9 

0 
-50.2

±j35.9 

-
105.1 

-
825.4 

-
39.8 

-
651.8 

120 

10 
-64.9

±j64.6 

-
173.5 

-
947.9 

-
81.0 

-
651.8 

163 

    Since the IM response shape can be analyzed 
through the Bode diagram, poles and zeros as well as 
the 3 dB bandwidths have been determined for Fig. 
3(a), and the corresponding values are listed in Table I. 

Because 1z , 1p  and 2p  are much smaller than the 

other poles and zeros, those play a dominant role in the 
IM response7. As seen in Fig. 3(a), the initial slope of 
the modulation response is 0 dB/decade. When the 

modulation frequency exceeds the zero value 1z , the 

slope of the Bode diagram starts increasing until the 

frequency reaches the pole 1p . Because 1p  is close 

to 1z , only a relatively small peak is observed in the 

modulation response. At larger modulation frequencies, 

the break-up point, which is related to the pole 2p  

induces a decrease of the Bode diagram with a slope of 

-20 dB/decade. This dominant pole 2p can be used to 

evaluate the 3 dB bandwidth such as 7: 

3 23dBf p≈                           (13) 

     We would like to note that since the modulation 
bandwidth can be enhanced by a high injection ratio, 
the impacts of frequency detuning and LEF are studied 
under strong optical injection (Rinj=10 dB). In Fig. 3(b) 
with LEF=1, the modulation bandwidth is found almost 
insensitive to the values of the frequency detuning. A 
similar effect is pointed out in Fig. 3(c) at zero 
detuning for different values of the LEF. According to 
Eq. (13), this phenomenon can be attributed to the fact 

that the pole 2p  is only slightly changed. However, it 

is important to note that, the peak occurrence is 
predominant at the positive detuning edge and 
especially for large LEF values. This effect is related to 
the pole p2, which becomes closer to the imaginary 
axis, and resulting in an under-damped modulation 
response. 
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FIG. 4. IM response of optical injection-locked QCLs for slow 

carrier removal rate ( Rτ =0.21 ps) as a function of (a) Injection ratio 

at zero detuning with LEF=1, (b) detuning frequency at Rinj=10 dB 
with LEF=1, and (c) LEF at zero detuning with Rinj=10 dB. 

B.  IM response with slow carrier removal rate 

     The carrier removal time is set to be Rτ =1.2 ps. Fig. 

4(a)-(c) illustrate the optical injection-locking IM 
response of the QCLs as a function of the injection 
ratio Rinj=Sinj/S, frequency detuning and LEF, 
respectively. The poles, zeroes and calculated 3 dB 
bandwidth related to Fig. 4(a) are listed in Table II.  

TABLE II. Poles, Zeros and Bandwidths (GHz) for Fig. 4(a) 

Rinj(dB) p1 p2 p3 p4 z1 z2 f3dB

Free  -26.5 -127.3±j26.0  -26.5 135 

-10 
-26.3 

±j6.1 
-137.9±j20.0 -16.7 -26.5 212 

0 
-44.0 

±j25.3 

-
106.9 

-
212.1 

-39.9 -26.5 289 

10 -69.9± -71.6 
-

418.0 
-81.3 -26.5 393 

j57.2

    In Fig. 4(a) at zero detuning with LEF=1, both the 
peak magnitude and the bandwidth increase with the 
injection ratio. Under strong optical injection (Rinj=10 
dB), the bandwidth (393 GHz) is about 3 times larger 
when compared to the free-running case (135 GHz). 
This strong enhancement is the consequence of the 

slow carrier removal rate making the zero 2z  smaller 

than the other poles. Thus, 2z when associated with 

the small zero 1z  leads to a peak arising in the IM 

response. Similarly to the fast carrier removal rate case, 
the peak increases at positive detuning as depicted in 
Fig. 4(b) for Rinj=10 dB and with LEF=1. In Fig. 4(c), a 
similar effect occurs for large LEF values under the 
zero detuning case with Rinj=10 dB. This effect is also 
due to the pole p2, which becomes closer to the 
imaginary axis in the pole-zero plot. Besides, both the 
frequency detuning and the LEF have little effect on 
the modulation bandwidth. Unlike injection-locked 
interband lasers18, it is important to stress that no pre-
resonance frequency dip appears in the IM response 
both for the fast and the slow carrier removal rate 
cases. These results indicate that the dip, which is the 
major drawback limiting the 3-dB bandwidth of 
injection-locked interband lasers, does not occur in 
injection-locked QCLs. This major difference is due to 
the ultrafast carrier dynamics resulting from the 
intesubband transitions in the QCLs. The elimination 
of the pre-resonance frequency dip is always highly 
desirable to meet the broadband requirement for high-
speed communications as well as for free-space short 
range communications. 

V.  CONCLUSIONS 

     Based on a simplified rate equation model, the 
optical injection-locked properties of QCLs have been 
investigated taking into account the influences of the 
LEF and the carrier removal rate. These preliminary 
stability analysis results are of prime importance for 
the improvements of the modulation properties of 
QCLs. Calculations show that the modulation 
bandwidth increases with the injection strength, with a 
10 dB injection ratio, the bandwidth can be ~3 fold 
improved in comparison with the free-running laser. 
However, it is little impacted by the frequency 
detuning and the LEF. The magnitude of the peak in 
the IM response is found more sensitive at the positive 
frequency detuning condition especially for large LEF 
values. In comparison with conventional injection-
locked interband semiconductor lasers, no pre-
resonance frequency dip occurs in the QCLs’ IM 
response. Although these calculations demonstrate no 
unstable regime in the locking range, it has to be 
confirmed via a systematic nonlinear dynamics 
analysis. To this end, an enhanced rate equation model 



will take into account the ground level from which 
electrons leave the active region into the injector of the 
next stage, but also gain compression as well as QCL 
periods, so as to emphasize the effects of the enhanced 
photon number in the laser cavity. Investigation of the 
optically-injected QCL spectral properties will be also 
in the context for future high performance oscillators, 
like low noise tunable photonic oscillators, in 
wavelengths from 3 to 5 microns, which can be enable 
multiple Radio Frequency photonics applications. 
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