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Abstract 

Using large natural scenes filtered in spatial frequencies, we aimed to demonstrate that spatial 

frequency processing could not only be retinotopically mapped, it could also be lateralized in 

both hemispheres. For this purpose participants performed a categorization task using large 

black and white photographs of natural scenes (indoors versus outdoors, with a visual angle of 

24°x18°) filtered in low spatial frequencies (LSF), high spatial frequencies (HSF), and non-

filtered scenes (NF), in block-designed fMRI recording sessions. At the group level, the 

comparison between the spatial frequency content of scenes revealed firstly that compared to 

HSF, LSF scene categorization elicited activation in the anterior half of the calcarine fissures 

linked to the peripheral visual field, whereas compared to LSF, HSF scene categorization 

elicited activation in the posterior part of the occipital lobes, which are linked to the fovea, 

according to the retinotopic property of visual areas. At the individual level, functional 

activations projected on retinotopic maps revealed that LSF processing was mapped in the 

anterior part of V1, whereas HSF processing was mapped in the posterior and ventral part of 

V2, V3 and V4. Moreover, at the group level, direct interhemispheric comparisons performed 

on the same fMRI data highlighted a right-sided occipito-temporal predominance for LSF 

processing, and a left-sided temporal cortex predominance for HSF processing, in accordance 

with hemispheric specialization theories. By using suitable method of analysis on the same 

data, our results enabled us to demonstrate for the first time that spatial frequencies processing 

is mapped retinotopically and lateralized in human occipital cortex. 

 

Keywords: Natural scene; Hemispheric specialization; Retinotopy; Occipital cortex; Human 

vision. 
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1. Introduction 

It is widely agreed that the visual recognition of scenes is a fast, automatic and reliable process. 

Many studies attest to the importance of the Fourier components of images during scene 

processing. In terms of signal representation, an image can be expressed in the Fourier domain 

in terms of both amplitude and phase spectra (Field, 1987; Ginsburg, 1986; Hughes, Nozawa, 

& Kitterle, 1996; Tolhurst, Tadmor, & Chao, 1992). The amplitude spectrum highlights the 

dominant spatial scales (spatial frequencies) and dominant orientations of the image, and the 

phase spectrum describes the relationship between spatial frequencies. On the one hand, it is 

now well established that the primary visual cortex is mainly dominated by complex cells that 

respond preferentially to orientations and spatial frequencies (De Valois, Albrecht, & Thorell, 

1982a; De Valois, Yund, & Hepler, 1982; Poggio, 1972; Shams & von der Malsburg, 2002). 

On the other hand, simulation and psychophysical experiments have shown that information 

from low/medium frequencies of amplitude spectra is sufficient to allow scene categorization 

(Guyader, Chauvin, Peyrin, Herault, & Marendaz, 2004; Torralba & Oliva, 2003). These data 

support the influential models of visual recognition (Bar, 2003; Bullier, 2001; Hegdé, 2008; 

Peyrin et al., 2010; Schyns & Oliva, 1994). According to these models, visual analysis starts 

with the parallel extraction of different elementary visual attributes at different spatial 

frequencies, in a predominantly "coarse-to-fine" processing sequence. The LSF in a scene, 

conveyed by fast magnocellular visual channels, might therefore activate visual pathways and 

subsequently access the occipital cortex and high-order areas in the dorsal stream (parietal and 

frontal) more rapidly than HSF, allowing an initial perceptual parsing of visual inputs, prior to 

their complete propagation along the ventral (inferotemporal) stream which ultimately 

mediates object recognition. This initial low-pass visual analysis might serve to refine the 

subsequent processing of HSF, conveyed more slowly by parvocellular visual channels to the 

ventral stream. The majority of visual models are based on spatial frequency processing, yet 

exactly how these are processed within the visual cortex remains unclear. In fact, the issue of 

retinotopic organization and/or the cerebral asymmetries for spatial frequency processing in the 

cortex is still a subject of debate in the literature. 
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Firstly, many experimental arguments assume that specialization of spatial frequency 

processing is shared between the two hemispheres, with right hemispheric predominance for 

LSF processing and left hemispheric predominance for HSF processing. This hemispheric 

specialization has been observed either through behavioral studies on healthy subjects (Kitterle, 

Christman, & Hellige, 1990; Peyrin, Chauvin, Chokron, & Marendaz, 2003; Sergent, 1982) 

and neurological patients (Lamb, Robertson, & Knight, 1990; Robertson & Lamb, 1991; 

Robertson, Lamb, & Knight, 1988), or through functional neuroimaging studies (Fink et al., 

1996; Han et al., 2002; Heinze, Hinrichs, Scholz, Burchert, & Mangun, 1998; Iidaka, 

Yamashita, Kashikura, & Yonekura, 2004; Kenemans, Baas, Mangun, Lijffijt, & Verbaten, 

2000; Lux et al., 2004; Martinez, Di Russo, Anllo-Vento, & Hillyard, 2001; Martinez et al., 

1997; Yamaguchi, Yamagata, & Kobayashi, 2000). However the hemispheric asymmetries in 

question were largely inferred from studies assessing hemispheric specialization in global and 

local processing. Using hierarchical visual stimuli consisting of a global form made up of 

several local elements (Navon, 1977), Sergent (1982) demonstrated a right hemispheric 

dominance for the recognition of global forms, and a left-sided dominance for the recognition 

of local forms (see also, Buchsbaum et al., 2006; Chokron, Brickman, Wei, & Buchsbaum, 

2000). Since global processing can be considered to be mediated by low-pass spatial analysis, 

and local processing by high-pass spatial analysis (Badcock, Whitworth, Badcock, & 

Lovegrove, 1990; Lamb & Yund, 1993; Shulman, Sullivan, Gish, & Sakoda, 1986), the 

hemispheric specialization patterns observed in global and local processing have been 

interpreted as reflecting the hemispheric specialization for LSF and HSF, respectively (Iidaka, 

Yamashita, Kashikura, & Yonekura, 2004; Peyrin, Baciu, Segebarth, & Marendaz, 2004). 

Neuroimaging studies conducted on hierarchical visual stimuli have reported conflicting results 

on the cortical structures which present hemispheric specialization. For example, using 

Positron Emission Tomography, Fink et al. (1996) reported cerebral asymmetries in the 

occipital cortex. The right lingual gyrus was more highly activated during the processing of 

global as opposed to local forms, while the left inferior occipital gyrus was more highly 

activated during the processing of local rather than global forms. However, Heinze et al. (1998) 

failed to demonstrate cerebral asymmetries in first-stage visual areas. Instead, their results 
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based on event-related potentials showed long latency asymmetries (260-360 latency range) for 

global versus local processing, suggesting that hemispheric specialization was only present in 

the higher levels of visual analysis. Thus, the imaging studies previously mentioned have 

provided conflicting results on hemispheric specialization using hierarchical stimuli. Using a 

method involving direct inter-hemispheric comparison, and by directly manipulating the spatial 

frequency content of stimuli, subsequent studies observed hemispheric specialization in certain 

occipito-temporal areas (Iidaka, Yamashita, Kashikura, & Yonekura, 2004; Peyrin, Baciu, 

Segebarth, & Marendaz, 2004). The direct inter-hemispheric comparison method examines 

contrasts between ‘‘unflipped’’ and ‘‘left–right flipped’’ functional images from the same 

experimental condition, in order to compare activity in one hemisphere with activity in 

homologous regions of the other hemisphere (Baciu, Juphard, Cousin, & Le Bas, 2005; Cousin, 

Peyrin, & Baciu, 2006; Iidaka, Yamashita, Kashikura, & Yonekura, 2004; Lux et al., 2004; 

Peyrin, Baciu, Segebarth, & Marendaz, 2004; Peyrin et al., 2005). Using this method in an 

event-related fMRI study, Peyrin et al. (2004) demonstrated greater activation in the right than 

in the left middle occipital gyrus during the recognition of LSF scenes, and  greater activation 

in the left than in the right middle occipital gyrus during the recognition of HSF scenes. 

Importantly, when analysing the same fMRI data using a more traditional approach contrasting 

spatial frequencies to one another, these authors observed a stronger bilateral temporal 

activation for LSF than HSF scenes, while the reverse contrast did not reveal any significant 

activation. Thus, results differ according to the method of data analysis applied. The direct 

inter-hemispheric method of comparison seems more appropriate for the assessment of cerebral 

asymmetries, since it allows the cancelling out of any main effect deriving from spatial 

frequency bias. 

Although a considerable number of studies postulate hemispheric specialization for spatial 

frequency processing, others highlight retinotopic processing for spatial frequencies in the 

occipital cortex. First of all, different imaging data obtained from patients with cerebral lesions 

(Holmes, 1918; Horton & Hoyt, 1991) and from healthy participants (Engel, Glover, & 

Wandell, 1997) show that the human primary visual cortex is retinotopically organized. The 

representation of the visual field ranges from posterior to anterior visual cortex, and shifts from 
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the centre to the periphery. A large number of neurophysiological studies performed on cats 

(Everson et al., 1998; Issa, Trepel, & Stryker, 2000), primates (De Valois, Albrecht, & Thorell, 

1982b; Foster, Gaska, Nagler, & Pollen, 1985; Gegenfurtner, Kiper, & Levitt, 1997; Tootell, 

Silverman, Hamilton, Switkes, & De Valois, 1988; Xu, Anderson, & Casagrande, 2007) and 

humans (Henriksson, Nurminen, Hyvärinen, & Vanni, 2008; Sasaki et al., 2001; Singh, Smith, 

& Greenlee, 2000) have mapped representations of the different spatial frequencies in 

retinotopic areas. Other studies have demonstrated that more complex cognitive functions, such 

as visual spatial attention, are also mapped consistently by cortical retinotopy (Brefczynski & 

DeYoe, 1999; Gandhi, Heeger, & Boynton, 1999; Martinez et al., 1999; Sasaki et al., 2001; 

Tootell et al., 1998; Watanabe et al., 1998). In particular, using retinotopic encoding with 

achromatic sinusoidal gratings, Sasaki et al. (2001) showed that low spatial frequencies were 

mapped according to the peripheral visual field, whereas high spatial frequencies were mapped 

according to the central visual field. Then, using very large hierarchical visual stimuli, these 

authors found evidence for retinotopic mapping of global and local attention in the occipital 

cortex. During “attend global” blocks, participants were required to deliberately focus their 

attention on the global form (at a visual angle of 29.4°) involving their peripheral vision, while 

during “attend local” blocks, they had to focus on the local elements (at a visual angle of 2.4°) 

involving more foveal vision. The results showed that when attention was directed at a local 

level, activation was consistent with the cortical representation of the fovea which was also 

sensitive to HSF gratings. When attention was directed at a global level, activation was 

consistent with the cortical representation of the periphery which was also sensitive to LSF 

gratings. Importantly, Sasaki et al. (2001) concluded that neither local nor global attention was 

lateralized in the occipital cortex. However, the authors used a traditional method of data 

analysis, comparing global and local experimental conditions to one another, rather than the 

direct inter-hemispheric comparison method used by Peyrin et al. (2004). 

In the present fMRI study, we aimed to demonstrate that spatial frequency processing could not 

only be retinotopically mapped, it could also be lateralized in both hemispheres. We used a 

categorization task of natural scenes filtered in LSF and HSF, along with non-filtered (NF) 

scenes, in order to evaluate the retinotopy and cerebral asymmetries involved in spatial 
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frequency processing. With this aim in mind, we used a block-design fMRI paradigm in which 

either large LSF, HSF or NF scenes were displayed in separate experimental blocks. We used 

large natural scenes (at a visual angle of 24° x 18°), covering as broad a visual field as in 

Sasaki et al. (2001). Large natural scenes have never been used previously to investigate the 

neural basis of spatial frequency processing within retinotopic areas. Natural scenes are more 

ecological and complex stimuli than those previously used (e.g., hierarchical stimuli, gratings) 

and allow an explicit change in the spatial frequency spectrum. Furthermore, natural scenes 

may be categorized in many frequency bands (i.e., whatever the type of filtering – low-pass, 

high-pass or pass-band). The retinotopic mapping of spatial frequency processing was assessed 

by projecting corresponding functional activation onto individual flat retinotpoic maps of each 

hemisphere where low level areas were delineated using a standard phase encoding 

experiments (Warnking et al., 2002). According to previous retinotopy studies, when 

processing spatial frequencies, the categorization of LSF scenes (relative to HSF) would recruit 

areas devoted to peripheral vision, whereas the categorization of HSF scenes (relative to LSF) 

would recruit areas devoted to foveal vision. Cerebral asymmetries were assessed using the 

direct inter-hemispheric method of comparison. Based on the results obtained by Peyrin et al. 

(2004), we expected a higher level of activation in right than in left occipito-temporal areas 

during the processing of LSF, and more involvement of the left hemisphere during HSF 

processing. The issue of retinotopic organization and/or the cerebral asymmetries for spatial 

frequency processing in the cortex is still a subject of debate in the literature and it has never 

been investigated previously on the same data. Our results demonstrate that spatial frequency 

processing is both retinotopically organized and lateralized in human visual cortex. 

 

2. Materials and Methods 

2.1. Participants 

Eighteen right-handed participants (11 males; 25 ± 3 years) with normal or corrected-to-normal 

vision were scanned in this experiment. Participants with psychiatric or neurological disorders, 

or on medication were not included in the study. All participants gave their informed written 

consent before participating in the study, which was approved by the local ethics committee 

Page 7 of 38 Journal of Cognitive Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

- 8 - 

(CPP Sud Est V, France). All participants endorsed a spatial frequency processing experiment 

(Experiment 1) and for three of them an additional fMRI retinotopic mapping experiment 

(Experiment 2). 

 

2.2. Experiment 1: Spatial frequency processing 

2.2.1. Stimuli and procedure 

Stimuli were 80 black and white photographs (256 grey scales), all with a visual angle of 24° x 

18°, representing two categories: indoors and outdoors. They all had similar dominant 

orientations (as shown by the mean amplitude spectrum of non-filtered natural scenes in each 

category) to avoid their identification on the basis of this kind of cue (Guyader, Chauvin, 

Peyrin, Herault, & Marendaz, 2004). For each scene, an LSF or an HSF stimulus was created 

(Figure 1). Filtered images were created using the image processing toolbox on MATLAB 

(Mathworks Inc., Sherborn, MA, USA). They were obtained by multiplying the Fourier 

transformation of the original images with Gaussian filters. We used a two-dimensional 

Gaussian centered on the null frequency with a maximal value equal to one, and standard 

deviations equal to 28 and 38 cycles per image. With this filter design we obtained a gaussian 

filter with a frequency cutoff (amplitude attenuation of square root of 1/2) of 1 cycle/degree of 

visual angle (i.e., low-pass cutoff of 24 cycles per image) for LSF stimuli, and below 1 

cycle/degree (i.e., high-pass cutoff of 24 cycles per image) for HSF stimuli
1
. Then, the energy 

of LSF, HSF and non-filtered (NF) stimuli was equalized for each scene
2
. Each scene was 

presented in these three filtering conditions (NF, LSF and HSF) to each participant. Stimuli 

were displayed using E-prime software (E-prime Psychology Software Tools Inc., Pittsburgh, 

PA) and back-projected on a translucent screen positioned at the rear of the magnet. 

Participants viewed this screen at a distance of about 222 cm via a mirror fixed on the head 

coil. 

A block-design paradigm with 6 types of stimuli (indoor scenes LSF, HSF, NF; outdoor scenes 

LSF, HSF, NF) was used. The experiment consisted of eight functional scans, and each 

functional scan was composed of 6 blocks (2 LSF-blocks, 2 HSF-blocks and 2 NF-blocks) 

including 10 images (5 indoors and 5 outdoors), and 2 blocks with a fixation dot in the center 
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of the screen (fixation condition) displayed against a grey background. The order of blocks was 

randomized between scans. Each image was presented in the three filtering conditions, but 

each image did not appear more than once per scan. Each stimulus was displayed for 300 ms 

and the average interval between the onsets of two successive stimuli was 2.5 s. The 

participants had to give a categorical answer (“indoors” or “outdoors”) by pressing the 

corresponding key with the forefinger and the middle finger of their dominant hand. Half of the 

participants had to answer “indoors” with the forefinger and “outdoors” with the middle finger, 

while the second half of the participants had to answer ‘indoors” with the middle finger and 

“outdoors” with the forefinger. Response accuracy (ACC) and reaction times (RT, in 

milliseconds) were recorded. 

 

- Insert Figure 1 about here - 

 

2.2.2. fMRI Acquisition 

A whole-body 3T MR scanner was used (Bruker MedSpec S300) with 40 mT/m gradient 

strength. For functional scans, the manufacturer-provided gradient-echo/T2* weighted EPI 

method was used. Thirty-nine adjacent axial slices parallel to the bi-commissural plane were 

acquired in interleaved mode. Slice thickness was 3.5 mm. The in-plane voxel size was 3×3 

mm (216×216 mm field of view acquired with a 72×72 pixel data matrix; reconstructed with 

zero filling to 128×128 pixels). The main sequence parameters were: TR = 2.5 s, TE = 30 ms, 

flip angle = 77°. Acquisition time per functional run was 3 min 20 s, allowing the acquisition 

of 80 volumes. To correct images for geometric distortions induced by local B0-

inhomogeneity, a B0 field map was obtained from two gradient echo data sets (∆TE = 9.1 ms) 

with the following common parameters: TR = 25 ms, acquisition matrix: 64×256×64 

(LR×AP×CC), nominal resolution: 4×1×4 mm
3
. Slice orientation was set identical to the 

functional images. Finally, a T1-weighted high-resolution three-dimensional anatomical 

volume was acquired, by using a 3D Modified Driven Equilibrium Fourier Transform 

(MDEFT) sequence (field of view: 256×224×176 mm; resolution: 1.333×1.750×1.375 mm; 

acquisition matrix: 192×128×128 pixels; reconstruction matrix: 256×128×128 pixels). 
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2.2.3. Data analysis 

Data analysis was performed using the general linear model (Friston et al., 1995) for block 

designs in SPM8 (Wellcome Department of Imaging Neuroscience, London, UK, www.fil.ion. 

ucl.ac.uk/spm) implemented in MATLAB 7 (Mathworks Inc., Sherborn, MA, USA). Individual 

scans were realigned and uwarped, time-corrected, normalized to the MNI space and spatially 

smoothed by an 8-mm FWHM (Full Width at Half Maximum) Gaussian kernel. Times-series 

for each voxel were high-pass filtered (1/128 Hz cutoff) to remove low-frequency noise and 

signal drift. 

 

2.2.3.1. Evaluation of cerebral correlates for spatial frequency processing 

Four conditions of interest (LSF, HSF, NF, and fixation) were modeled as four regressors 

convolved with a canonical hemodynamic response function. Movement parameters derived 

from realignment corrections (3 translations and 3 rotations) were also entered in the design 

matrix as additional factors of no interest. On an individual level, we firstly identified the brain 

regions involved in the processing of each spatial frequency content relative to the fixation 

([LSF > fixation], [HSF > fixation] and [NF > fixation]). Then, we identified the neural 

correlates associated with each specific spatial frequency content by comparing the different 

filtering conditions to one another ([LSF > NF], [HSF > NF], [LSF > HSF] and [HSF > LSF]). 

Finally, two-stage random effect analyses were performed based on individual analyses using 

one sample t-tests. Clusters of activated voxels were then identified, based on the intensity of 

individual responses. Because the main effects of spatial frequency content (relative to 

fixation) were stronger than for between spatial frequency conditions, two different 

significance thresholds were applied. Therefore, for contrasts between spatial frequencies and 

the fixation periods, areas of activation were considered significant if they exceeded a voxel 

threshold of p < 0.05 FWE corrected for multiples comparisons, with a minimum cluster extent 

of 5 voxels. For contrasts between spatial frequency content, areas of activation were 

considered significant if they exceeded a less restrictive voxel threshold of p < 0.001 

uncorrected (T > 3.65), with a minimum cluster extent of 5 voxels. To facilitate comparisons 
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with other studies, a transformation of MNI into Talairach and Tournoux (1988) coordinates 

was performed using the MNI2TAL function (created by Matthew Brett, available at 

http://www.mrc-cbu.cam.ac.uk/Imaging). 

 

2.2.3.2. Evaluation of hemispheric predominance in spatial frequency processing 

To assess hemispheric asymmetry in spatial frequency processing, we used a direct inter-

hemispheric comparison method which compares the activity of both hemispheres (Baciu, 

Juphard, Cousin, & Le Bas, 2005; Cousin, Peyrin, & Baciu, 2006; Iidaka, Yamashita, 

Kashikura, & Yonekura, 2004; Lux et al., 2004; Peyrin, Baciu, Segebarth, & Marendaz, 2004; 

Peyrin et al., 2005). To avoid left-right morphological asymmetries, we normalized individual 

data using a symmetrical template built by averaging the EPI template available on SPM and 

its mirror around the midsagittal plane. Then, two sets of functional volumes were contrasted, 

one corresponding to the functional volumes of neurological convention (left is left) and the 

second set corresponding to the same functional volumes flipped 180° in relation to the 

midsagittal plane (left is right), so that the second set represented ‘‘mirror’’ images of the first 

set. On an individual level, we first compared the unflipped and flipped activations 

obtained for the processing of each spatial frequency content [LSF_unflip > LSF_flip], 

[HSF_unflip > HSF_flip], and [NF_unflip > NF_flip]. In order to highlight cerebral 

activations directly linked to the hemispheric specialization for spatial frequency 

processing, we tested the interaction between spatial frequencies (LSF and HSF) and 

hemispheres (unflippled and flipped image). Then we compared the unflipped and flipped 

activations obtained for the processing of each spatial frequency content relative to fixation: 

[LSF-Fixation_unflip > LSF-Fixation_flip], [HSF-Fixation_unflip > HSF-Fixation_flip], and 

[NF-Fixation_unflip > NF-Fixation_flip]. Two-stage random effect analyses based on 

individual analyses were then performed using one sample t-tests. Clusters of activated voxels, 

based on the intensity of individual responses, were then identified, (p < 0.001 uncorrected, T > 

3.65, extent threshold of 5 voxels). While this uncorrected threshold may seem liberal, it is in 

line with those of our previous study reporting significant hemispheric differences within the 

occipital cortex (Peyrin et al., 2004). 
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2.3. Experiment 2: fMRI Retinotopic Mapping 

2.3.1. Stimuli and procedure 

A ring slowly contracting or expanding about a fixation point (e.g., a central fixation cross) 

mapped eccentricity in the visual field. Speed of contraction or expansion varied linearly with 

eccentricity. Thus the activation wave on the cortical surface traveled at approximately 

constant speed (under the assumption of an exponential cortical magnification factor). When 

the ring reached maximum eccentricity (set at 3 degree) it wrapped around to be replaced by a 

new one at minimum eccentricity (set at 0.2 degree), and vice versa. Polar angle in the visual 

field was mapped by two wedges separated by a phase lag of 180 degree and rotating slowly at 

constant speed about the fixation point. Period of both eccentricity and polar angle stimulation 

was 32 s. Stimulus parameters were the same as described in Warnking et al. (2002): rings and 

wedges consisted of a black and white radial checkerboard flickering at a frequency of 4 Hz. 

Aspect ratio of the checks was kept constant by scaling their height linearly with eccentricity. 

Stimuli were created on MATLAB and displayed using homemade software written in C++. 

The timing was controlled using the SDL library. Successive stimulus images were presented 

at a frequency of 4 Hz, inducing the perception of an almost smoothly varying stimulus. 

Stimuli were started concomitantly with dummy MR excitations about 10 s prior to effective 

MR data acquisition so as to enable immediate response detection. To cancel out the effects of 

the hemodynamic delay, fMRI responses are compared to stimuli that cover the visual field in 

opposite direction – clockwise and counter-clockwise for polar angle encoded stimuli and 

expanded annuli and contracting annuli for the eccentricity encoded stimuli (Sereno, 

McDonald, & Allman, 1994; Warnking et al., 2002). We acquired four retinotopic functional 

scans, one for each of the directions of motion of the rings and wedges. 

Similarly to Experiment 1, stimuli were back-projected on a translucent screen positioned at 

the rear of the magnet. Participants viewed this screen at a distance of about 222 cm via a 

mirror fixed on the head coil. Observers were instructed to fixate a central fixation cross while 

paying attention to the whole stimulus. In order to maintain and control observers’ attention 

they had to press a button each time the very small (just visible) fixation cross, displayed 
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centrally, briefly changed of shape (form + to x and back to +). However, we asked participants 

to try to span their spatial attention on the whole stimulus, as much as they could. During fMRI 

scanning, left eye position was monitored on-line by an infrared eye-tracker (ASL EyeTracker 

6000, Applied Science Group). The eye-tracker was positioned on the floor behind the scanner 

and the translucent screen. A 3 cm radius hole was made at the bottom of the translucent screen 

so the camera monitored the participants’s eye on the mirror and the infrared light emitter 

illuminated the pupil. 

 

2.3.2. fMRI Acquisition 

Functional, B0 field map and structural scans were acquired in a single scanning session on the 

same scanner as Experiment 1. For functional scans, thirty adjacent contiguous axial slices, 

angulated about the left-right axis to be approximately parallel to the calcarine sulcus, were 

acquired in interleaved mode. One of the central slices of the volume was positioned to contain 

as much of the calcarine sulcus as possible. Slice thickness was 3mm. The in-plane voxel size 

was 3×3 mm (216×192 mm field of view acquired with a 72×64 pixel data matrix). The main 

sequence parameters were: TR = 2 s, TE = 30 ms, flip angle = 77°. The experiment consisted 

of four functional scans. Acquisition time per functional scan was 7 min 50 s, allowing the 

acquisition of 235 volumes. The sequence parameters for the B0 field map scan were identical 

to Experiment 1. Finally, a high-resolution T1-weighted three-dimensional anatomical volume 

was acquired, by using a MP-RAGE sequence optimized based on (Deichmann, Good, 

Josephs, Ashburner, & Turner, 2000). For each subject 176 sagittal partitions were acquired in 

two segments with an image matrix of 256×112 (read×phase). Further imaging sequence 

parameters were: TR = 16 ms, TE = 4.96 ms, TI = 903 ms, flip angle = 8°, fast phase encoding 

direction: AP (112 steps per RAGE train, 2 segments), slow phase encoding direction: LR, 

acquisition matrix: 256×224×176 (CC×AP×LR), isotropic nominal resolution: 1mm, BW = 

130Hz/Px, readout direction: CC, number of averages: 1, total measurement time: 14 min 40 s. 

 

2.3.3. Data analysis 

Assigning functional responses to a surface model of the cortex is particularly sensitive to 
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geometric distortions of the 3D functional data due to static field inhomogeneity. Geometric 

distortions, if not corrected, really hamper the quality of the obtained retinotopic maps 

(Vasseur, Delon-Martin, Warnking, Segebarth, & Dojat, 2010). Similarly to data from 

Experiment 1, the inhomogeneity of the static magnetic field was taken in to account during 

functional image preprocessing. A magnetic B0 field map was first calculated (Cusack & 

Papadakis, 2002, Hutton et al., 2002) using the SPM8 Fieldmap Toolbox. The magnetic field 

map was further used to compute a voxel displacement map and then to correct all the 

functional images for the geometric distortions and to realign them with respect to the first one 

of the series. The conjoint field correction and realignment procedure was realized using the 

SPM8 Unwarp toolbox. In a final step, all EPI data sets were aligned with the structural data 

set using the SPM8 rigid body coregistration procedure. 

 

2.3.3.1. Model of the cortical surface 

Using a distributed Markovian method (Scherrer, Forbes, Garbay, & Dojat, 2009), the 

structural volume was segmented into three tissue types: cerebro-spinal fluid, white matter and 

grey matter. After segmentation, the interface between volumes labeled as white matter and 

cortical grey matter was extended to represent approximately the center of the cortical surface. 

Some manual editing was performed to correct for topological defects detected in the occipital 

lobes. Then, the cortical surface situated in the occipital lobes was modeled. The modeled 

region was defined manually as a part of the whole segmented volume and extracted for each 

hemisphere. Within the delimited region, a triangulated model of the cortical surface interface 

was then generated following an approach (Scherrer et al., 2009) based on the marching cubes 

algorithm (Lorenson & Cline, 1987). Distance between adjacent nodes of the triangulation was 

typically 1 mm. Data were then analyzed on the folded, triangulated surface model. A flattened 

representation of the surface model was eventually generated for visualization purpose and 

used for automatic tracing of visual area borders. 

 

2.3.3.2. Retinotopic map generation 

The EPI datasets were analyzed voxel-wise by complex valued Fourier transformation, to 
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determine amplitude and phase of the signals at the stimulation frequency (see details in 

Warnking et al., 2002). The results of the volume-based analysis of the (four) retinotopic scans 

were stored, for each visual coordinate, as a pair of parametric data volumes containing 

respectively phase and signal-to-noise ratio at the stimulation frequency. For generating 

retinotopic maps, phases were assigned to the cortical surface model as described in Warnking 

et al. (2002). The phase at each node of the surface model was estimated as a linear 

combination of the phases stored in a selection of voxels from the parametric data volume. 

Voxels from the parametric data volume that were retained in this selection had their center at 

most 3 mm away from the closest node of the surface model and a functional response at the 

stimulation frequency with a signal-to-noise ratio exceeding the value of 2. Following 

assignment of phase information to the surface model, retinotopic visual areas were 

automatically labeled and delineated on that model. The borders of the low order visual areas 

are determined from the detection of the changes of the visual field sign between adjacent areas 

(Sereno, 1994). To determine the visual field sign, it is then convenient to calculate the ratio 

(“visual field ratio” - VFR) of an oriented area measured using the local representation of the 

visual field coordinates with respect to some area measured using a locally isometric 

parameterization of the surface (this ratio is the Jaco-bian of the visual field representation on 

the surface). The visual area borders correspond to contour lines of zero VFR. Then, labeling 

retinotopic visual areas involves performing the following successive steps: 1. Application of a 

gaussian filter; 2. Calculation of a VFR map from the phase gradients with respect to a local 

two-dimensional coordinate system on the surface; 3. Identification of candidates of the low 

order visual areas as those regions presenting a VFR and a signal-to-noise ratio of the 

smoothed eccentricity and polar angle phase maps beyond preset thresholds; 4. Selection of V1 

as the largest among these candidates with negative VFR; and finally 5. Identification of the 

borders among retinotopic visual areas as the contour lines of zero VFR. Delineation of the 

visual areas from the VFR map was entirely performed in the two-dimensional Cartesian space 

of the flattened surface representation. In some cases, based on a visual inspection of the polar 

angle map, some manual editing may be introduced to refine the visual areas borders. 
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3. Results 

3.1. Behavioral results 

Two 3 × 2 variance analyses (ANOVA) with Spatial frequency (LSF, HSF, and NF) and 

Categories (Indoors and Outdoors) as within-subjects factors were conducted on mean 

accuracy (mACC) and mean reaction times (mRT). On mACC, there was no effect of Spatial 

frequency (F2,34 = 1.36, p = .27) or of Category (F1,17 < 1). The data on mRT showed a main 

effect of Spatial frequency (LSF: 635 ± 82 ms, HSF: 620 ± 86 ms, NF: 611 ± 78 ms; F2,34 = 

10.10, p < .01) but not of Category (F1,17 = 3.60, p = .08). Planned comparisons revealed that 

participants categorized HSF and NF more quickly than LSF conditions (F1,17 = 7.40, p < .05 

and F1,17 = 22.52, p < .01, respectively). We observed no difference between HSF scenes and 

NF scenes (F1,17 = 2.69, p = .11). 

 

3.2. Cerebral activation results 

3.2.1. Retinotopic organization during spatial frequency processing 

By contrasting first the processing of natural scenes filtered in LSF, HSF and NF scenes to 

fixation blocks ([LSF > fixation], [HSF > fixation] and [NF > fixation] contrasts), we observed 

extensive recruitment of occipito-temporal areas, involving the bilateral lingual, fusiform and 

paraphippocampal gyri, and the right middle occipital gyrus for all contrasts. Then, the [LSF > 

HSF] contrast showed that LSF processing specifically activated the medial aspect of the 

occipital lobe, in the anterior half of the calcarine fissures (peak coordinates, x, y, z: 0, -78, 26; 

Figure 2a and Table 1a). The reverse [HSF > LSF] contrast elicited significant rather more 

posterior bilateral activation in the cuneus (right hemisphere: 4x, -88y, 15z; left hemisphere: -

9x, -94y, 1z), the lingual gyri and the right middle and superior occipital gyri (Figure 2b and 

Table 1a). Regarding activation for scenes filtered in spatial frequencies compared to non-

filtered scenes, the [LSF > NF] contrast and the [HSF > NF] contrast presented no significant 

activated voxel (p < .001 uncorrected). The opposite [NF > HSF] and [NF > LSF] contrasts 

elicited strong activation in the occipito-temporal cortex, with bilateral involvement of the 

cuneus, and the lingual, fusiform, and parahippocampal, gyri (Figure 2c-d and Table 1a). 

However, a higher level of anterior activation of the cuneus was noted for the [NF > HSF] 
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(15x, -76y, 9z) than for the [NF > LSF] contrast, and was very close to levels observed for the 

[LSF > HSF] contrast. Additional activation was observed in the middle and superior occipital 

gyrus for the [NF > LSF] contrast, and for the [HSF > LSF] contrast.  

We performed an additional group analysis in which we included reaction time as a 

covariate in order to remove cerebral activation due to reaction time differences across 

LSF and HSF processing. At the second level of the two-stage random effect analyses, we 

assigned as a covariate the mean reaction time of each spatial frequency condition to each 

participant. Here again, the [LSF > HSF] contrast showed that LSF processing 

specifically activated the medial aspect of the occipital lobe, in the anterior half of the 

calcarine fissures while the reverse [HSF > LSF] contrast showed more posterior bilateral 

activation in the cuneus, the lingual gyri and the middle occipital gyri. Importantly, 

activations were very closed to those observed without reaction time covariate (see peak 

coordinates in Table 1a and 1b) suggesting that differences in reaction times across LSF 

and HSF scene categorization did not induce the retinotopic organization of cerebral 

activations during spatial frequency processing. 

 

- Insert Figure 2 and Table 1 about here - 

 

For three participants (P1, P2 and P3), we delineated retinotopic visual areas on the cortical 

surface of both hemispheres represented on Figure 3 as flat maps of the occipital volume, 

anteriorly delimitated by the parieto-occipital sulcus. Then, we projected their individual 

activations corresponding to spatial frequency processing ([LSF > HSF] and [HSF > HSF] 

contrasts; p < 0.001 uncorrected) in Experiment 1. Despite variability between participants, 

activation corresponding to HSF was located centrally and ventrally and activation 

corresponding to LSF was projected in periphery, outside the region covering 3° (radius from 

the central fixation cross) of eccentricity in the visual field (see Figure 3). In some cases, LSF 

activation was more anterior and outside the occipital part of the brain that was unfolded. 

For P1, the [LSF > HSF] contrast showed that LSF processing activated bilaterally the anterior 

part of V1, whereas the opposite [HSF > LSF] contrast elicited activation in the posterior and 
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ventral part of V2 and V3 of the left hemisphere. No relevant occipital activation was observed 

in the right hemisphere. For P2, the [LSF > HSF] contrast elicited bilateral activations in the 

anterior part of V1 and V2, extending to V3 in the right hemisphere, whereas the opposite 

[HSF > LSF] contrast elicited bilateral activations in the posterior and ventral part of V2 and 

V3. For P3, the [LSF > HSF] contrast elicited bilateral activations in the anterior part of V1, 

whereas the opposite [HSF > LSF] contrast elicited bilateral activations in the posterior and 

ventral part of V2, V3 and V4 (these activations extending weakly to V1). 

 

- Insert Figure 3 about here - 

 

3.2.2. Hemispheric predominance during spatial frequency processing  

To study hemispheric specialization during spatial frequency processing, we first 

compared both hemispheres for the LSF, HSF and NF blocks: [LSF_unflip > LSF_flip], 

[HSF_unflip > HSF_flip] and [NF_unflip > NF_flip] contrasts. Direct comparisons of the 

two hemispheres revealed which areas were more highly activated in one or the other in the 

same experimental conditions. However, all these contrasts showed significant activation in 

left motor areas and in the right cerebellum, in relation to the motor response given by 

the right-handed participants, but no significant activations within the occipito-temporal 

cortex. Furthermore, the LSF/HSF*unflip/flip interaction did not reveal significant 

activation. We hypothesized that the categorization of large spatial frequency scenes may 

involve several other low-level visual processes that could have attenuated or masked the 

cerebral asymmetries directly linked to the processing of spatial frequencies. The 

subtraction of the fixation condition to each spatial frequency condition (either unflipped 

or flipped) allow to remove low level visual processes and thus emphasize the activation 

linked to the categorization of spatial frequency scenes. Thus, we removed the fixation 

condition to each spatial frequency condition and compared both hemispheres for the 

LSF, HSF and NF blocks: [LSF-Fixation_unflip > LSF-Fixation_flip], [HSF-

Fixation_unflip > HSF-Fixation_flip] and [NF-Fixation_unflip > NF-Fixation_flip] 

contrasts. All contrasts showed significant activation in left motor areas and in the right 
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cerebellum, in relation to the motor response given by the right-handed participants, and in the 

right parahippocampal gyrus, the right cuneus and the left superior frontal gyrus. Critically, a 

hemispheric specialization for spatial frequency processing was observed in occipito-temporal 

areas (Figure 4 and Table 2). The [LSF-Fixation_unflip > LSF-Fixation_flip] contrast revealed 

that the right middle occipital and occipito-temporal gyri (BA 19/39, 39x, -76y, 15z and 48x, -

70y, 15z) were more highly activated than their left homologue during the processing of LSF. 

By contrast, the [HSF-Fixation_unflip > HSF-Fixation_flip] comparison revealed that the left 

middle temporal gyrus (BA 22, -59x, -33y, 4z) was more highly activated than its right 

homologue during the processing of HSF. The [NF-Fixation_unflip > NF-Fixation_flip] 

contrast revealed both that the middle occipito-temporal gyrus was more highly activated in the 

right than in the left hemisphere (BA 19/39, 48x, -70y, 15z), and that the middle temporal 

gyrus (BA 22, -59x, -42y, 1z) was more highly activated in the left than the right hemisphere. 

 

- Insert Figure 4 and Table 2 about here - 

 

4. Discussion 

In the present block-design fMRI study, we used large natural scenes filtered in different 

spatial frequencies in order to ascertain which areas were involved in spatial frequency 

processing). We reported on eighteen participants extensive recruitment of occipito-temporal 

areas and found markers of hemispheric specialization within occipito-temporal areas. 

Furthermore, our results on three participants provided first of all evidence of a retinotopic 

organization of spatial frequency processing in human visual cortex. 

First, we identified the cerebral correlates for spatial frequency processing irrespective of 

hemispheric dominance. The results of contrasts between filtering and fixation conditions 

([LSF > fixation], [HSF > fixation] and [NF > fixation]) highlight the widespread recruitment 

of occipito-temporal areas, extending to the parahippocampal cortex, usually activated by 

scene stimuli. Similar parahippocampal activation during the perception of natural scenes had 

already been reported in a number of recent studies (Downing, Chan, Peelen, Dodds, & 

Kanwisher, 2006; Epstein, 2008; Epstein, Harris, Stanley, & Kanwisher, 1999; Epstein & 
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Kanwisher, 1998). More interestingly; by contrasting spatial frequency blocks to one another, 

we were able to show that the processing of spatial frequencies is related to the organization of 

retinotopic eccentricity in the occipital cortex. Activation related to the processing of LSF was 

observed in the medial occipital lobe, and in the anterior half of the calcarine fissure in relation 

to the peripheral representation, whereas activation linked to the processing of HSF was 

present in the posterior occipital lobes in relation to the foveal representation. These results are 

supported by the findings of Dougherty et al. (2003), who demonstrated that the representation 

of the fovea in human areas V1, V2 and V3 is centered on the lateral-ventral aspect of the 

occipital lobes at mean Talairach coordinates -29x, -78y, -11 and 25x, -80y, -9z, which is very 

close to the occipital activation observed for HSF (compared to LSF) scene categorization, 

particularly in the right hemisphere (peak Talairach coordinates: 27x, -80y, -3z). Our results 

could be explained by the distribution and neurophysiological properties of photoreceptor and 

ganglion cells in the human retina (Curcio & Allen, 1990; Curcio, Sloan, Kalina, & 

Hendrickson, 1990). First of all, the density of cones and midget ganglion cells, which are used 

to process HSF information, is greatest in the fovea. Since the fovea is represented in the 

posterior areas of the visual cortex, HSF information (conveyed by the parvocellular pathway 

to the visual cortex) might be predominantly processed in these areas. Moreover, the density of 

rods and parasol ganglion cells, which are used to process LSF information, increase with 

foveal eccentricity. Since the peripheral retina is represented in progressively more anterior 

areas of the visual cortex, LSF information (conveyed by the magnocellular pathway to the 

visual cortex) might be predominantly processed within these areas. 

In addition to retinotopic activation, activation related to LSF processing was located in the 

upper (dorsal) part of the cuneus (BA 17), while HSF-related activation was located in the 

lower (ventral) part of the cuneus (BA 17/18), extending to the ventromedial cortex (at the 

level of the lingual gyrus). Because patients with achromatopsia have ventromedial occipital 

brain damage and attention to color activates this region (Bartels & Zeki, 2000; Brewer, Liu, 

Wade, & Wandell, 2002; Kaas, 1997; Wade, Brewer, Rieger, & Wandell, 2005; Wandell, 

Brewer, & Dougherty, 2005; Zeki et al., 1991), the cortex of the lingual gyrus has been 

suggested to be the human correlated of the monkey V4 of the ventral cortical stream. 
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Therefore, our results suggest that HSF in scenes project on the occipital areas of the ventral 

stream. The activation observed could be linked with projections from the magno- and 

parvocellular pathways in the occipital areas of the dorsal and ventral visual streams, 

respectively (Goodale & Milner, 1992; Mishkin, Ungerleider, & Macko, 1983). Indeed, in 

monkeys, it has been shown that the magnocellular pathway project mostly to the occipital 

areas of the dorsal stream, beginning with the visual area V1, going through V2, then to V3 

and the motion processing region MT (also known as V5) and to the posterior parietal cortex. 

The parvocellular pathway project to the occipital areas of the ventral stream, beginning with 

the visual area V1, going through V2, V3 and then to the color processing region V4, and lastly 

to the complex form analysis regions in the inferior temporal cortex. In order to further explore 

this assumption, we overlapped the functional activations obtained in our scene categorization 

task with retinotopic maps acquired on three participants. For the three participants, the LSF 

processing activated mainly the anterior part of V1, whereas the HSF processing activated 

mainly the posterior part of the ventral regions of V2 (V2v) and V3 (V3v). Our results are 

consistent with the findings of Dougherty et al. (2003) who showed that the foveal 

representation is situated on the lateral-ventral regions of V1, V2 and V3. Importantly, to our 

knowledge, there is no neurophysiological evidence linking functional specialization along the 

lines of ventral and dorsal processing streams and the ventral and dorsal regions of V2 and V3. 

However, our results suggest that the HSF conveyed by the parvocellular pathway project 

mostly on the ventral regions of V2 and V3. Furthermore, for one participant (P3), HSF 

processing strongly activated V4, suggesting that HSF in scenes project on the occipital areas 

of the ventral stream. However, this assumption is based on only one participant’s results. 

Furthermore, due to the individual variability the small subset of the population 

evaluated limits our conclusion. Additional experiments with more individual results will 

need to fully investigate the projection of spatial frequency processing on ventral and 

dorsal streams. 

Our results are consistent with the retinotopic mapping of local and global attention orientation 

of hierarchical visual stimuli observed by Sasaki et al. (2001), and with the relationship 

between local and global information and spatial frequency processing (Badcock et al., 1990; 
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Lamb & Yund, 1993; Schulman et al., 1986). Attention directed to local level information 

preferentially activated the foveal representation of the cortex, where activation in response to 

HSF scene categorization is also highest. When attention is instead directed to global level, 

activation was consistent with the LSF scene categorization at more peripheral eccentricities. 

Our results were, however, different from those observed in Peyrin et al. (2004) who failed to 

observe retinotopic activation when comparing directly the neural correlates of LSF and HSF 

during the visual recognition of smaller scene images. Contrasting LSF to HSF scene 

recognition, significant activation was obtained in the right anterior temporal cortex and in the 

parahippocampal gyrus (reflecting semantic information and familiarity processes in scenes), 

as well as in the right inferior parietal lobule (reflecting attention-related processes), while no 

significant activation was observed by contrasting HSF and LSF scene recognition. The 

authors attributed these results to a whole LSF processing bias in their recognition task, which 

masked activation induced by HSF scene recognition. Indeed, in Peyrin et al. (2004), the high-

pass spatial frequency cutoff was higher than in the present study (over 6 cycles per degree of 

visual angle). That would result in a weaker visual signal and thus in a less pronounced BOLD 

signal for HSF than LSF scenes (below 4 cycles per degree of visual angle). To avoid an LSF 

processing bias in the present study, we used lower high- and low-pass spatial frequency 

cutoffs, that is over 1 cycle/degree of visual angle for HSF scenes and under 1 cycle/degree of 

visual angle for LSF scenes
1
. 

Interestingly, activation observed when contrasting LSF and HSF blocks mirrors activation 

obtained when contrasting NF blocks and spatial frequency blocks. Indeed, the [NF > HSF] 

contrast in which activation from HSF scenes was subtracted from NF scenes indirectly 

highlight activation related to LSF processing, whereas the [NF > LSF] contrast in which 

activation from LSF scenes was subtracted from NF scenes indirectly highlight activation 

relating to HSF processing. Our results showed that activation of the anterior part of the cuneus 

induced by the [NF > HSF] was similar to the activation observed for the [LSF > HSF] 

contrast. In the same way, the more posterior and lateral activation of the cuneus observed for 

the [NF > LSF] contrast is close to activation observed for the [HSF > LSF] contrast. 
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In addition to the retinotopic activation identified by contrasting spatial frequencies, we also 

demonstrated cerebral asymmetries for spatial frequency processing. In order to identify 

cerebral asymmetries (but also to remove any bias in spatial frequency processing when 

determining cerebral asymmetries), we directly compared the hemispheres by contrasting 

“unflip” to “left-right flip” functional images for each particular spatial frequency band (LSF, 

HSF and NF, relative to the fixation periods). First at all, the fMRI images were normalized 

using a symmetrical left-right template in order to avoid as possible as we could an effect of 

structural asymmetries between hemispheres when identifying the functional dissociation 

between homologous regions. Furthermore, it should be noted that these dissociations could 

not be due to differences in visual stimulations, because we compared hemispheres during the 

same visual events. Using this method, we found that spatial frequency processing was 

associated with differential hemispheric activation in occipito-temporal areas. As expected 

from previous studies (Iidaka, Yamashita, Kashikura, & Yonekura, 2004; Peyrin, Baciu, 

Segebarth, & Marendaz, 2004), the middle occipito-temporal junction (BA 19/39) was 

significantly and predominantly more highly activated in the right hemisphere during LSF 

scene categorization, whereas the anterior part of the middle temporal gyrus (BA 22) was 

significantly and predominantly more highly activated in the left hemisphere during HSF scene 

categorization. Again, the cerebral asymmetries highlighted during NF scene categorization 

mirrored those observed during LSF and HSF scene categorization. Indeed, as was the case for 

LSF scenes, activation of the middle occipital gyrus (BA 19) was predominantly more 

pronounced in the right hemisphere, and the middle temporal gyrus (BA 22) was 

predominantly more activated in the left hemisphere, as was the case for HSF scenes. The 

entire frequency spectrum of NF scenes involving both LSF and HSF emphasized occipito-

temporal activation in the individual hemispheres. Furthermore, results revealed cerebral 

asymmetries irrespective of the spatial frequency content of scenes. Activation of the 

parahippocampal gyrus was greater in the right than in the left hemisphere. This result suggests 

that the parahippocampal gyrus activation observed when contrasting the spatial frequency 

content of individual scenes to the fixation was predominant in the right hemisphere. 

Activation of one part of the cuneus was also higher in the right than in the left hemisphere 
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irrespective of spatial frequencies. An explanation for this unexpected response may be related 

to visuo-spatial constraints imposed by the large visual stimuli used. Our results suggest that 

the right cuneus may have to “work” more intensively to process visual information displayed 

in the left peripheral visual field, and this could be attributed to the superiority of the right 

hemisphere for the earlier perceptual level of processing (Grabowska & Nowicka, 1996; Peyrin 

et al., 2006). Finally, superior frontal gyrus (BA 10) activation was greater in the left than in 

the right hemisphere. Previous studies of memory function have shown the involvement of 

frontal cortical area 10 in the intentional retrieval of non-verbal materiel (Cabeza & Nyberg, 

2000; Tulving, Markowitsch, Kapur, & Habib, 1994). Activity in area 10 may be related to 

attempts to retrieve prototype information about scene exemplars, or to demands made on 

memory in order to find a successful match for the prototype. In the left hemisphere, this 

region might be preferentially associated with categorical visual spatial memory (e.g., one item 

is ‘above’ or ‘below’ the other; Slotnick & Moo, 2006). In our study, categorical differences 

between indoor and outdoor scenes can be pinpointed in the visual organization of the elements 

which make up a scene (for example, outdoors, the ground is below the scene and the sky is 

above). Therefore, the predominant left superior frontal gyrus activation could be associated to 

the categorical memory processes involved in our scene categorization task. 

Otherwise, our results were consistent with behavioral studies showing a left visual field/right 

hemisphere predominance during the recognition of LSF scenes and a right visual field/left 

hemisphere predominance during HSF scene recognition (Peyrin, Chauvin, Chokron, & 

Marendaz, 2003; Peyrin, Mermillod, Chokron, & Marendaz, 2006). However, on a 

neurobiological level, the pattern of cerebral asymmetries is not strictly the same as the one 

reported by Peyrin et al. (2004). As far as LSF scene categorization is concerned, the right 

predominance in the middle occipital gyrus is consistent with the one observed in Peyrin et al. 

(2004), but also in numerous neuroimaging studies (Fink et al., 1996; Han et al., 2002; Iidaka, 

Yamashita, Kashikura, & Yonekura, 2004; Lux et al., 2004). However, in our study, the HSF 

scene categorization elicited a left-sided predominance in the middle temporal cortex, which 

differed from the usual left occipital cortex predominance observed in previous neuroimaging 

studies. This result is more consistent with those obtained on neurological patients, with lesions 
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centered in the left posterior superior temporal gyrus, showing a specific impairment of local 

element processing in hierarchical visual form (Lamb, Robertson, & Knight, 1990; Robertson, 

Lamb, & Knight, 1988). The discrepancy between our results and those of Peyrin et al. (2004) 

could be due to the high-pass spatial frequency cutoff of scenes. As previously mentioned, we 

excluded in the present study all spatial frequency content below 1 cycle/degree of visual angle 

for HSF (while 6 cycles/degree in Peyrin et al., 2004) in order to avoid a LSF processing bias 

when directly comparing LSF and HSF. The additional medium-range spatial frequencies in 

HSF scenes could explain the HSF advantage in reaction times. Alternatively, this HSF 

advantage might be attributed to the long presentation time of scenes (300 ms) favoring the 

categorization of scenes on the basis of HSF information (Peyrin, Chauvin, Chokron, & 

Marendaz, 2003; Schyns & Oliva, 1994). However, we do not consider this experimental 

manipulation to be detrimental to our goals, since Christman, Kitterle, and Hellige (1991) have 

previously shown that hemispheric asymmetries for spatial frequency processing are relative 

rather than absolute. The actual downside of this manipulation is that our HSF scenes also 

contained medium-range spatial frequencies (between 1 and 6 cycles/degree). Consequently 

both left and right occipital cortices might be involved in the categorization of our HSF scenes, 

thus masking the left occipital predominance previously observed in Peyrin et al. (2004), and 

in this case cerebral asymmetries may occur only in higher level areas of the ventral visual 

stream in the temporal regions (Tanaka, 1993). It should be noted that the behavioral HSF 

advantage in reaction times might be also interpreted as an effect of the right-hand used 

by the participants. Indeed, the right hand could preactivate the left hemisphere and thus 

facilitate the processing of HSF (relative to LSF) for which this hemisphere is specialized. 

In conclusion, using stimuli filtered in spatial frequencies that covered a large part of the visual 

field, and suitable methods of data analysis, we have succeeded in showing that the processing 

of spatial frequencies is retinotopically organized and lateralized in human visual cortex. 
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Footnotes 

1
These particular spatial frequency cutoffs were selected based on our previous works. 

First, we aimed to avoid a bias of a spatial frequency band. Indeed, in Peyrin et al. (2004), 

spatial frequency cutoffs were below 4 cycle/degree of visual angle for LSF stimuli and 

above 6 cycles/degree for HSF stimuli. The [HSF > LSF] contrast did not reveal 

significant activation, suggesting a LSF bias. In a subsequent work not published, spatial 

frequency cutoffs were lower for LSF (below 1 cycle/degree of visual angle) and above 6 

cycles/degree for HSF stimuli. Again, the [HSF > LSF] contrast did not reveal significant 

activation. Both studies indicated to use lower spatial frequency cutoff for HSF stimuli. In 

our parallel works conducted on patient with age-related macular degeneration (AMD) to 

demonstrate a specific HSF deficit in AMD, 1 cycle/degree was used as the cutoff 

frequency for HSF filtering. Therefore, in order to maintain consistency with this work 

and to keep the objective in mind of assessing AMD patients with the present fMRI 

paradigm, we selected 1 cycle/degree as the cutoff frequency for LSF and HSF filtering. 

 

2
The energy of a signal is equal to the sum of the squared values of the signal. The energy of 

LSF and HSF stimuli was equalized for each scene in the spatial domain as follow: If ( )jiLSF ,  

and ( )jiHSF ,  represent the value of the pixel at position ( )ji,  of respectively the low and the 

high-pass filtered images of a scene, their energies are given by ( )∑=
ji

LSF jiLSFE
,

2
,  and 

( )∑=
ji

HSF jiHSFE
,

2
, , respectively. The stimuli are then normalized by a fixed energy E , 

( ) ( ) LSFnorm EEjiLSFjiLSF /.,, = and ( ) ( ) HSFnorm EEjiHSFjiHSF /.,, = . It should be noted that this 

method of normalization was preferred to a RMS contrast normalization since our preliminary 

works showed that RMS contrast normalization drastically increases activation for HSF scenes 

only, such as no significant activation was obtained for the [LSF > HSF] contrast, irrespective 

of the spatial frequency cutoff. 

 

3
All participants have to categorize scenes only with their dominant right hand in order to 

ensure the reliability of our inter-hemispheric comparison method. Indeed, using the right 

hand, the inter-hemispheric comparison should highlight a left side motor predominance 

whatever the spatial frequency particular band of natural scenes. The [LSF-Fixation_unflip > 

LSF-Fixation_flip], [HSF-Fixation_unflip > HSF-Fixation_flip] and [NF-Fixation_unflip > 
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NF-Fixation_flip] contrasts showed indeed significant activation in left motor areas and in the 

right cerebellum, in relation to the motor response given by the right-handed participants. 
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Figure Captions 

 

Figure 1. Example of stimuli used in the four experimental conditions: low spatial frequencies 

(LSF), high spatial frequencies (HSF), non-filtered (NF) scenes and Fixation periods. 

Figure 2. Activated regions obtained by contrasting (a) [LSF > HSF], (b) [HSF > LSF], (c) 

[NF > HSF], and (d) [NF > LSF]. 

Figure 3. Individual activation for three participants (P1, P2 and P3). The central row 

represents individual activation maps elicited by the [LSF > HSF] and [HSF > LSF] contrasts 

(p < 0.001 uncorrected) in Experiment 1. Individual activations were projected on the 

corresponding left (left row) and right (right row) flat hemispheres for each participant. On 

each flat map, retinotopic areas were delineated based on the retinotopic mapping experiment. 

We indicated for each participant and each hemisphere, the activation corresponding to 

eccentricity mapping. The color legend represents a circular area of the visual field with an 

eccentricity of 3° (radius from the central fixation cross). The black line represents the 3° 

(radius) of eccentricity in each visual field. Only the occipital lobe was unfolded, anteriorly 

delimitated by the parieto-occipital sulcus. Ventral part and dorsal part of the 3D volume are 

respectively down and up on the unfolded surface. 

Figure 4. Activated regions obtained using a direct inter-hemispheric comparison for low 

spatial frequency scenes (LSF; [LSF-Fixation_unflip > LSF-Fixation_flip] contrast), high 

spatial frequency scenes (HSF; [HSF-Fixation_unflip > HSF-Fixation_flip] contrast, and non-

filtered scenes (NF; [NF-Fixation_unflip > NF-Fixation_flip] contrast). The activation from the 

group analysis is projected onto a symmetrical template brain by averaging the T1 template 

available on SPM and its mirror around the midsagittal plane. The bottom of the figure shows 

the superposition of all activations. All contrasts showed activation in left motor areas [1], the 

right parahippocampal gyrus [2] and the right cuneus [3]. A hemispheric specialization for 

spatial frequency processing was observed in occipito-temporal areas (indicated by arrows in 

the figure), involving the right middle occipital gyrus [4] for LSF (as well as NF)  and the left 

middle temporal gyrus [5] for HSF (as well as NF). 
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Figure 1. Example of stimuli used in the four experimental conditions: low spatial frequencies (LSF), high 
spatial frequencies (HSF), non-filtered (NF) scenes and Fixation periods.  

40x19mm (300 x 300 DPI)  

 

 

Page 35 of 38 Journal of Cognitive Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

  

 

 

Figure 2. Activated regions obtained by contrasting (a) [LSF > HSF], (b) [HSF > LSF], (c) [NF > HSF], and 

(d) [NF > LSF].  
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Figure 3. Individual activation for three participants (P1, P2 and P3). The central row represents individual 
activation maps elicited by the [LSF > HSF] and [HSF > LSF] contrasts (p < 0.001 uncorrected) in 

Experiment 1. Individual activations were projected on the corresponding left (left row) and right (right row) 

flat hemispheres for each participant. On each flat map, retinotopic areas were delineated based on the 
retinotopic mapping experiment. We indicated for each participant and each hemisphere, the activation 

corresponding to eccentricity mapping. The color legend represents a circular area of the visual field with an 
eccentricity of 3° (radius from the central fixation cross). The black line represents the 3° (radius) of 

eccentricity in each visual field. Only the occipital lobe was unfolded, anteriorly delimitated by the parieto-
occipital sulcus. Ventral part and dorsal part of the 3D volume are respectively down and up on the unfolded 

surface.  
114x156mm (300 x 300 DPI)  

 

 

Page 37 of 38 Journal of Cognitive Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly
  

 

 

Figure 4. Activated regions obtained using a direct inter-hemispheric comparison for low spatial frequency 
scenes (LSF; [LSF-Fixation_unflip > LSF-Fixation_flip] contrast), high spatial frequency scenes (HSF; [HSF-

Fixation_unflip > HSF-Fixation_flip] contrast, and non-filtered scenes (NF; [NF-Fixation_unflip > NF-
Fixation_flip] contrast). The activation from the group analysis is projected onto a symmetrical template 
brain by averaging the T1 template available on SPM and its mirror around the midsagittal plane. The 

bottom of the figure shows the superposition of all activations. All contrasts showed activation in left motor 
areas [1], the right parahippocampal gyrus [2] and the right cuneus [3]. A hemispheric specialization for 
spatial frequency processing was observed in occipito-temporal areas (indicated by arrows in the figure), 

involving the right middle occipital gyrus [4] for LSF (as well as NF)  and the left middle temporal gyrus [5] 
for HSF (as well as NF).  
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