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Acceleration Waves in Micropolar Elastic Media
V. A. Eremeyev

For nonlinearly elastic micropolar media, a condi-
tion of the existence of weak discontinuous solutions of
equations of motion has been obtained. For these solu-
tions, which constitute acceleration waves, the continu-
ity of the second derivatives of displacement and
microrotation fields is broken on certain singular sur-
faces. In the framework of the micropolar-medium
model (Cosserat continuum), each particle has the
degrees of freedom of an absolutely rigid body, their
rotation interaction may be taken into account, and cou-
ple stresses exist in addition to standard stresses. The
Cosserat model is used to describe granulated, powder-
like, and loose media, as well as polyerystalline bodies,
composites, and nanostructures. It is also applied to
develop non-classical models of thin-walled construe-
tions: bars, plates, and shells.

An analogue of the Fresnel-Hadamard—Duhem the-
orem on the existence of acoustic axes and real acoustic
numbers has been proved. It has been shown that the
condition of the existence of an acceleration wave is
equivalent to the requirement of a strong ellipticity of
equilibrium equations, as in the case of simple materi-
als that are free of couple stresses.

BASIC RELATIONS

The equations of motion of the micropolar medium
(Cosserat continuum), which present the balance of the
momentum and angular momentum for an arbitrary
body part, have the form [1-11]

divT + pt = p?,
(1)

divM + (F” - T)x + pm = py‘;—":.

Here, T and M are the Piola tensors of stresses and cou-
ple stresses, respectively; F = grad R is the strain gradi-
ent; div and grad are, respectively, the divergence and
gradient operators in the Lagrangian coordinates; p is

the medium density in the reference configuration; f
and m are the mass force and mass moment, respec-
tively; pyis the scalar measure of the rotation inertia of

: : dR . . :
continuum particles; v = = 18 the particle velocity; the

radius-vector R(¢) specifies the position of particles of
the micropolar medium at time ¢ the orthogonal
microrotation tensor H(z) determines its orientation:

o= (&

~ \dt
represents the vector invariant of the second-rank ten-
sor T [12].

The constitutive equations of the micropolar elastic
medium can be written in terms of the specific (per unit
volume in the reference configuration) potential energy
of deformation W= W(E, K) as [10]

T:W]E'H, M:W]K'H,
E=F H, KxI=—(gradH) H’,

- HT) is the angular velocity; and T,
X

(2)

where E and K are the measures of the metric and bend-
ing deformations, respectively; I is the unit tensor; Wis
assumed to be twice continuously differentiable; and
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FROPAGATION OF WEAK DISCONTINUITIES
(ACCELERATION WAVES)

We consider a medium motion that may be accom-
panied by a break in the continuity of kinematic and
dynamic quantitics on a certain smooth surface S(#),
which is called singular. We assume that the limiting
values of these quantities exist on § and that they are
generally different on the opposite sides of S. The jump
of W on § is denoted as

P =" -¥.

The acceleration wave (weak-discontinuity wave or
second-order singular surface) is a moving singular sur-
face on which the second derivatives (with respect to
the spatial coordinates and time) of the radius-vector R
and microrotation tensor H are discontinuous, while the



quantitiesthemselves and their first derivatives are con-
tinuous; i.e., the equalities

[F1 =0, [gradH]=0, [vI=0, [@]=0 (3)

arevalid on S According to Egs. (3), deformation mea-
sures E and K are continuous near S, and, in view of
constitutive equations (2), jumpsof thetensorsT and M
are absent.

The application of the Maxwell theorem [13] to con-
tinuousfields of velocities v and o, stresses, and couple
stresses T and M yields a system of equations that
relate the jumps of their derivatives with respect to the
spatial coordinates and time:

[Vl = -Va, [gradv] = nOa, [®] = -Vb,

[gradw] = n O b, )

V[divT] = -n O0T], V[divM] = -n [OM].

Here, aand b arethe vector amplitudesfor the jJumps of
the linear and angular accelerations, n is the unit nor-
mal vector to S and V isthe velocity of the surface Sin
the direction n [13]. If mass forces and moments are
continuous, the relations

[divT] = p[v], [divM] = py[o]

follow from the equations of motion (1). Differentiating
constitutive equations (2) and using Egs. (4), we
express these relations only in terms of the vector
amplitudes a and b:

nDN]EE (H &D n)+nDN’EK h (H Ebl]n)
= pV?alH',

nD/VVKE (H &D n)+nDN’KK (H Ebl:ln)
= pyVb H'.

These relations can be written in a more compact form
using the matrix notation

A(n) & = pV’B LE, (5)

where§ =(@,b)0R%a=a-H",b'=b-HT, A and
B are the matrices with tensor elements

A(n) = [W,EE{ nt Weg{ n}]’ BEpVZ{I 0}
Wie{nt Wyk{n} Oyl

and the notation G{n} = G,,nii,; O i, is introduced
for any fourth-rank tensor G and any vector n that are
represented in terms of their decompositions in the
arbitrary Cartesian basisi,, k=1, 2, 3.

Thus, the problem of acceleration wave propagation
in the micropolar medium has been reduced to the spec-
tral problem given by Eq. (5). Owing to the existence of
the potential-energy function W, A(n) is symmetric.
This property enables one to formulate an analogue of

the Fresnel-Hadamard-Duhem theorem for micropolar
media.

Theorem 1. The squares of the vel ocities of second-
order singular surfaces (acceleration waves) in the
micropolar elastic medium are real for arbitrary prop-
agation directions specified by the vector n.

The positive definiteness of A(n), whichisboth nec-

essary and sufficient for the wave velacity V to be real,
i.e., theinequality

§ [A(n) CE >0,
OnOR® ,n 20, 0& OR®, &=z0,

isan additional constraint imposed on constitutive rela
tionships (2).
Following [ 7], one can prove Theorem 2.

Theorem 2. Condition (6) for the existence of the
acceleration wave in the micropolar elastic mediumis
equivalent the condition of strong ellipticity of the equi-
librium eguation.

Wesak inequality (6) is an analogue of the Had-
amard inequality from the spatial theory of elasticity
[12, 13]. Asin the case of simple materials, abreak in
inequality (6) means the possibility of existing nons-
mooth solutions of the equilibrium equations.

As an example, we consider the equation of state of
aphysically linear micropolar medium [7]

W = W, (E) + W,(K). (7

(6)

Here,
W, (E) = astr((E-1) (E-1)")
+0L,tr((E=1)%) + ostr’(E—1),

W,(K) = Bytr(K CKT) + B,tr(K?) + Batr’(K),

where a, and By, k=1, 2, 3, are constants. In this case,
inequality (6) is equivaent to the inequalities[7]

a,>0, a;+a,+a;>0, >0, By +B,+B;>0.

Under these conditions, the solutions of Eq. (5) are
given by the expressions

Vip = (X_l, €12 = (6,2 0),
P 3)
V3 = '%ﬁa?’, §3 = (O, n),
Vu5 = \%’ €15 = (845 0),
&)

_ /Bl"'Bz"'Ba _
Ve = —yp , & = (0,n),

where g, &,, &, and e; are arbitrary unit vectors lying
in the plane tangent to S(e, - e,=€, -n=6,- N =0,



e, -6==¢,n=e-n=0). Solutions (8) describe the
transverse and longitudinal acceleration waves, and
solutions (9), the transverse and longitudinal microro-
tation acceleration waves. The velocities obtained for
the acceleration waves given by Egs. (8) and (9) coin-
cide with the limiting phase velocities of plane har-
monic waves propagating in the linearly elastic
micropolar medium [2, 9] when the wave frequency
tendsto infinity.
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