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ACCELERATION WAVES IN M

quantities themselves and their first derivatives are con-
tinuous; i.e., the equalities

(3)

are valid on S. According to Eqs. (3), deformation mea-
sures E and K are continuous near S, and, in view of
constitutive equations (2), jumps of the tensors í and å
are absent.

The application of the Maxwell theorem [13] to con-
tinuous fields of velocities v and w, stresses, and couple
stresses í and å yields a system of equations that
relate the jumps of their derivatives with respect to the
spatial coordinates and time:

(4)

Here, a and b are the vector amplitudes for the jumps of
the linear and angular accelerations, n is the unit nor-
mal vector to S, and V is the velocity of the surface S in
the direction n [13]. If mass forces and moments are
continuous, the relations

follow from the equations of motion (1). Differentiating
constitutive equations (2) and using Eqs. (4), we
express these relations only in terms of the vector
amplitudes a and b:

These relations can be written in a more compact form
using the matrix notation

(5)

where x = (a', b') ∈ R6, a' = a · HT, b' = b · HT, A and
B are the matrices with tensor elements

and the notation G{n} ≡ Gklmnnknmil ⊗ in is introduced
for any fourth-rank tensor G and any vector n that are
represented in terms of their decompositions in the
arbitrary Cartesian basis ik , k = 1, 2, 3.

Thus, the problem of acceleration wave propagation
in the micropolar medium has been reduced to the spec-
tral problem given by Eq. (5). Owing to the existence of
the potential-energy function W, AA(n) is symmetric.

vFb 0, vgradHb 0, vvb 0, vwb 0====

vv̇b Va, vgradvb– n a, vẇb⊗ Vb,–= = =

vgradwb n b,⊗=

V vdivTb n vṪb, V vdivMb⋅– n vṀb.⋅–= =

vdivTb ρvv̇b, vdivMb ργvẇb= =

n W ,EE ·· H a⋅ n⊗( ) n W ,EK ·· H b⋅ n⊗( )⋅+⋅

=  ρV2a HT ,⋅

n W ,KE ·· H a⋅ n⊗( ) n W ,KK ·· H b⋅ n⊗( )⋅+⋅

=  ργV2b HT .⋅

AAAA n( ) x⋅ ρV2
BB x,⋅=

AA n( ) W ,EE n{ } W ,EK n{ }
W ,KE n{ } W ,KK n{ }

, BBBB ρV2 I 0
0 γI

≡≡
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This property enables one to formulate an analogue of
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the Fresnel–Hadamard–Duhem theorem for micropolar
media.

Theorem 1. The squares of the velocities of second-
order singular surfaces (acceleration waves) in the
micropolar elastic medium are real for arbitrary prop-
agation directions specified by the vector n.

The positive definiteness of AA(n), which is both nec-
essary and sufficient for the wave velocity V to be real,
i.e., the inequality

(6)

is an additional constraint imposed on constitutive rela-
tionships (2).

Following [7], one can prove Theorem 2.
Theorem 2. Condition (6) for the existence of the

acceleration wave in the micropolar elastic medium is
equivalent the condition of strong ellipticity of the equi-
librium equation.

Weak inequality (6) is an analogue of the Had-
amard inequality from the spatial theory of elasticity
[12, 13]. As in the case of simple materials, a break in
inequality (6) means the possibility of existing nons-
mooth solutions of the equilibrium equations.

As an example, we consider the equation of state of
a physically linear micropolar medium [7]

(7)

Here,

where αk and βk , k = 1, 2, 3, are constants. In this case,
inequality (6) is equivalent to the inequalities [7]

Under these conditions, the solutions of Eq. (5) are
given by the expressions

(8)

(9)

where e1, e2, e4 , and e5 are arbitrary unit vectors lying

x A n( ) x 0,>⋅ ⋅

n RR
3∈∀    n 0 , x ∀ RR 

6
 , x 0 , ≠∈≠,

W W1 E( ) W2 K( ).+=

W1 E( ) α1tr E I–( ) E I–( )T⋅( )=

+ α2tr E I–( )2( ) α3tr2 E I–( ),+

W2 K( ) β1tr K KT⋅( ) β2tr K2( ) β3tr2 K( ),+ +=

α1 0, α1 α2 α3 0, β1 0, β1 β2 β3 0.>+ +>>+ +>

V1 2,
α1

ρ
-----, x1 2, e1 2, 0,( ),= =

V3
α1 α2 α3+ +

ρ
------------------------------, x3 0 n,( ),= =

V4 5,
β1

γρ
-----, x4 5, e4 5, 0,( ),= =

V6
β1 β2 β3+ +

γρ
----------------------------, x6 0 n,( ),= =
in the plane tangent to S (e1 · e2 = e1 · n = e2 · n = 0,
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e4 · e5 = e4 · n = e5 · n = 0). Solutions (8) describe the
transverse and longitudinal acceleration waves, and
solutions (9), the transverse and longitudinal microro-
tation acceleration waves. The velocities obtained for
the acceleration waves given by Eqs. (8) and (9) coin-
cide with the limiting phase velocities of plane har-
monic waves propagating in the linearly elastic
micropolar medium [2, 9] when the wave frequency
tends to infinity.
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