
HAL Id: hal-00827442
https://hal.science/hal-00827442

Submitted on 31 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Logic Sharing Synthesis Tool for Mutually Exclusive
Applications

Alp Kilic, Zied Marrakchi, Matthieu Tuna, Habib Mehrez

To cite this version:
Alp Kilic, Zied Marrakchi, Matthieu Tuna, Habib Mehrez. A Logic Sharing Synthesis Tool
for Mutually Exclusive Applications. Design & Technology of Integrated Systems in Nanoscale
Era (DTIS), 2012 7th International Conference on, May 2012, Gammarth, Tunisia. pp.1 - 6,
�10.1109/DTIS.2012.6232984�. �hal-00827442�

https://hal.science/hal-00827442
https://hal.archives-ouvertes.fr


A Logic Sharing Synthesis Tool for Mutually
Exclusive Applications

Alp Kilic, Zied Marrakchi1, Matthieu Tuna1 and Habib Mehrez

University of Pierre and Marie Curie, Paris VI, LIP6 Laboratory, France
1 Flexras Technologies, France

{alp.kilic, habib.mehrez}@lip6.fr, {zied.marrakchi, matthieu.tuna}@flexras.com

Abstract— Multiple Context ASIC (mASIC) is a circuit group-
ing a set of designs (applications) which operates at mutually
exclusive times. In this paper we propose to take this particularity
into account when we run logic synthesis. The idea is to
maximize logic resources sharing between designs to reduce
the total resulting area. Once used on mASIC for a set of 5
benchmark designs, our synthesizing technique reduces area by
28% compared to the sum of the 5 individual ASIC areas.

I. INTRODUCTION

Today electronic devices contain more and more features
due to emergence of new embedded applications like telecom,
digital television, automative and multimedia applications.
These applications require on one hand hardware architectures
with higher performances, but on the other hand the same
architectures should be as small as possible and meet very
tight power consumption constraints.

The interesting point which comes with feature-rich plat-
forms is that lots of the features cannot be executed at the
same time. Some of the applications are used in mutually
exclusive way. It means they have no common outcomes. For
exemple in mobile phones, we can not listen to the music
while talking on the phone.

These applications can be implemented on three different
hardware platforms:

• CPU: Applications can be implemented in software
and can be executed in one CPU. While the resource
sharing problem is met, these applications are usually
computation-intensive, which prevents them from being
executed by a general-purpose processor.

• FPGA: Moving from one application to another comes
with a reconfiguration of the FPGA by loading the
corresponding bitstream. It means that we can exploit

1This work is partially funded by the ANR project ASTECAS.

efficiently resource sharing since our applications do not
run at the same time. Otherwise, in this case we do not
exploit the fact that we know the limited applications in
advance and that we do not need an unlimited flexibility.
That is why, while the resource sharing is met, an FPGA
cannot compete with a dedicated hardware (ASIC) in
terms of area, performance and power consumption [7].

• ASIC: Usually the preferred way to implement
computation-intensive applications. As we pointed out,
in the context of mutually-exclusive applications there
is a silicon waste. To overcome this problem we tried
to encapsulate (instantiate with a mux at the inputs
and demux at the outputs) under the same top and
connected to the same interface. The obtained circuit is
synthesized and optimized using common tools (Cadence
RTL compiler [4] or Synopsys Design Compiler [13]).
Based on the experimentation shown in figure 8, it turns
out that existing tools are not efficient to recognize the
"mutually exclusive" pattern and do not optimize the area,
based on resource sharing from different applications.
We obtain a circuit with the sum of areas of the sub-
circuits synthesized separately. We even used the same
sub-circuit by instantiating it three times under the same
top but we obtain a circuit with three times the area of
the sub-circuit.

Actually there are no efficient tools that can overcome this
kind of sharing problem and exploit the fact that applications
can be mutually exclusives. Thus, we propose a logic sharing
synthesis tool for mutually exclusive applications. The main
idea is to achieve the best level of optimization in terms of
area. We take the advantage of the possibility of resource
sharing between applications knowing that resources cannot



Application 

1

Application 

N

Encapsulation

top

under the same

ASIC

Synthesizing

ASIC

Synthesizing

ASIC

Synthesizing

AreaT+ ... + AreaNArea1

..........

......

Fig. 1. Multiple-context ASIC synthesizing methods

be used at the same time. The new resulting architecture is
a circuit which can run one application at a time. We call
this new architecture a multi-Application Specific Integrated
Circuit: mASIC.

The reminder of the paper is organized as follows. Section II
decribes two different architectures with similar objectives and
different approaches. In section III we propose our solution
for the problem of the resource sharing and we introduce
the Multi context ASIC concept. Section IV presents various
experimental results using a set of applications. Finally section
V presents the conclusion and future work.

II. PRIOR WORK

There are different trade-offs between FPGAs and ASICs.
They are explored by several research groups in [14] [12]
[6]. FPGA vendors have also solutions to migrate FPGA-
based applications to structured ASIC implementation. Altera
provides Hard-Copy [2] and Xlinix provides EasyPath [15].

There are two different architectures that we are interested
to in this work: configurable ASIC cores (cASIC) [5] and
Application Specific FPGA(ASIF) [10]. Both architectures
are desgined to execute a given set of applications at mutually
exclusive times. One of the major difference between cASIC
and ASIF is in the approach used to optimize their routing
networks. As shown in figure 2, The starting point of cASIC
is ASIC. It is generated using a constructive buttom-up "inser-
tion" approach; flexibility is inserted through the addition of
multiplexers and demultiplexers. On the other hand, an ASIF
is generated using an iterative top-down "removal" technique;
different circuits are mapped onto an FPGA, and flexibility
is removed from the FPGA to support only the given set of
circuits and to reduce its area.

CASICASIF ASICFPGA

+Flexibility −Area

Fig. 2. ASIF and CASIC: Different start points but same objective

cASICs are intended as accelerator in domain-specific
systems-on-a-chip. But they are not designed to replace the
entire ASIC-only chip. cASICs implement only data-path
circuits and thus supports full-word blocks only. Since the set
of circuits supported by a cASIC are limited, cASICs are sig-
nificantly smaller than an FPGA implementation. As hardware
resources are shared between different netlists, cASICs are
2.2x smaller than a standart cell implementation of individual
circuits.

The concept of an ASIF is similar to cASIC. It is an FPGA
with reduced flexibility that can implement a set of application
circuits which will operate at mutually exclusive times. These
circuits are efficiently placed and routed on an FPGA to
minimize total routing switches required by the architecture.
Later all unused routing switches are removed from the FPGA
to generate an ASIF. The disadvantage of ASIF is that it does
not ensure unlimited flexibility although being a configurable
device. The remaining flexibility has area/performance over-
head that can be exploited in very limited cases.

Figure 3 illustrates the ASIF generation concept. When an
FPGA-based product is in the final phase of its development
cycle, and if the set of circuits to be mapped on the FPGA
are known, it can be reduced for all the given set of circuits.
An ASIF can yield considerable area and performance gains
to an FPGA-based product by reducing it to a much smaller
multiplexed circuit. Execution of different application circuits
can be switched by loading their respective bitstream on ASIF.

An ASIF  executes

one circuit at a time

FPGA Architecture 3 bitstreams

ASIF

Application 1

Application 2

Application 3

Generation

ASIF

Fig. 3. An illustration of ASIF generation concept.

The biggest advantage of ASIF is to favor the logical sharing



between netlists. According to [10], ASIF uses efficient
algorithms to place and route the set of given netlists. Efficient
placement tries to place the instances of different netlists
in such a way that minimum routing switches are required
in an FPGA. Consequently, efficient routing increases the
probability to connect the driver and receiver instances of these
netlists by using the same routing wires. Also the efficient wire
sharing favors different netlists to route their nets on an FPGA
with maximum common routing paths and tries to minimize
the total routing switches required in an ASIF. It is one of the
most important process in ASIF generation because the main
idea of ASIF is to remove unused switches after all netlists
are efficiently routed on FPGA. Our work is based on ASIF
and we are taking advantage of the existing resource sharing
thanks to these two algorithms.

III. PROPOSED SOLUTION : MULTI CONTEXT ASIC

We propose to combine multiple strategies to achieve the
best level of mASIC optimization in terms of area. We take
advantage of the possibility of resource sharing as done in
FPGA and of predefined multiple functions as in ASIC. As
shown in figure 4, the flow is done in three steps: ASIF
Generation to get a circuit placed and routed derived from
a FPGA with reduced flexibility, a customization process to
remove the remaining flexibility and finally ASIC synthesizing
with a commercial tool. Finally, compared to a simple ASIC
synthesis flow (right branch in figure 4), multiple ASIC flow
proposes, in addition, logical sharing to reduce circuit area.

A. ASIF Generation Flow

First, a software flow transforms behavioural descriptions
in Verilog or VHDL to their respective netlists, for mapping
to the heterogeneous FPGA. These HDL descriptions are
first synthesized with Cadence RTL Compiler to obtain a
structural netlist composed of standard cell library instances
and Hard Block (HB) instances in verilog. "flxVeriBlif" tool
converts verilog netlists with hard blocks to BLIF [1] file
format. Later "fixblif" removes all instances of hard blocks
and passes the remaining netlists to SIS [11] for technology
mapping (synthesis into Look-Up Table format). Dependence
between HBs and the remaining netlist is preserved by adding
temporary input and output pins to the main netlist. After
SIS, and later after packing and conversion of the netlist
to NET format through T-VPACK [8], "fixnet" adds all the
removed HBs into netlist. It also removes all previously

Application 

1

Application 

N

Classical

ASIC

Optimization

Proposed

ASIC

Optimization

ASIF

Generation :

Logic Sharing

Customization

ASIC

Synthesizing

ASIC

Synthesizing

Encapsulation

under the same

top

..........

mASIC

ASIF

&

Sharing
Logical

Logical
Optimization Optimization

Logical

Fig. 4. Multiple context ASIC synthesizing method.

added temporary inputs and outputs. The generated netlits
(in .NET format) include CLBs, HBs and IO (Inputs and
Outputs) instances which are interconnected through signals
called NETS. Then these netlists are placed and routed on
the target FPGA architecture defined with a enough logic
blocks number to handle the given set of netlists. The
placer uses the simulated annealing algortihm [3] to place
CLBs/HBs/IO instances of a netlist on their respective blocks
of the FPGA. The router uses a pathfinder algorithm [9] to
route the netlits using FPGA routing resources. As explained
in section II, ASIF uses a modified version of these algorithms
: Efficient Placement and Efficient Wire Sharing (described in
[10]) to favor the logical sharing between netlists. The ASIF
generation flow is shown in figure 5

Finally, the ASIF netlist is generated by removing all
routing resources of the FPGA architecture that remain unused
by the netlists. Once generated, the ASIF netlist is customized
by removing the remaining flexibility to obtain a smaller
circuit.



ASIF Generation

Netlist1 Netlist2

flxVeriBlif

.blif
(gates and HBs)

fixblif

.blif
(gates)

sis

.blif
(luts)

t−vpack

.net
(luts)

fixnet

.net
(luts and HBs)

flxVeriBlif

.blif
(gates and HBs)

fixblif

.blif
(gates)

sis

.blif
(luts)

t−vpack

.net
(luts)

fixnet

.net
(luts and HBs)

RTL Compiler

Application1

(RTL Level) (RTL Level)

Application2

RTL Compiler

NetlistN

flxVeriBlif

.blif
(gates and HBs)

fixblif

.blif
(gates)

sis

.blif
(luts)

t−vpack

.net
(luts)

fixnet

.net
(luts and HBs)

(RTL Level)

ApplicationN

RTL Compiler

ASIF
Netlist

...

...

Fig. 5. ASIF generation flow.

B. Customazation method

In a traditional FPGA architecture, logic blocks resources
occupy only 10 to 20% area of an FPGA. The remaining 80 to
90% of FPGA area is occupied by routing resources. Since an
ASIF is generated by removing unused routing resources of
an FPGA, the logic area percentage in an ASIF is higher than
an FPGA. It means that the optimization of logic resources
may bring major area advantages.

ASIF uses SRAM cells, like most FPGAs, to control pass
transistors on routing connections, multiplexers and LUTs on
CLBs. It contains limited flexibility. But this flexibility cannot
really be exploited since configuration tools cannot guaranty
it. Different set of application netlists, mapped on an ASIF,
program the SRAM bits of a LUT differently. In this step

we propose to replace all the remaining memory points to
optimize both logic and routing resources. In figure 6 we show
how to transform an SRAM into a multiplexer for 3 different
netlists. As we know the bitsreams of all netlists in advance,
we can replace every memory points by a multiplexer that
takes hard coded bitstream as an input. Then we can choose
which netlist to use by varying the "select_netlist" signal.

Customization

for 3 given netlists

SRAM

2

select_netlist

1

1

0

c_netlist2 = 1
c_netlist1 = 0

c_netlist3 = 1

Fig. 6. Transformation of an SRAM into a multiplexer.

After the customization stage, using a common commercial
synthesis tool like Cadence RTL Compiler or Synopsys Design
Compiler, we map the mASIC on a given logic gate library.
Through this process, these commercial tools can perform
logic optimizations on multiplexors inserted in the customiza-
tion stage. The main goal is to help the ASIC Synthesis tool
to get the full advantage of its optimizations by shaping the
input circuit.

In figure 7 we show an exmaple of a circuit containing
3 sub-circuits. In 7(a) we have three vectors of different
bitstreams mapped on 4 SRAM cells of a LUT-2. Each vector
corresponds to a netlist. As it can be seen in 7(b), we replace
memory points with multiplexers with constants as inputs
and controlled by an external input (cmd[0:1]) depending on
the circuit to run. Those inputs are carried into the circuit
interface and are used to select the application to run. Later
the synthesis tool optimizes these multiplexers and delivers a
smaller circuit by propagating constants (figure 7(c)).

IV. RESULTS AND ANALYSIS

#CLB #ADD #MULT
Netlist-1 2087 24 25
Netlist-2 921 12 13
Netlist-3 612 7 8
Netlist-4 145 3 4
Netlist-5 1342 18 0
Maximum 2087 24 25

TABLE I
5 NETLISTS USED IN EXPERIMENTS



netlist 1 netlist 2 netlist 3

1

0

0

1

1

0 1

1

0

10 1

(a) 4 SRAM cells with three different netlists.

L

U

T

1
1
1

0

1

0
1

1

0

0
1
0

2

cmd[0:1]
lut inputs

(b) A 2-input LUT after cus-
tomization.

L

U

T

2

lut inputs

’1’

cmd[0]

cmd[1]

cmd[1]
cmd[0]

(c) A 2-input LUT after synthesis.

Fig. 7. An mASIC optimization exemple for three netlists

A set of 5 circuits using CLBs (LUT-3), adders and multi-
pliers are presented in Table I. These circuits are synthesized
using the RTL Compiler [4]. To map netlists onto an ASIF,
the synthesized netlists are handled through the software flow
(described in Section 3.A) and converted into .NET format.
The ASIF generation techniques are applied on these netlists
to obtain an ASIF. Later ASIF is customized for given netlists
in order to get the final netlist design "mASIC". Finally,
ASIF and mASIC is compared with an ASIC obtained by the
encapsulation of these 5 circuits under the same top (figure
8).

Netlist−1

Netlist−2

Netlist−3

Netlist−4

Netlist−5

INPUTS OUTPUTS

top_level

Fig. 8. Classical ASIC synthesis method.

Figure 9 compares ASIF, mASIC and ASIC with various
number of applications. The X-axis presents the number of
netlists; where 1 means only Netlist-1 is used; 2 means Netlist-

1 and Netlist-2 are used, and so on. The Y-axis presents the
total area in µm2. In a classical ASIC sythesis method, RTL
compiler cannot share resources between netlists. So the total
resources in ASIC is equal to the sum of the resources of the
sub-circuits. In ASIF, with the efficient placement and efficient
wire sharing algorithms, some of the resources are shared.
However it becomes bigger than an ASIC because the idea of
being flexible is introduced by CLBs and configurable routing
blocks. Later, it is customized to obtain an mASIC which
is %96 smaller than ASIF. mASIC is also 28% smaller than
ASIC in terms of total area thanks to both the customization
and resource sharing.

Fig. 9. Area comparaison between ASIC,mASIC and ASIF

V. CONCLUSION AND FUTURE WORK

This paper has presented a new concept about mutli context
ASIC (mASIC). An mASIC is an attempt to explore a new
technique for asic synthesizing. It is a top-down approach
starting from an FPGA to reach an ASIC which contains
multiple netlists. First, it takes advantage of the possibility
of resource sharing as done in FPGA by passing the netlists
through the FPGA flow with efficient resource sharing algo-
rithms. Then all the unused blocks of the FPGA are removed
to obtain an ASIF. Later, the bitstreams of each netlist are hard
coded by adding multiplexers and constants instead. At the
end we obtain an mASIC that can execute the given netlists
exclusively. Results illustrate that an mASIC for 5 netlists
is %96 smaller than ASIF and %28 smaller than ASIC. In
comparison to ASIF, mASIC achieves area advantage through
the elimination of the flexibility since the multiple applications
are known in advance. When compared to ASIC, mASIC can



share resources between netlists and remains smaller than it
in terms of total circuit area.

There can be different directions for future work on mA-
SICs. Firstly, current mASIC generation flow needs to be
upgraded to support automatic validation in each step. This
will allow to have other benchmarks more easily. Secondly,
the bit values in LUTs can be reordered to get more similarities
in input netlists. This will increase the number of constants
and decrease the total area.

REFERENCES

[1] Berkeley logic interchange format (blif), 1996.
[2] Altera. http://www.altera.com/.
[3] Vaughn Betz, Jonathan Rose, and Alexander Marquardt, editors. Ar-

chitecture and CAD for Deep-Submicron FPGAs. Kluwer Academic
Publishers, Norwell, MA, USA, 1999.

[4] Cadence. http://www.cadence.com/.
[5] Katherine Compton and Scott Hauck. Automatic design of area-efficient

configurable asic cores. IEEE Trans. Comput., 56:662–672, May 2007.
[6] easic. http://www.easic.com/.
[7] Ian Kuon and Jonathan Rose. Measuring the gap between fpgas and

asics. In Proceedings of the 2006 ACM/SIGDA 14th international
symposium on Field programmable gate arrays, FPGA ’06, pages 21–
30, New York, NY, USA, 2006. ACM.

[8] Alexander (Sandy) Marquardt, Vaughn Betz, and Jonathan Rose. Using
cluster-based logic blocks and timing-driven packing to improve fpga
speed and density. In Proceedings of the 1999 ACM/SIGDA seventh
international symposium on Field programmable gate arrays, FPGA
’99, pages 37–46, New York, NY, USA, 1999. ACM.

[9] Larry Mcmurchie and Carl Ebeling. Pathfinder: A negotiation-based
performance-driven router for fpgas. pages 111–117, 1995.

[10] Husain Parvez, Zied Marrakchi, Alp Kilic, and Habib Mehrez.
Application-specific fpga using heterogeneous logic blocks. ACM Trans.
Reconfigurable Technol. Syst., 4:24:1–24:14, August 2011.

[11] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P.R. Stephan, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli. Sis: A system for sequential circuit synthesis.
Technical Report UCB/ERL M92/41, EECS Department, University of
California, Berkeley, 1992.

[12] Deepak D. Sherlekar. Design considerations for regular fabrics. In
Proceedings of the 2004 international symposium on Physical design,
ISPD ’04, pages 97–102, New York, NY, USA, 2004. ACM.

[13] Synposys. http://www.synposys.com/.
[14] Kun-Cheng Wu and Yu-Wen Tsai. Structured asic, evolution or revolu-

tion? In Proceedings of the 2004 international symposium on Physical
design, ISPD ’04, pages 103–106, New York, NY, USA, 2004. ACM.

[15] Xilinx. http://www.xilinx.com/.


