Alp Kilic

Zied Marrakchi

Matthieu Tuna
email: matthieu.tuna@flexras.com

Habib Mehrez
email: habib.mehrez@lip6.fr

A Logic Sharing Synthesis Tool for Mutually Exclusive Applications

Multiple Context ASIC (mASIC) is a circuit grouping a set of designs (applications) which operates at mutually exclusive times. In this paper we propose to take this particularity into account when we run logic synthesis. The idea is to maximize logic resources sharing between designs to reduce the total resulting area. Once used on mASIC for a set of 5 benchmark designs, our synthesizing technique reduces area by 28% compared to the sum of the 5 individual ASIC areas.

I. INTRODUCTION

Today electronic devices contain more and more features due to emergence of new embedded applications like telecom, digital television, automative and multimedia applications.

These applications require on one hand hardware architectures with higher performances, but on the other hand the same architectures should be as small as possible and meet very tight power consumption constraints.

The interesting point which comes with feature-rich platforms is that lots of the features cannot be executed at the same time. Some of the applications are used in mutually exclusive way. It means they have no common outcomes. For exemple in mobile phones, we can not listen to the music while talking on the phone.

These applications can be implemented on three different hardware platforms:

• CPU: Applications can be implemented in software and can be executed in one CPU. While the resource sharing problem is met, these applications are usually computation-intensive, which prevents them from being executed by a general-purpose processor.

• FPGA: Moving from one application to another comes with a reconfiguration of the FPGA by loading the corresponding bitstream. It means that we can exploit 1 This work is partially funded by the ANR project ASTECAS.

efficiently resource sharing since our applications do not run at the same time. Otherwise, in this case we do not exploit the fact that we know the limited applications in advance and that we do not need an unlimited flexibility.

That is why, while the resource sharing is met, an FPGA cannot compete with a dedicated hardware (ASIC) in terms of area, performance and power consumption [START_REF] Kuon | Measuring the gap between fpgas and asics[END_REF].

• ASIC: Usually the preferred way to implement computation-intensive applications. As we pointed out, in the context of mutually-exclusive applications there is a silicon waste. To overcome this problem we tried to encapsulate (instantiate with a mux at the inputs and demux at the outputs) under the same top and connected to the same interface. The obtained circuit is synthesized and optimized using common tools (Cadence RTL compiler [4] or Synopsys Design Compiler [START_REF]Synposys[END_REF]).

Based on the experimentation shown in figure 8, it turns out that existing tools are not efficient to recognize the "mutually exclusive" pattern and do not optimize the area, based on resource sharing from different applications.

We obtain a circuit with the sum of areas of the subcircuits synthesized separately. We even used the same sub-circuit by instantiating it three times under the same top but we obtain a circuit with three times the area of the sub-circuit.

Actually there are no efficient tools that can overcome this kind of sharing problem and exploit the fact that applications can be mutually exclusives. Thus, we propose a logic sharing synthesis tool for mutually exclusive applications. The main idea is to achieve the best level of optimization in terms of area. We take the advantage of the possibility of resource sharing between applications knowing that resources cannot They are explored by several research groups in [START_REF] Wu | Structured asic, evolution or revolution?[END_REF] [START_REF] Deepak | Design considerations for regular fabrics[END_REF] [6]. FPGA vendors have also solutions to migrate FPGAbased applications to structured ASIC implementation. Altera provides Hard-Copy [START_REF]Altera[END_REF] and Xlinix provides EasyPath [15].

There are two different architectures that we are interested to in this work: configurable ASIC cores (cASIC) [START_REF] Compton | Automatic design of area-efficient configurable asic cores[END_REF] and Application Specific FPGA(ASIF) [START_REF] Parvez | Application-specific fpga using heterogeneous logic blocks[END_REF]. Both architectures are desgined to execute a given set of applications at mutually exclusive times. One of the major difference between cASIC and ASIF is in the approach used to optimize their routing networks. As shown in figure 2, The starting point of cASIC is ASIC. It is generated using a constructive buttom-up "insertion" approach; flexibility is inserted through the addition of multiplexers and demultiplexers. On the other hand, an ASIF is generated using an iterative top-down "removal" technique; different circuits are mapped onto an FPGA, and flexibility is removed from the FPGA to support only the given set of circuits and to reduce its area. The concept of an ASIF is similar to cASIC. It is an FPGA with reduced flexibility that can implement a set of application circuits which will operate at mutually exclusive times. These circuits are efficiently placed and routed on an FPGA to minimize total routing switches required by the architecture.

Later all unused routing switches are removed from the FPGA to generate an ASIF. The disadvantage of ASIF is that it does not ensure unlimited flexibility although being a configurable device. The remaining flexibility has area/performance overhead that can be exploited in very limited cases.

Figure 3 illustrates the ASIF generation concept. When an FPGA-based product is in the final phase of its development cycle, and if the set of circuits to be mapped on the FPGA are known, it can be reduced for all the given set of circuits.

An ASIF can yield considerable area and performance gains to an FPGA-based product by reducing it to a much smaller multiplexed circuit. Execution of different application circuits can be switched by loading their respective bitstream on ASIF. CLBs/HBs/IO instances of a netlist on their respective blocks of the FPGA. The router uses a pathfinder algorithm [START_REF] Mcmurchie | Pathfinder: A negotiation-based performance-driven router for fpgas[END_REF] to route the netlits using FPGA routing resources. As explained in section II, ASIF uses a modified version of these algorithms : Efficient Placement and Efficient Wire Sharing (described in [START_REF] Parvez | Application-specific fpga using heterogeneous logic blocks[END_REF]) to favor the logical sharing between netlists. The ASIF generation flow is shown in figure 5 Finally, the ASIF netlist is generated by removing all routing resources of the FPGA architecture that remain unused by the netlists. Once generated, the ASIF netlist is customized by removing the remaining flexibility to obtain a smaller circuit. cmd [START_REF]Berkeley logic interchange format[END_REF] cmd [START_REF]Berkeley logic interchange format[END_REF] cmd[0]

(c) A 2-input LUT after synthesis. The ASIF generation techniques are applied on these netlists to obtain an ASIF. Later ASIF is customized for given netlists in order to get the final netlist design "mASIC". Finally, ASIF and mASIC is compared with an ASIC obtained by the encapsulation of these 5 circuits under the same top (figure 8). There can be different directions for future work on mA-SICs. Firstly, current mASIC generation flow needs to be upgraded to support automatic validation in each step. This will allow to have other benchmarks more easily. Secondly, the bit values in LUTs can be reordered to get more similarities in input netlists. This will increase the number of constants and decrease the total area.

Fig. 1 .

 1 Fig. 1. Multiple-context ASIC synthesizing methods

Fig. 2 .

 2 Fig. 2. ASIF and CASIC: Different start points but same objective

Fig. 3 .Fig. 4 .

 34 Fig. 3. An illustration of ASIF generation concept.

Fig. 5 .Fig. 6 .

 56 Fig. 5. ASIF generation flow.

Fig. 7 .

 7 Fig. 7. An mASIC optimization exemple for three netlists

Fig. 8 .

 8 Fig. 8. Classical ASIC synthesis method.

Figure 9

 9 Figure 9 compares ASIF, mASIC and ASIC with various number of applications. The X-axis presents the number of netlists; where 1 means only Netlist-1 is used; 2 means Netlist-

Fig. 9 .

 9 Fig. 9. Area comparaison between ASIC,mASIC and ASIF

TABLE I 5

 I NETLISTS USED IN EXPERIMENTS