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F-77454, Marne-la-Vallée, France
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Abstract. We prove upper bounds for the first eigenvalue of the Laplacian of

hypersurfaces of Euclidean space involving anisotropic mean curvatures. Then,
we study the equality case and its stability.

1. Introduction

Let (Mn, g) be a n-dimensional (n > 2) compact, connected, oriented
manifold without boundary, isometrically immersed by X into the (n+ 1)-
dimensional Euclidean space Rn+1. The spectrum of Laplacian of (M, g) is
a increasing sequence of real numbers

0 = λ0(M) < λ1(M) 6 λ2(M) 6 · · · 6 λk(M) 6 · · · −→ +∞.
The eigenvalue 0 (corresponding to constant functions) is simple and λ1(M)
is the first positive eigenvalue. In [15], Reilly proved the following well-
known upper bound for λ1(M)

(1) λ1(M) 6
n

V(M)

∫
M
H2dvg,

where H is the mean curvature of the immersion. He also proved an anal-
ogous inequality involving the higher order mean curvatures. Namely, for
r ∈ {1, · · · , n}

(2) λ1(M)

(∫
M
Hr−1dvg

)2

6 V(M)

∫
M
H2
r dvg,

where Hk is the k-th mean curvature, defined by the k-th symmetric polyno-
mial of the principal curvatures. Moreover, Reilly studied the equality cases
and proved that equality in (1) as in (2) is attained if and only if X(M) is
a geodesic sphere.
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On the other hand, over the past years, many authors considered geomet-
ric problems involving anisotropic mean curvature and higher order mean
curvatures (see [4, 5, 10, 13] for instance). The setting is the following.
Let F : Sn −→ R+ be a smooth function satisfying the following convexity
assumption

(3) AF = (∇dF + F Id |TxSn)x > 0,

for all x ∈ Sn, where ∇dF is the Hessian of F . Here, > 0 mean positive
definite in the sense of quadratic forms. Now, we consider the following map

φ : Sn −→ Rn+1

x 7−→ F (x)x+ (grad|SnF )x

The image WF = φ(Sn) is called the Wulff shape of F and is a smooth
hypersurface of Rn+1. Moreover, from the so-called convexity condition (3),
WF is convex. Note that if F is a positive constant c, the Wulff shape is
nothing else but the sphere of radius c.

Now, let (Mn, g) be a n-dimensional compact, connected, oriented mani-
fold without boundary, isometrically immersed by X into Rn+1. We denote
by ν a normal unit vector field globally defined on M , that is, we have
ν : M −→ Sn. We set SF = AF ◦ dν, where AF is defined by (3). The
operator SF is called the F -Weingarten operator and its eigenvalues are the
anisotropic principal curvature that we will denote κ1, κ2, · · · , κn. Finally,
for r ∈ {1, · · · , n}, the r-th anisotropic mean curvature is defined by

HF
r =

1

Crn

∑
i1<···<ir

κi1 · · ·κir .

We also set HF
0 = 1 for convenience. Note that if F = 1 then this is the

definition of the classical r-th mean curvature.
During the past years, lots of classical results have by been generalized

to the anisotropic case. For instance, in [6], He, Li, Ma and Ge proved an
anisotropic version of the well-known Alexandrov theorem [1, 12]. Namely,
they proved that a compact manifold without boundary Mn embedded into
Rn+1 with constant anisotropic r-th mean curvature is the Wulff shape.
Many other characterizations of the Wulff shape have been proved (see [4,
5, 13] for instance.

The aim of the present paper is to give an analogue to Reilly’s Inequalities
(1) and (2) in this anisotropic setting. We prove the following anisotropic
version of these upper bounds:

Theorem 1. Let (Mn, g) be a n-dimensional (n > 2) compact, connected,
oriented manifold without boundary, isometrically immersed by X into Rn+1,
r ∈ {1, · · · , n}, and F : Sn −→ R+ a function satisfying (3). Then

λ1(M)

(∫
M
F (ν)HF

r−1dvg

)2

6 nV(M)

∫
M

(HF
r )2dvg.
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Moreover, equality occurs if and only if X(M) is a geodesic hypersphere and
F is constant.

Remark 1. One could expect that the equlity case was attained by the Wulff
shape but, as we will see in the proof, the use of coordinates as test functions
forces the limitting manifolds to be geodesic spheres. Nevertheless one could
expect to have a spectral characterization of the Wulff shape by studying an
other second order operator naturally associated with the functional J where
J(X) =

∫
M F (ν)dvg (see [14] for instance). But this is not the subject of

the present paper.

Since we know that if equality holds, then X(M) is a geodesic hyper-
sphere, a natural question is to study the stability of this equality case, that
is, if the equality almost holds, is the hypersurface close to a geodesic hy-
persphere? And what do we understand by close ? The following theorems,
generalizing results of [2] for r = 1, and [16] for any r, give an answer to
this question.

Theorem 2. Let (Mn, g) be a n-dimensional (n > 2) compact, connected,
oriented Riemannian manifold without boundary isometrically immersed by
X into Rn+1 and F : Sn −→ R+ a function satisfying (3). Let r ∈ {1, · · · , n}
and assume that HF

r > 0 if r > 1. Then, for any p > 2 and for any ε > 0,
there exists a constant Cε depending on ε, n, r, ||F ||∞, ||H||∞, ||HF ||∞,
||HF

r ||2p and V(M) such that

(PCε) λ1(M)

(∫
M
F (ν)HF

r−1

)2

− nV(M)2||HF
r ||22p > −CεV(M)2

is satisfied, then dH

(
X(M), S(p0,

√
n
λ1

)
)
6 ε.

Remark 2. We will see in the proof that Cε −→ 0 when ||H||∞ −→ ∞ or
ε −→ 0.

Theorem 3. Let (Mn, g) be a n-dimensional (n > 2) compact, connected,
oriented Riemannian manifold without boundary isometrically immersed by
X into Rn+1 and p0 the center of mass of M . Let F : Sn −→ R+ a function
satisfying (3) and r ∈ {1, · · · , n} and assume that Hr > 0 if r > 1. Then
for any p > 2, there exists a constant K depending on n, r, ||F ||∞, ||HF ||∞,
||B||∞, ||HF

r ||2p and V(M) such that if the pinching condition

(PK) λ1(M)

(∫
M
F (ν)HF

r−1

)2

− nV(M)2||HF
r ||22p > −KV(M)2

is satisfied, then M is diffeomorphic to Sn.
More precisely, there exists a diffeomorphism G from M into the sphere

Sn
(√

n
λ1(M)

)
of radius

√
n

λ1(M) which is a quasi-isometry. Namely, for

any θ ∈]0, 1[, there exists a constant Kθ depending only on θ, n, r, ||F ||∞,
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||HF ||∞, ||B||∞, ||HF
r ||2p and V(M) so that the pinching condition with Kθ

implies ∣∣|dGx(u)|2 − 1
∣∣ ≤ θ,

for any unitary vector u ∈ TxM .

Remark 3. We use the followimg convention for the Lp-norms. For any
function continuous f on M ,

||F ||p =

(∫
M |f |

pdvg
)1/p

V(M)1/p
.

Remark 4. As, we will see in the proof (see Lemma 10) the dependence on
||B||∞ can be replaced by a dependence weaker dependence, namely, on q,
||H||∞ and ||B||q.

2. Preliminaries

In this section, we will give some basic recalls about anisotropic higher
order mean curvatures.

Let (Mn, g) be a compact, connected, oriented Riemannian manifold with-
out boundary isometrically immersed into Rn+1 by X and denote by ν a
normal unit vector field. Let p0 ∈ Rn+1. We denote by r(x) = d(p0, x) the
geodesic distance between p0 to x in Rn+1. We denote by ∇ (resp. ∇) the
gradient associated with (M, g) (resp. Rn+1).

Then, up to a possible translation, X = r∇r is the position vector field
and XT = X− < X, ν > ν its projection on the tangent bundle of X(M).
Obviously, we have XT = r∇r.

The second fundamental form B of the immersion is defined by

B(X,Y ) =
〈
∇Xν, Y

〉
,

where < ·, · > and ∇ are respectively the Riemannian metric and the Rie-
mannian connection of Rn+1. We also denote by S the Weingarten operator,
which is the associated (1, 1)-tensor. The mean curvature of the immersion
is given by

H =
1

n
tr (B).

Let SF = AF ◦S, where AF = ∇dF+F Id |TxSn . The operator SF is called
the F -Weingarten operator and its eigenvalues κ1, · · · , κn are the anisotropic
principal curvatures Now let us recall the definition of the anisotropic high
order mean curvatureHF

r . First, we consider an orthonormal frame {e1, · · · , en}
of TxM . For all k ∈ {1, · · · , n}, the r-th anisotropic mean curvature of the
immersion is

HF
r =

(
n
r

)−1 ∑
1 6 i1, · · · , ir 6 n
1 6 j1, · · · , jr 6 n

ε

(
i1 · · · ir
j1 · · · jr

)
SFi1j1 · · ·S

F
irjr ,
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where the SFij are the coefficients of the F -Weingarten operator. The symbols

ε

(
i1 · · · ir
j1 · · · jr

)
are the usual permutation symbols which are zero if the sets

{i1, · · · , ir} and {j1, · · · , jr} are different or if there exist distinct p and

q with ip = iq. For all other cases, ε

(
i1 · · · ir
j1 · · · jr

)
is the signature of the

permutation

(
i1 · · · ir
j1 · · · jr

)
. By convention, we set HF

0 = 1 et HF
n+1 = 0.

For r ∈ {1, · · · , n}, the symmetric (1, 1)-tensor associated to HF
r is

TFr =
1

r!

∑
1 6 i, i1, · · · , ir 6 n
1 6 j, j1, · · · , jr 6 n

ε

(
i1 · · · ir
j1 · · · jr

)
SFi1j1 · · ·S

F
irjre

∗
i ⊗ e∗j .

This tensor is divergence free, symmetric (1, 1)-tensor (see [4] for a proof).
For any symmetric (1, 1)-tensor, we define the following function

(4) HT (x) =

n∑
i=1

< SFx ei, T ei >,

where {e1, . . . , en} is an orthonormal frame of TxM . Then, we have the
following relations

Lemma 1. [[4]] For r ∈ {1, · · · , n}, we have:

(1) tr (TFr ) = m(r)HF
r ,

(2) HTFr
= m(r)HF

r+1,

where m(r) = (n− r)
(
n
r

)
and HTr is given by (4).

We give these integral forumlas proved by He and Li in [4] and which
generalized the classical Hsiung-Minkowski formula [9]

(5)

∫
M

(
F (ν)HF

r−1 +HF
r < X, ν >

)
dvg = 0,

for any r ∈ {1 · · · , n} with the convention that HF
0 = 1. These powerful

formulas play a crucial role in all the rigidity results involving anisotropic
r-th mean curvatures (see [4, 5, 13] for instance) and we will also make an
important use of them in this work.

An other classical but important fact about the anisotropic r-th mean
curvatures is the following fact. If for r ∈ {1 · · · , n}, HF

r is positive every-
where, then for each k ∈ {1 · · · , r − 1}, TFk−1 is postive definite and HF

k is
also a positive function. Moreover, we have

(6) (HF
k )

1
k ≤ (HF

k−1)
1

k−1 ≤ · · · ≤ (HF
2 )

1
2 ≤ HF

1 .

This can also be found in [4].
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3. Upper bounds for the first eigenvalue of the Laplacian

Now, we have all the ingredients to prove Theorem 1.

Proof of Theorem 1. First, if necessary, we make a translation so that
X(M) is centered at the origin of Rn+1, that is

∫
M Xidvg = 0 for all

i ∈ {1, · · · , n + 1}, where Xi are the functions defined by X =
∑n+1

i=1 Xi∂i,
where {∂1, · · · , ∂n+1} is the canonical frame of Rn+1. In other words, the
functions Xi are the coordinates functions and can be used as test functions
in the variational characterization of λ1(M). So for any i ∈ {1, · · · , n+ 1},
we have

λ1(M)

∫
M

(Xi)2dvg 6
∫
M
|dXi|2dvg,

Form this and using (5) and Cauchy-Schwarz inequality, we get

λ1(M)

(∫
M
F (ν)HF

r−1dvg

)2

6 λ1(M)

(∫
M
HF
r < X, ν > dvg

)2

6 λ1(M)

(∫
M

(HF
r )2dvg

)(∫
M
|X|2dvg

)
6

(∫
M

(HF
r )2dvg

)( n∑
i=1

∫
M
|dXi|2dvg

)

6 nV(M)

∫
M

(HF
r )2dvg.

This concludes the proof of the inequality. Now, if equlity occurs, then the
coordinate functions are eigenfunctions of the Laplacian and by the classical

result of Takahasi [18], X(M) is a geodesic hypersphere
(

of radius
√

n
λ1

)
and in particular, we have that X = −

√
n
λ1
ν. We also have equality in

the Cauchy-Schwarz inequality, which implies that HF
r and < X, ν > are

colinear, that is, HF
r is constant. We conclude by a result of He and Li

([4], Theorem 1.2) that since HF
r is constant and < X, ν > has fixed sign,

then X(M) is the Wulff shape. But X(M) is a geodesic sphere, the only
possibility is that F a positive constant. Precisely, F is the radius of this

sphere, that is,
√

n
λ1

.

Conversly, if X(M) is a geodesic sphere and F is constant, then, the
inequality of Theorem 1 is just the classical Reilly inequality which is an
equality since X(M) is a geodesic sphere. �

Corollary 1. Let (Mn, g) be a n-dimensional (n > 2) compact, connected,
oriented manifold without boundary, isometrically immersed by X into Rn+1,
F : Sn −→ R+ a function satisfying (3) and r ∈ {2, · · · , n}. If HF

r is a
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positive constante, then

λ1(M) 6
nV(M)2(∫
M F (ν)dvg

)2 (HF
r )

2
r .

Moreover, equality occurs if and only if X(M) is a geodesic hypersphere and
F is constant.

Proof: Since HF
r is positive, we have (HF

r )
r−1
r > HF

r−1 and since F is a
positive function, we have∫

M
F (ν)HF

r−1dvg >
∫
M
F (ν)(HF

r )
r−1
r dvg

> (HF
r )

r−1
r

∫
M
F (ν)dvg.

We conclude by using the estimate of Theorem 1, and again, the fact that
HF
r is constant. Equality holds, if and only if, we have equality in Theorem

1, that is, if and only if X(M) is a geodesic hypersphere and F is constant.�

Corollary 2. Let (Mn, g) be a n-dimensional (n > 2) compact, connected,
oriented manifold without boundary, isometrically immersed by X into Rn+1,
F : Sn −→ R+ a function satisfying (3) and r ∈ {2, · · · , n}. If HF

r is a
positive constante, then for any k ∈ {2, · · · , r − 1}

λ1(M) 6
nV(M)2(∫
M F (ν)dvg

)2 inf
M

(HF
k )

2
k .

Moreover, equality occurs if and only if X(M) is a geodesic hypersphere and
F = 1.

Proof: The proof is immediate from Corollary 1. Since HF
r is a positive

constant, we have

λ1(M) 6
nV(M)2(∫
M F (ν)dvg

)2 (HF
r )

2
r

=
nV(M)2(∫
M F (ν)dvg

)2 inf
M

(HF
r )

2
r

6
nV(M)2(∫
M F (ν)dvg

)2 inf
M

(HF
k )

2
k ,

since for k ∈ {2, · · · , r − 1}, we have (HF
r )

1
r 6 (HF

k )
1
k . Equality case is the

same as for Corollary 1, namely if and only if X(M) is a geodesic hyper-
sphere and F is constant. �
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4. Stability of equality case

Now, we will study the stability of the equality case of Theorem 1, and
hence proved Theorem 2 and 3.

4.1. An L2-approach to the problem. First, we will show that the pinch-
ing condition (PC) implies a proximity between X(M) and a geodesic hy-
persphere in an L2-sense. We have this first lemma.

Lemma 2. If the pinching condition (PC) is satisfied for C < n
2 ||H

F
r ||22p,

then

nλ1(M)
(∫
M F (ν)HF

r−1dvg
)4[

CV(M)2 + λ1(M)
(∫
M F (ν)HF

r−1dvg
)2]2 6 ||X||

2
2 6

n

λ1(M)
6 A1,

where A1 is a positive constant depending only on n, r, ||F ||∞, ||HF ||∞ and
||HF

r ||2p.

Proof: If (PC) is satisfied, we have:

λ1(M)

(∫
M
F (ν)Hr−1dvg

)2

> n||HF
r ||22pV(M)2 − CV(M)2.

If, in addition, we assume that C < n
2 ||H

F
r ||22p, we get

λ1(M)

(∫
M
F (ν)Hr−1dvg

)2

>
n

2
||HF

r ||22pV(M)2,

and so

(7)
n

λ1(M)
6

2
(∫
M F (ν)Hr−1dvg

)2
||HF

r ||22pV(M)2
6

2||HF ||2(r−1)
∞

||HF
r ||22p

||F ||∞.

Moreover, by the variational characterization of λ1(M), we have

λ1(M)

∫
M
|X|2 6

∫
M

(
n+1∑
i=1

|dXi|2
)

= nV(M).

So we have ||X||22 6
n

λ1(M)
, and by (7),

||X||22 6 A1,

where A1 depends on n, r, ||F ||∞, ||HF ||∞ and ||HF
r ||2p. For the left hand

side, we have

λ1(M)

(∫
M
|X|2dvg

)(∫
M
F (ν)HF

r−1dvg

)4

6 n

(∫
M
F (ν)HF

r−1dvg

)4

6 n

(∫
M
HF
r 〈X, ν〉 dvg

)4

6 n

(∫
M

(HF
r )2dvg

)2(∫
M
|X|2dvg

)2

.
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Then, by the Hölder inequality, we deduce

λ1(M)

(∫
M
F (ν)Hr−1dvg

)4

6 n||HF
r ||22p

(∫
M
|X|2dvg

)
,

and with the pinching condition,

||X||22 >
nλ1(M)

(∫
M F (ν)HF

r−1dvg
)4[

CV(M)2 + λ1(M)
(∫
M F (ν)HF

r−1dvg
)2]2 .

�
Then, we have the following lemma for the L2-norm of XT .

Lemma 3. The pinching condition (PC) with C < n
2 ||H

F
r ||22p implies

||XT ||22 6 A2C,

where A2 is a positive constant depending only on n, r, ||F ||∞, ||HF ||∞ and
||HF

r ||2p.

Proof: We saw that

λ1(M)

∫
M
|X|2dvg 6 nV(M),

so by the Hsiung-Minkowski formula (5) and the Cauchy-Schwarz inequality

λ1(M)

∫
M
|X|2dvg

(∫
M
F (ν)HF

r−1dvg

)2

6 nV(M)

(∫
M
F (ν)HF

r−1dvg

)2

6 nV(M)

(∫
M
HF
r 〈X, ν〉 dvg

)2

6 ||HF
r ||22V(M)2

∫
M
〈X, ν〉2 dvg

6 ||HF
r ||22pV(M)2

∫
M
〈X, ν〉2 dvg.

Then we deduce

n||HF
r ||22p||XT ||22V(M) = n||HF

r ||22p
∫
M

(
|X|2 − 〈X, ν〉2

)
dvg

6 n||HF
r ||22p

[∫
M
|X|2 − λ1(M)

V(M)2

(∫
M
F (ν)HF

r−1dvg

)2 ∫
M
|X|2dvg

]

6

[
n||HF

r ||22pV(M)− λ1(M)

V(M)

(∫
M
F (ν)HF

r−1dvg

)2
]
||X||22

6 C||X||22V(M) 6 A1CV(M).

Finally, we get

||XT ||22 6
A1C

n||HF
r ||22p

= A2C,
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where A2 is a positive constant depending only on n, r, ||F ||∞, ||HF ||∞ and
||HF

r ||2p. �

To prove Theorem 2, we need to show that the norm of the position vector

||X|| is close to
√

n
λ1(M) . For this, we will consider the following function

ϕ := |X|
(
|X| −

√
n

λ1(M)

)2

.

We will show that under the pinchng condition, this function is close to 0.
Before getting such an estimate, we introduce the two following vector fields:

Y = nHF
r ν + λ1(M)

(∫
M F (ν)HF

r−1dvg
)
X,

Z =

√
n

λ1

|X|1/2HF
r V(M)(∫

M F (ν)HF
r−1dvg

)ν +
X

|X|1/2
.

Remark 5. Note that if F is a positive constant c and X(M) a sphere of
radius c, then these two vector fields vanish identically on M .

We will prove that under the pinching condition, they are close to zero.
First, we have the following:

Lemma 4. The pinching condition (PC) implies

||Y ||22 6 nC.
Proof: We have

||Y ||22V(M) = n2

∫
M

(HF
r )2dvg +

λ1(M)

V(M)2

(∫
M
F (ν)HF

r−1dvg

)2 ∫
M
|X|2dvg

+2n
λ1(M)

V(M)

(∫
M
F (ν)HF

r−1dvg

)∫
M
HF
r 〈X, ν〉 dvg

6 n2||HF
r ||22pV(M) + n

λ1(M)

V(M)

(∫
M
F (ν)HF

r−1dvg

)2

−2n
λ1(M)

V(M)

(∫
M
F (ν)HF

r−1dvg

)2

6 n

[
n||HF

r ||22pV(M)− λ1(M)

V(M)

(∫
M
F (ν)HF

r−1

)2

dvg

]

6 nCV(M),

where we used the Hsiung-Minkowski formula (5), and the fact that

||X||22 6
n

λ1(M)
.

�
For the vector field Z, we have the following lemma.
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Lemma 5. Assume that p > 2. If the pinching condition (PC) is satisfied,
with C < n

2 ||H
F
r ||22p, then

||Z||22 6 A3C,

where A3 is a positive constant depending only on n, r, ||F ||∞, ||HF ||∞ and
||HF

r ||2p.

Proof: We have

||Z||22V(M) =
nV(M)2

λ1(M)
(∫
M F (ν)HF

r−1dvg
)2 ∫

M
|X|(HF

r )2dvg

+

∫
M
|X|dvg + 2

√
n

λ1(M)V(M)∫
M F (ν)HF

r−1dvg

∫
M
HF
r 〈X, ν〉 dvg

6
n

λ1(M)
(∫
M F (ν)HF

r−1dvg
)2 ∫

M
|X|H2

r dvg +

∫
M
|X|dvg − 2

√
n

λ1(M)
V(M),

where we used (5). Now, by the Cauchy-Schwarz inequality, we get

||Z||22V(M) 6
nV(M)2

λ1(M)
(∫
M F (ν)HF

r−1dvg
)2 (∫

M
(HF

r )4dvg

)1/2(∫
M
|X|2dvg

)1/2

+

(∫
M
|X|2dvg

)1/2

V(M)1/2 − 2

√
n

λ1(M)
V(M).

From Lemma 2, we have ||X||2 6
√

n
λ1(M) , so using this fact and the Hölder

inequality, we get

||Z||22V(M) 6
√

n

λ1(M)

[
n

λ1(M)

||HF
r ||22pV(M)2(∫

M F (ν)HF
r−1dvg

)2 − 1

]
V(M)

6

(
n

λ1(M)

)3/2 V(M)

n
(∫
M F (ν)HF

r−1dvg
)2
[
n||HF

r ||22pV(M)2 − λ1(M)

(∫
M
F (ν)HF

r−1

)2
]

6 A3CV(M),

where A3 depends only on n, r, ||F ||∞, ||HF ||∞ and ||HF
r ||2p. Note that

we have used the fact that n
λ1(M) 6

2||HF ||2(r−1)
∞

||HF
r ||22p

||F ||∞ and the pinching

condition (PC). Finally, note that at this point, we have assumed that p > 2
when we used the Hölder inequality. �

Lemma 6. The pinching condition (PC) with C < n
2 ||H

F
r ||22p implies

||ϕ||2 6 A4||ϕ||3/4∞ C1/4,

where A4 is a positive constant depending only on n, r, ||F ||∞, ||HF ||∞ and
||HF

r ||2p.
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Proof: We have

||ϕ||2 =
1

V(M)1/2

(∫
M
ϕ3/2ϕ1/2dvg

)1/2

6 ||ϕ||3/4∞
∣∣∣∣ϕ1/2

∣∣∣∣1/2
1
.

Moreover,

1

V(M)

∫
M
ϕ1/2dvg =

∣∣∣∣∣
∣∣∣∣∣|X|1/2X −

√
n

λ1(M)

X

|X|1/2

∣∣∣∣∣
∣∣∣∣∣
1

=

∣∣∣∣∣
∣∣∣∣∣− |X|1/2V(M)

λ1(M)
∫
M F (ν)HF

r−1dvg
Y −

√
n

λ1(M)
Z

∣∣∣∣∣
∣∣∣∣∣
1

6

∣∣∣∣∣
∣∣∣∣∣ |X|1/2V(M)

λ1(M)
∫
M F (ν)HF

r−1dvg
Y

∣∣∣∣∣
∣∣∣∣∣
1

+

√
n

λ1(M)
||Z||1.

By the Hölder inequality, we get∣∣∣∣∣
∣∣∣∣∣ |X|1/2V(M)

λ1(M)
∫
M F (ν)HF

r−1dvg
Y

∣∣∣∣∣
∣∣∣∣∣
1

6
1

λ1(M)
∫
M F (ν)HF

r−1dvg
||X||1/22 ||Y ||2

Since we assume that the pinching condition (PC) holds for C < n
2 ||H

F
r ||22p,

we have

λ1(M)

(∫
M
F (ν)Hr−1dvg

)2

>
n

2
||HF

r ||22pV(M)2,

and then ∣∣∣∣∣
∣∣∣∣∣ |X|1/2V(M)

λ1(M)
∫
M F (ν)HF

r−1dvg
Y

∣∣∣∣∣
∣∣∣∣∣
1

6
2||X||1/22 ||Y ||2
n||HF

r ||22p

6
A

1/4
1

n1/2||HF
r ||22p

C1/2,

where we used Lemmas 2 and 4. Finally, from this and Lemma 5, we obtain

||ϕ1/2||1/21 6 A4C
1/4,

where A4 is a positive constant depending only on n, r, ||F ||∞, ||HF ||∞ and
||HF

r ||2p. �

4.2. Proof of Theorem 2. Now, we can use these L2 estimates to get L∞

estimates by iterating processes. First, we have this lemma for the norm of
the position vector X.

Lemma 7. We have ||X||2∞ 6 Γ(n)V(M)||H||n∞||X||22, where Γ(n) is a con-
stant depending only on n.

The proof of the lemma 7 uses a Nirenberg-Moser type of proof (see [2, 3])
based on a Sobolev inequality due to Michael-Simon and Hoffman-Spruck
(see [7], [8] and [11]).
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Proof: Let us put φ = |X|. An easy computation shows that |dφ2α| 6
2αφ2α−1. Hence, using the Sobolev inequality (see [7], [8] and [11])

(8) ‖f‖ n
n−1
6 K(n)V(M)

1
n
(
‖df‖1 + ‖Hf‖1

)
we get for any α > 1 and f = φ2α

‖φ‖2α2αn
n−1

6 K(n)V(M)1/n2α||H||∞‖φ‖∞‖φ‖2α−1
2α−1

Then putting β = n
n−1 and α =

ap+1
2 where ap+1 = (ap + 1)β and a0 = 2 we

have

‖φ‖
ap+1
β

ap+1 6 K(n)V(M)
1
n (ap + 1)||H||∞‖φ‖∞‖φ‖

ap
ap

6 K(n)V(M)
1
nap+1||H||∞‖φ‖∞‖φ‖

ap
ap

Then by iterating we find

‖φ‖
ap+1

βp+1

ap+1 6
(
K(n)V(M)

1
nap+1||H||∞‖φ‖∞

)1/βp

‖φ‖
ap
βp

ap

6

(∏p
i=0 a

1

βi

i+1

)(
K(n)V(M)

1
n ||H||∞‖φ‖∞

)∑p
i=1

1

βi ‖φ‖a0a0

Now since
ap
βp converges to a0 + n = n+ 2 and

∑∞
i=1

1
βi

= 1
1−1/β = n, we get

‖φ‖2∞ 6 Γ(n)V(M)||H||n∞‖φ‖22,

where Γ(n) =
∏∞
i=0 a

1

βi

i+1 is a constant depending only on β, that is, only on
n. �

Now, we can prove in the same way that under the pinching condition,
the L∞-norm of the function ϕ is controlled.

Lemma 8. For p > 2 and any η > 0, there exists Kη depending on n, r,
||F ||∞, ||H||∞, ||HF

r ||2p and V(M) so that if (PKη) is true, then ||ϕ||∞ 6 η.
Moreover, Kη −→ 0 when ||H||∞ −→∞ or η −→ 0.

Proof: Let α > 1 then

|dϕ2α| = αϕ2α−2|dϕ2|

= αϕ2α−2

∣∣∣∣|X| −√ n

λ1(M)

∣∣∣∣ ∣∣∣∣3|X| −√ n

λ1(M)

∣∣∣∣ |d|X||
6 3αϕ2α−2

(
||H||∞ +

√
n

λ1(M)

)2

Proceeding as in the proof of Lemma 7 we find that |dϕ2α| 6 αEϕ2α−2

where E = 3

(
||X||∞ +

√
n

λ1(M)

)2

. It follows that

‖ϕ‖2α2αn
n−1

6 K(n)V(M)1/n(αE + ‖ϕ‖2∞||H||∞)‖ϕ‖2α−2
2α−2



14 JULIEN ROTH

From this we deduce that

‖ϕ‖2α2αn
n−1

6 K(n)V(M)1/nαE′‖ϕ‖2α−2
2α−2

where E′ = E + ||X||∞ (||X||∞||H||∞ + 1)2. Now we put ap+1 = (ap + 2)ν

with ν = n
n−1 , a0 = 1 and α =

ap+2
2 . Then noting that

ap
νp converges to

a0 + 2n, the end of the proof is similar to that Lemma 7 and we find

‖ϕ‖1+2n
∞ 6 K(n)V(M)(E′)n||ϕ||1 6 K(n)V(M)(E′)n||ϕ||2.

Now from Lemma 7 we have that E′ is a constant depending on n, r, ||F ||∞,
||H||∞, ||HF ||∞ and ||HF

r ||2p. Thus, this last inequality combined with
Lemma 6 allows us to conclude that under the pinching condition (PC), we
have

‖ϕ‖∞ 6
(
K(n)V(M)(E′)nA4

) 4
8n+1 C

1
8n+1 .

Now, we choose C = Kη =

(
1

K(n)V(M)(E′)nA4

)4

η8n+1 and we get

||ϕ||∞ 6 η. Moreover, from the expression of E′, we know that E′ tends to
+∞ when ||H||∞ tends to +∞. Since the other factors of Kη do not depend
on ||H||∞, we get that Kη tends to 0 when ||H||∞ tends to +∞. Obvioulsy,
we also have that Kη tends to 0 when η tends to 0. �

Now, we recall this geometric lemma proved by Colbois-Grosjean.

Lemma 9 ([2]). Let x0 be a point of the sphere S(0, R) in Rn+1 with the
center at the origin and of radius R. Assume that x0 = Re with e ∈ Sn. Now
let (Mn, g) be a compact, connected, oriented n-diemsnional Riemannian
manifold without boundary isometrically mmersed in Rn+1. If the image of

M is contained in
(
B(0, R+η)\B(0, R−η)

)
\B(x0, ρ) with ρ = 4(2n−1)η,

then there exists a point y0 ∈ M so that the mean curvature of M in y0

satisfies |H(y0)| > 1
4nη .

With these last two lemmas, we are able to prove Theorem 1 using the
last two lemmas. Let ε > 0 and consider the function

f(t) := t

(
t−
√

n

λ1(M)

)2

.

We set

η(ε) := inf

{
f

(√
n

λ1(M)
− ε
)
, f

(√
n

λ1(M)
+ ε

)
,

1

27||H||3∞

}
.

By definition, η(ε) > 0, and by Lemma 8, there exists Kη(ε) such that for
all x ∈M ,

(9) f(|X|(x)) 6 η(ε).
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Now to prove the theorem, it is sufficient to assume ε < 2
3||H||∞ . We will

show that either

(10)

√
n

λ1(M)
− ε 6 |X| 6

√
n

λ1(M)
+ ε or |X| < 1

3

√
n

λ1(M)

By examining the function f , it is easy to see that f has a unique local

maximum at 1
3

√
n

λ1(M) . Moreover, from the definition of η(ε), we have

η(ε) <
4

27||H||3∞
6

4

27

(
n

λ1(M)

)3/2

= f

(
1

3

√
n

λ1(M)

)
.

Since we assume ε < 2
3||H||∞ 6

2
3

√
n

λ1(M) , we have

1

3

√
n

λ1(M)
<

√
n

λ1(M)
− ε,

which with (9) yields (10).

Now, from Lemma 9, we deduce that there exists a point y0 ∈ M such
that

|X(y0)|2 >
nλ1(M)

(∫
M Hk−1

)4(
Kη(ε) + λ1(M)

(∫
M Hk−1

)2)2 .

Since Kη(ε) <
n
2 ||Hk||22p, the condition (PC) implies

Kη(ε) <
n

2
||Hk||22p 6 λ1(M)

(∫
M
Hk−1

)2

6 2λ1(M)

(∫
M
Hk−1

)2

.

We deduce that

|X(y0)| > 1

3

√
n

λ1(M)
.

Since M is connected, for any x ∈M ,√
n

λ1(M)
− ε 6 |X|(x) 6

√
n

λ1(M)
+ ε.(11)

Now, we assume that the pinching condition (PCε) holds with Cε =
K
η
(

ε
4(2n−1)

). Then (11) is still valid.

Let x =
√

n
λ1(M) e ∈ S

(
0,
√

n
λ1(M)

)
, with e ∈ Sn and assume that

B(x, ε) ∩M = ∅. We can apply Lemma 9. So, there exists a point y0 ∈ M
such that |H(y0)| > 2n−1

nε > ||H||∞ since we assumed ε < 2
3||H||∞ 6

2n−1
n||H||∞ .

This is a contradiction and so B(x, ε) ∩ M 6= ∅. This, in addition with
(11) implies that the Hausdorff distance between X(M) and the sphere

S
(

0,
√

n
λ1

)
is smaller that ε. Moreover, Cε −→ 0 when ||H||∞ −→ ∞ or

ε −→ 0. �
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4.3. Proof of Theorem 3. We will prove Theorem 3. For this, we will
use a part of Theorem 2, namely the fact the X(M) is close to the sphere
for the Hausdorff distance and in particular (11). Before that, we prove the
following lemma.

Lemma 10. Let p > 2 and q > n.

We set Λ = max
(
||H||∞V(M)1/n, ||B||qV(M)1/n

)
. Then for any η > 0,

there exists Kη depending on η, n, r, q, Λ, ||F ||∞, ||HF ||∞ and ||HF
r ||2p so

that if (PKη) is true, then ||XT ||∞ 6 η.

Proof: We set ξ = |XT | and we have
∣∣dξ2α

∣∣ = 2αξ2α−2
(
|∇r|2 + r |d|∇r||

)
.

Now, let x ∈ M , we will estimate |d|∇r|| at this point x. For this, let
{e1 · · · , en} be an orthonormal frame of TxM . We have

|d|∇r|| =
1

4

∣∣d < ∇r, ν >2
∣∣2

=
< ∇r, ν >2

|∇r|2
n∑
i=1

(ei < ∇r, ν >)2

=
< ∇r, ν >2

|∇r|2

(
n∑
i=1

(
∇dr(ei, ν) +B(ei,∇r)

))2

6
2

|∇r|2

(
n∑
i=1

∇dr(ei, ν)2 + |B|2|∇r|2
)

Now
n∑
i=1

∇dr(ei, ν)2 6 |∇dr|2 6
n+1∑
i=1

∇dr(ui, ui) where (ui)16i6n+1 is an

orthonormal basis which diagonalizes ∇dr. From the comparison theorems
(see for instance [17] p. 153) we deduce that

n+1∑
i=1

∇dr(ui, ui)2 6
1

r2

n+1∑
i=1

|ui − 〈ui,∇r〉∇r|2 =
n

r2
.

Then, we have

|d|∇r|| 6 2n

r2|∇r|2
+ 2|B|2.

Therefore, we have

|dξ2α| 6 2αξ2α−1C(n)

(
1 +

1

|∇r|
+ r|B|

)
6 2αξ2α−1C(n)

(
2

|∇r|
+ r|B|

)
6 2αξ2α−1C(n)||X||∞

(
2

ξ
+ |B|

)
6 2αξ2α−2C(n)||X||∞ (2 + ||ξ||∞|B|)(12)
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Now, assume that α > 1 and apply the Sobolev inequality (8) to the function
ξ2α. We have

||ξ||2α2αn
n−1

6 K(n)V(M)1/n||dξ2α||1 + ||Hξ||1

6 K(n)V(M)1/n

[
2αC(n)||X||∞||ξ||2α−2

(2α−2)q
q−1

(2 + ||X||∞||B||q)

+||H||∞||X||2∞||ξ||2α−2
2α−2

]
,

where we used (12) and the Hölder inequality.

Now, we have that max
(
||H||∞V(M)1/n, ||B||qV(M)1/n

)
= Λ. Since ξ =

|XT | 6 |X|, and using the fact that ||X||2∞||H||2∞ > 1, we get

||ξ||2α2αn
n−1

6 K ′(n)αAΛ||X||2∞||ξ||2α−2
(2α−2)q
q−1

,

where K ′(n) is a constant depending only on n. We use an iteration process

comparable to those of Lemmas 7 and 8, by setting β = n(q−1)
(n−1)q , a0 = 2 and

ap+1 = apβ + 2n
n−1 to get

||ξ||
ap+1

βp+1

ap+1 6

(
p+1∏
i=1

a
1

βi

i

) n
n−1 (

K ′(n)Λ||X||2∞
) n
n−1

(∑p+1
i

1

βi

)
||ξ||a0a0

Since
ap
βp −→ a0 + 2nq

q−n when p goes to infinity, we get

(13) ||ξ||∞ 6 C(n, q)
(
Λ||X||2∞

) γ
2(1+γ) ||ξ||

1
1+γ

2 ,

with γ = nq
q−n . Moreover, from Lemmas 2 and 7, we know that

(14) ||X||∞ 6 Γ(n)Λn/2||X||2 6 Γ(n)A1Λn/2,

whereA1 is a positive constant depending on n, ||F ||∞, ||HF ||∞ and ||HF
r ||2p.

Combing (13), (14) and Lemma 3, we get that if (PC) holds, then

||ξ||∞ = ||XT ||∞ 6 A5C,

where A5 is a positive constant depending on n, q, Λ, ||F ||∞, ||HF ||∞ and

||HF
r ||2p. Now, let η > 0, we set Kη =

(
η
A5

)1+γ
and if (PKη) holds, then

||XT ||∞ 6 η. By construction, Kη depends on η, n, q, Λ, ||F ||∞, ||HF ||∞
and ||HF

r ||2p. This achieves the proof. �

Now, we will prove Theorem 3. Let ε < 1
2

√
n
||B||q 6

1
2

√
n

λ1(M) . This choice

of ε implies that if the pinching condition (PCε) is true, then |X| never
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vanishes, and so we can consider the following map

G : M −→ S

(
0,
√

n
λ1(M)

)
x 7−→

√
n

λ1(M)
X
|X| .

Without any pinching condition, a straightforward computation yields to

(15)
∣∣∣|dGx(u)|2 − 1

∣∣∣ 6 ∣∣∣∣ n

λ1(M)

1

|X|2
− 1

∣∣∣∣+
n

λ1(M)

1

|X|4
〈u,X〉2 ,

for any unitary vector u ∈ TxM . But,∣∣∣∣ n

λ1(M)

1

|X|2
−1

∣∣∣∣ =
1

|X|2

∣∣∣∣ n

λ1(M)
−|X|2

∣∣∣∣ 6 ε
√

n
λ1(M) + |X|

|X|2
6 ε

2
√

n
λ1(M) + ε(√
n

λ1(M) − ε
)2

We recall that n
A1
6 λ1 6 ||B||2q . Since we assume ε < 1

2

√
n
||B||q , the right

hand side is bounded by a constant σ depending only on n, r, q, Λ, ||F ||∞,
||HF ||∞ and ||HF

r ||2p. So we have

(16)

∣∣∣∣ n

λ1(M)

1

|X|2
− 1

∣∣∣∣ 6 εσ.
Moreover, let η > 0, since Cε −→ 0 when ε −→ 0, there exists ε so that
Cε 6 Kη (where Kη is the constant of Lemma 10) and so, ||XT ||∞ 6 η. Note
that ε depends on n, r, q, Λ, ||F ||∞, ||HF ||∞, ||HF

r ||2p and η. As before,
there exists a constant δ depending also on n, r, q, Λ, ||F ||∞, ||HF ||∞ and
||HF

r ||2p such that

(17)
n

λ1(M)

1

|X|4
〈u,X〉2 6 n

λ1(M)

1

|X|4
||XT ||2∞ 6 η2δ.

Then, from (15), (16) and (17), we deduce that (PCε) implies∣∣∣|dGx(u)|2 − 1
∣∣∣ 6 εσ + η2δ.

We fix θ ∈ (0, 1) and we take η =
√

θ
2δ . We can assume that ε is small

enough to have εσ 6 θ
2 . Finally, we have proved that for any θ ∈ (0, 1),

there exists ε > 0 depending on n, r, q, Λ, ||F ||∞, ||HF ||∞, ||HF
r ||2p and θ

such that ∣∣∣|dGx(u)|2 − 1
∣∣∣ 6 θ.

Hence, G is θ-quasi-isometry. In particular, G is a local diffeomorphism

from M into S

(
0,
√

n
λ1(M)

)
. Since S

(
0,
√

n
λ1(M)

)
is simply connected for

n > 2, the map G is a global diffeomorphism. Theorem 3 is proved, since
the dependence on Λ can be replaced by a dependence on ||H||∞, ||B||q and
V(M), or as stated in Theorem 3, by ||B||∞ and V(M). �
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