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We apply optical pumping to prepare the lithium beam of our atom interferometer in a single
hyperfine-Zeeman sublevel: we use two components of the D1-line for pumping the 7Li atoms in a
dark state F,mF = +2 (or −2) sublevel. The optical pumping efficiency has been characterized by
two techniques: state-selective laser atom deflection or magnetic dephasing of the atom interferom-
eter signals. The first technique has not achieved a high sensitivity, because of a limited signal to
noise ratio, but magnetic dephasing signals have shown that about 95% of the population has been
transferred in the aimed sublevel, with similar results for three mean velocities of the atomic beam
covering the range 744− 1520 m/s.
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I. INTRODUCTION

In atom optics and interferometry, atom sublevels play
a role analogous to polarization states for light. Because
of Zeeman effect, in the presence of a magnetic field, the
propagation phase varies with the sublevel and this phase
dispersion complicates the analysis of experiments such
as the one we have done [1] to detect the topological He-
McKellar- Wilkens phase [2, 3]. Optical pumping the
atomic beam in a single hyperfine-Zeeman sublevel is the
ideal way to get rid of this difficulty: this is analogous
to the use of a fully polarized light beam in optics. Sev-
eral experiments have demonstrated the feasibility of an
almost perfect pumping of an alkali atomic beam [4, 5],
with up to 97% of the atomic population in a single F,mF

sublevel.

We developed a similar optical pumping experiment
with our lithium atomic beam produced by supersonic
expansion in a rare gas, with all the 7Li atoms pumped in
their F = 2, mF = +2 (or −2) sublevel. Our experiment
has some specificities compare to the other experiments
involving the optical pumping of an atomic beam: in
particular, our atomic beam is highly collimated and only
the collimated beam needs to be pumped. As our beam
is injected in an atom interferometer, we have estimated
the optical pumping efficiency by measuring the atom
interferometer fringe signals in the presence of Zeeman
phase shifts.

The paper is organized as follows: section II briefly
reviews optical pumping experiments with alkali atomic
beams; section III describes our choices concerning the
optical pumping experiment; in section IV, we present a
simplified numerical model of the optical pumping pro-
cess; in section VII, we describe the experimental setup,
the experimental results and their analysis.

II. BRIEF REVIEW OF OPTICAL PUMPING

EXPERIMENTS OF ALKALI ATOMIC BEAMS

In 1950, A. Kastler invented optical pumping : in his
seminal paper [6], he discussed the optical pumping of
a sodium atomic beam, using atomic vapor lamps as
the light source, and this experiment was rapidly per-
formed [7, 8]. This arrangement was sufficient to produce
a strong population difference among the ground state
sublevels and this difference was used to detect magnetic
resonance [9]. In the following years, most optical pump-
ing experiments were done in vapor cells, as reviewed by
W. Happer [10].
Several laser beams of different frequencies are required

to achieve optical pumping and to characterize the inter-
nal state distribution. This is why, the optical pumping
of atomic beams developed a lot with the progress of
tunable lasers and, especially laser diodes. We will not
discuss here optical pumping of cold atom clouds because
these experiments usually differ from the optical pump-
ing of a thermal beam and also because there are too
many experiments to be quoted here. Here are a short
list of papers describing the optical pumping of alkali
atomic beams: lithium [11, 12], sodium [5, 13–18], ru-
bidium [19, 20] and cesium [4, 21–26]. Optical pumping
is used for different goals (orientation of the electronic
spin, concentration of the largest possible fraction of the
atoms in a single F level or in a single F,mF sublevel)
and different applications (atomic clocks, collision stud-
ies, parity violation experiments, etc).

III. PRINCIPLE OF THE EXPERIMENT

A. Lithium states and the choice of the pumping

transitions

We consider here only the most abundant isotope, 7Li
with a 92.5% natural abundance. 7Li has a nuclear spin
I = 3/2 and its 2S1/2 ground state is split in two hyper-
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fine sublevels F = 1 and F = 2, with an energy split-
ting equal to ∆E/h = 803.5 MHz (all energy splittings
are expressed in frequency units). We use the first reso-
nance line near 671 nm for optical pumping. The 2P res-
onance state has two fine structure components (splitting
≈ 10053 MHz). The 2P1/2 is split in two hyperfine lev-
els, F = 1 and 2, with a splitting equal to 92 MHz while
the 2P3/2 state is split in four hyperfine levels, F = 0
to 3, with a total splitting from F = 0 to F = 3 equal
to 18 MHz (more details on lithium spectroscopy in ref.
[27–29]). The radiative lifetime of the 2P state is ≈ 27.1
ns [30] corresponding to a natural width Γ/(2π)τ ≈ 5.87
MHz.

B. Optimum magnetic field value

We want to prepare the atoms in the well defined quan-
tum states F = 2, mF = +2 and mF = −2 according to
a quantization axis. Usually, one takes the z-axis as the
quantization axis, chosen parallel to the magnetic fieldB.
However, as we will refer to previous works on our atom
interferometer [31] in which the z-axis is always along
the atomic beam propagation, we keep our choice of axis
(see fig. 4) to avoid the risks of confusion. Therefore,
the quantization axis is taken parallel to the magnetic
field along the x-axis. As usual in atomic physics, the
polarization of the laser is defined according to this axis:
a right-handed circular polarization propagating along
the x-axis is σ+-polarized and σ− if it propagates in the
other way. In order to be in the ideal setup, we have
to cancel the perpendicular components By and Bz of
the magnetic field in the pumping volume and produce a
Bx-component with an optimum value fulfilling opposite
requirements:
Bx must be small so that single frequency lasers can ex-

cite efficiently all the Zeeman components of the optical
pumping transitions i.e. the total splitting of a pumping
transition, of the order of µBBx, must be at most compa-
rable to the natural linewidth Γ/(2π). This means that
µBBx/h . Γ/(2π) which is verified if |Bx| . 4× 10−4 T.
Bx must be large in order to minimize the angle be-

tween the real field and the laser propagation axis. The
minimum Bx-value is fixed by the residual values of By

and Bz. With an available gaussmeter, we have ob-
tained |By| ≈ |Bz| < 4 × 10−6 T and we have chosen

Bx ≈ 3.8×10−4 T so that the angle θ =
√

B2
y +B2

z/ |Bx|
between the field and the x axis is smaller than 20 mrad.

C. Optimum laser parameters

Pumping the lithium atoms in their F = 2,mF = +2
sublevel, is achieved with two laser beams: one to empty
all the F = 1,mF sublevels and the other one to trans-
fer the population of the F = 2,mF sublevels in the
F = 2,mF = +2 sublevel (see fig. 1). This simple view
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FIG. 1: (Color on line) The 2S1/2 and 2P1/2 levels of lithium

atom and the dark state optical pumping scheme. Two σ+ po-
larized laser beams excite the 2S1/2, F = 1, 2 →

2P1/2 F ′ = 2
transitions. The dashed lines show the spontaneous emission
transitions from the F ′ = 2,m′

F = 2 sublevel).

is correct if each laser excites selectively one hyperfine
component of the 2S-2P resonance transition: any weak
excitation of another hyperfine components would intro-
duce leaks in the pumping cycle. This is possible if the
hyperfine structure is well resolved, i.e. if the hyper-
fine splittings are considerably larger than the natural
linewidth. Obviously, the D2-line is not convenient, be-
cause the hyperfine structure splittings of the 2P3/2 state
are comparable to the natural linewidth, but the D1-
line is more favorable because the hyperfine structure of
the 2P1/2 state is considerably larger than the natural
linewidth. As a consequence, we have chosen the D1-
line for optical pumping. The laser beam, resonant with
the transition 2S1/2, F = 1 →2P1/2, F

′ = 2, empties the
F = 1 level and the laser resonant with the transition
2S1/2, F = 2 →2P1/2, F

′ = 2, pumps the F = 2,mF sub-
levels in the F = 2,mF = +2 sublevel. Both laser beams
are circularly polarized (σ+) in order to induce transi-
tions with ∆mF = m′

F −mF = +1 so that the popula-
tion accumulates in the 2S1/2, F = 2,mF = +2 sublevel,
which is the only dark state (i.e. a state uncoupled to the
lasers) if the laser circular polarization is perfect. Figure
1 summarizes our optical pumping scheme. Each opti-
cal pumping transition is separated from an unwanted
transition by the excited state hyperfine splitting and,
for small saturation, the line broadening is small so that
the excitation probability of the unwanted transition is
very small and the associated leak in the optical pumping
process may be neglected.

Finally, we need to produce an atomic beam either in
the mF = +2 or in the mF = −2 sublevel. Due to
adiabatic following, the mF value is conserved through-
out propagation, on an axis which is the local magnetic
field. As a consequence, we can switch between these two
mF values simply by reversing the magnetic field in the
pumping volume.

Our atomic beam is a supersonic beam of lithium
seeded in a noble gas. Its longitudinal velocity distri-
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bution is approximated by a Gaussian:

P (v) =
S‖

vm
√
π
exp

[

−
(

(v − vm)S‖

vm

)2
]

(1)

vm is the mean velocity, S‖ is the parallel speed ratio

and P (v) is normalized. A v3 pre-factor, usually included
[32], has been omitted for two reasons: firstly, it has small
effects if S‖ is large, and secondly, the velocity distribu-
tion is modified by the transmission of the interferometer,
because Bragg diffraction is velocity selective. In our ex-
periment, with argon as the carrier gas [31, 33, 34], the
typical values of vm and S‖ are vm ≈ 1062 m/s and
S‖ ≈ 7, corresponding to a distribution full width at half

maximum ∆vsupFWHM = 2
√
ln 2vm/S‖ ≈ 250 m/s.

For the laser-atom interaction, it is necessary to min-
imize Doppler broadening, so as to selectively excite the
chosen hyperfine components and not the other ones, and
to pump all the velocity classes with almost the same effi-
ciency: this is possible if the laser beams are perpendicu-
lar to the atomic beam. The laser-atom interaction time
is then given by tint ≈ 2w0/vm ≈ 10 µs, where w0 is the
waist of the laser beams, w0 ≈ 5 mm in our experiment.

The saturation parameter s is given by s = I(r)/Is
with a saturation intensity Is = 2.56 mW/cm2 [35]. The
number of absorption-emission cycles is Γtints/(2(1 +
s)) ≈ 200s/(1 + s) and, with s ≈ 2, the number of cy-
cles is quite large, about 130 and the limit tint → ∞ is
practically reached.

The atomic beam enters the atom interferometer after
a very high collimation in the x-direction done by a two-
slit system. The geometry of this system is such that the
width of the distribution of vx after collimation is com-
parable to the atom recoil velocity vr = ~kL/MLi ≈ 0.09
m/s, where kL = 2π/λL is the laser wave vector near
the resonance line at λL ≈ 671 nm. Because of this high
collimation, optical pumping must be done before colli-
mation, otherwise the exchanged photon momenta would
completely spoil this collimation. Moreover, only a very
narrow class of vx need be pumped. Due to the natural
line width, a monochromatic laser interacts with a ve-
locity class of width ∆vx ≈ ΓλL ≈ 4 m/s, considerably
larger than needed, the more so that this velocity class
broadens when the number of absorption-emission cycles
increases.

IV. NUMERICAL SIMULATION OF THE

OPTICAL PUMPING PROCESS

The goal of this simulation is to verify that the qual-
itative arguments developed above are correct and also
to estimate the limitations due to an imperfect circular
polarization of the laser beams.

A. The rate equations

The general calculation of the optical pumping process
would be quite complicated because we should consider
at least 13 Zeeman-hyperfine sublevels (8 sublevels of the
2S1/2 state and 5 sublevels of the F = 2 level of the
2P1/2 state). Therefore the density matrix would have
a dimension equal to 13, with 13 populations and 12 ×
13/2 = 78 complex coherence terms. We can consider
only the populations for the following reasons:

• the hyperfine coherence terms are negligibly small
because these terms are not well excited by our
pumping scheme and they are destroyed by preces-
sion at the hyperfine frequencies;

• the Zeeman coherence terms vanish exactly when
the excitation beams have a pure σ+ polarization
and they are weak in the presence of a weak admix-
ture of σ− polarization. These terms are destroyed
by precession at the Zeeman frequencies;

• if the saturation parameter is small, s ≪ 1, all op-
tical coherence terms are small. In our experiment,
the saturation parameter is close to 2 at the cen-
ter of the laser beams. However, as shown below, in
the ideal case (pure σ+ polarization), optical pump-
ing is finished well before reaching the center of the
laser beam and the atoms are in a dark state. In the
real case, with a weak admixture of σ− polarization
laser, the final state prepared by optical pumping
is mostly sensitive to what occurs when the atom
exits of the laser beams, i.e. in a region where the
saturation parameter is small.

With these approximations, we have to consider the
populations of the 13 levels involved which are related
by the following rate equations:

σ̇ii = −
∑

j

Pijσjj +
∑

j

Ajiσjj (2)

σ̇jj =
∑

i

Pijσii −
∑

Ajiσjj (3)

where i is a short-hand for F,mF and j for F ′,m′
F . Pij

describes the laser induced transition probability per unit
time between sublevels i and j and Aji is the Einstein
coefficient for spontaneous emission from j to i. Aji and
Pij can be expressed as a function of the transition dipole
moment:

Aji ∝
∣

∣〈F ′,m′
F |d1q |F,mF 〉

∣

∣

2
(4)

where d1q is the irreducible tensorial components of the
dipole operator,q = m′

F − mF . Obviously,
∑

i Aji = Γ.
Pij is a function of the laser polarization vector e and the
local laser power density I(r). By a simple generalization
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of the equations established for a two level system [36],
one gets:

Pij =
πI(r)

2~2
|〈2S1/2, F,mF | d · e |2P1/2, F

′,m′
F 〉|2 (5)

where I(r) is the local laser intensity. In this expression,
we have neglected Zeeman splittings and Doppler effect:
Zeeman splittings because we assume that the magnetic
field is small, with Zeeman splittings smaller than the
natural linewidth Γ and Doppler effect because we want
to pump a very narrow velocity class with |vx| < vr. Fi-
nally, we have neglected power broadening for the same
reasons we have neglected optical coherence terms. We
use the Wigner-Eckart theorem to get the transition
dipole matrix elements:

|〈S1/2, F,mF |d1q |2P1/2, F
′,m′

F 〉|2 = 4

6
(2F + 1) (2F ′ + 1)

(

F 1 F ′

−mF q m′
F

)2 {

F 1 F ′

1/2 3/2 1/2

}2

|〈2S ‖ d ‖ 2P 〉|2

(6)
We thus get 13 linear differential equations and we use
the Runge-Kutta-Fehlberg method [37] to integrate this
system and to perform numerical simulations.

B. Pumping in the ideal case

We first consider a lithium atom propagating along the
z-axis with a velocity v = 1000 m/s. Both laser beams
are perfectly circularly polarized and they are described
by Gaussian beams propagating along the x-axis. Their
local intensity I(r) is given by:

I(r) = I(x = 0, y = 0, z) = I0 exp

[

−2z2

w2
0

]

(7)

where w0 is the waist radius taken equal to w0 = 5 mm.
The intensity I0 is related to the laser beam power P by
I0 = P/(πw2

0) and, in the calculations, we use the same
power P = 5 mW for the two laser beams. Initially,
the atomic population is equally distributed among the 8
ground state sublevels. Figure 2 plot the populations of
the sublevels of the ground state as a function of time t.
In this ideal case, the optical pumping result is essentially
complete and the pumping efficiency remains excellent if
the atom velocity is increased. The populations of the
excited state sublevels remains always small, being at
most 1% of the total atomic population, because most of
the optical pumping is completed well before the atoms
have reached the laser beam centers.

V. MAIN LIMITATIONS OF THE OPTICAL

PUMPING EFFICIENCY

The optical pumping scheme used here is expected to
be very efficient because the population accumulates in
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FIG. 2: (Color on line) Variations of the populations of the
ground state sublevels during the interaction with the laser
beams. The time origin is taken when the atom is at the
center of the laser beams in z = 0 and with the velocity
v = 1000 m/s, the local laser power density is given by
I(t) ∝ exp

(

−2(t/5)2
)

with t in microseconds. Pumping is
almost completed before the atoms have reached the laser
beam centers at t = 0 µs.

the F = 2,mF = +2 sublevel which is a dark state.
We discuss now the main limitations of the pumping ef-
ficiency in this case.

A. Limitations due to experimental defects

In the actual experiment, the polarizations of the laser
beams are imperfect: the polarizer or the quarter-wave
plate may have small defects; the quarter-wave plate axis
is not perfectly adjusted; the angle between the laser
beam axis and the magnetic field is not exactly zero;
the windows crossed by the laser beams when entering
the vacuum chamber are slightly birefringent. We have
analyzed the magnitudes of these effects and the win-
dow birefringence is likely to be dominant. If we tried
to adjust the polarization to get a σ+ transition, these
defects introduce a weak intensity in the σ− and possible
π transitions. Nevertheless, the laser beams propagation
axis and the magnetic field make an angle smaller than
20 mrad, the fraction of the intensity in π polarization
is probably considerably weaker than in σ− polarization.
Therefore, we tested the sensitivity of the optical pump-
ing efficiency with a fraction η of the laser intensity in
σ− polarization and a fraction (1−η) in σ+ polarization.
The results of the calculation are plotted as a function of
this fraction in fig. 3.
The result is that the population not transferred in

the F = 2,mF = +2 sublevel is small and it increases
quadratically with η for the sublevels which are repopu-
lated after absorption of one photon from F = 2,mF =
+2 sublevel and like η3 for the other ones. We performed
a similar calculation assuming laser beams with a top-
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hat profile and, for the same fraction η, the population
not transferred in the F = 2,mF = +2 sublevel is con-
siderably larger. We explain qualitatively this result as
follows: when an atom goes out of a Gaussian beam, the
last absorbed photons are of the σ+ polarization with a
probability equal to (1 − η) and the atom exits of the
beam almost as if the beam was purely σ+. In a top-hat
beam, the atom internal distribution reaches a steady
state which is conserved when the atom goes out abruptly
of the laser beams.
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FIG. 3: (Color on line) Final atomic populations of the 2S1/2

sublevels as a function of the fraction x of laser intensity in
the σ− polarization.

B. Limitations due to atom density effects

Atom-atom collisions and radiation trapping are the
main effects which are dependent on the atom density
and which limit the optical pumping efficiency.
In our experiment, the excited state population keeps

very weak and the dominant collisions should be spin-
exchange collisions between ground-state atoms [10] but
they should play a negligible role. Spin-exchange col-
lisions play no role when the gas is fully pumped in a
single sublevel with complete spin polarization, which is
the case in our experiment. Moreover, collisions in a
supersonic beam after the skimmer are very rare with
a mean number of collisions per atom substantially less
than 1 and the dominant collisions involve the carrier gas,
which is a noble gas in its 1S0 ground state, with no pos-
sibility of spin exchange. Lithium-lithium collisions are
considerably less numerous, by a factor of the order of
the lithium to carrier gas density ratio in the oven, about
3×10−3. Finally, as spin-exchange collision cross-section
and total atom-atom cross-section have comparable mag-
nitudes, an important fraction of collisions leading to spin
exchange also induce a reorientation of the relative veloc-
ity vector and such a collision ejects the atom out of the
atomic beam with a large probability.
Radiation trapping also reduces the pumping efficiency

[10]: when an atom absorbs a fluorescence photon emit-
ted by another atom, this photon is largely depolarized,
so that this absorption induces a leak in the pumping
process. D. Peterson and L.W. Anderson [38] have stud-
ied the effect of radiation trapping on the polarization
of an optically pumped alkali atomic beam. Their cal-
culation, which is simplified, does not apply exactly to
our case, as they consider an effusive sodium beam with
a broad longitudinal velocity distribution and a negligi-
ble transverse velocity distribution while our supersonic
beam has a narrower longitudinal velocity distribution
but their pumping scheme is similar to ours, with the
atoms transferred in a dark state. They find that the im-
portant parameter is the product of the atom density n
by the beam diameter D in the pumping volume. In the
case of a transverse optical pumping, optical pumping
efficiency starts to decrease when nD > 1011 atoms/cm2

and we have calculated that the narrower velocity distri-
bution of our beam should decrease this threshold by a
factor 3. Using the results of A. Miffre [39], we estimate
the atom density in the optical pumping region:

nLi =
ILi

vmz2
≈ 5× 109 atoms/cm3 (8)

with the calculated beam intensity ILi ≈ 4 × 1016

atoms/(s.sr), the measured mean velocity vm = 1062
m/s and the distance z from the nozzle to the center
of the pumping volume, z ≈ 9 cm. At this place, the
atomic beam diameter D is about D ≈ 0.8 cm, so that
nLiD ≈ 4×109 atoms/cm2 well below the lowered thresh-
old near nD > 3 × 1010 atoms/cm2: as a consequence,
we expect radiation trapping to have negligible effects in
our experiment.
We may also use some previous experimental results

to test the calculation of D. Peterson and L.W. Ander-
son [38]. B.P. Masterson et al. [4] have pumped a very
intense cesium beam with a rectangular cross section 2.5
×0.5 cm2, with several tricks to reduce radiation trap-
ping. From their data, we estimate the density in the
pumping volume n ≈ 1010 atoms/cm3, so that nD ≈ 1010

atoms/cm2 and they achieved less than 2 × 10−4 of the
population left in the depleted F level and up to 95% of
the population in a single F,mF sublevel. G.W. Schinn
et al. [5] have pumped a sodium beam with a D = 0.4
cm diameter: the spin polarization, which was 97% with
a density n ≈ 2 × 1010 atoms/cm3, decreased to ≈ 94%
with a density n ≈ 2 × 1011 atoms/cm3, in agreement
with reference [38].

VI. EXPERIMENTAL SETUP

A. The atomic beam and the atom interferometer

Our experimental set-up is described in [33]. Here are
its main features and some details concerning the optical
pumping setup (see fig. 4). A supersonic lithium beam
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FIG. 4: (Color on line) Schematic top-view of our Mach-
Zehnder atom interferometer. The lithium supersonic beam,
after passing the skimmer (SK) is strongly collimated by two
slits (S0 and S1). It is then diffracted in the Bragg regime
by three laser standing waves, produced by reflecting laser
beams on the mirrors M1, M2 and M3. The interferometer
thus produces two output beams with complementary fringe
signals. One of the output beams is selected by a slit (SD)
and detected by a Langmuir-Taylor ”hot-wire” detector (D).
The optical pumping volume is located 5 cm after the skim-
mer (SK), with the laser beams crossing the supersonic beam
at right angle (in order to visualize the diffracted beams, the
Bragg angle, equal to 80 µrad for a lithium velocity near 1000
m/s, is exaggerated). The deflection experiment is made by
illuminating the atomic beam by a laser beam, between the
collimation slits, in the presence of an homogenous magnetic
field parallel to the z-axis. The magnetic dephasing experi-
ment is made by applying a magnetic field gradient, between
the first and second diffraction standing waves.

is produced by seeding lithium in a noble gas, the oven
being heated to 800 ◦C to insure a sufficient density of
lithium. By using different carrier gases, the mean beam
velocity can be varied: 744 m/s with krypton, 1062 m/s
with argon and 1520 m/s with neon [40]. After passing
the skimmer, the atomic beam is strongly collimated by
two slits to achieve a transverse velocity distribution with
a width comparable to lithium recoil velocity (≈ 9 cm/s).
This atomic beam is diffracted by three quasi-resonant
standing laser waves in the Bragg regime, which produces
only two beams. For the present experiments, we use first
order diffraction and we get a Mach-Zehnder atom inter-
ferometer with two output beams carrying complemen-
tary fringe signals: one of these two beams is selected by a
slit and detected by a Langmuir-Taylor ”hot-wire” detec-
tor. The interferometer arms are spatially separated and
their maximum distance, which is reached when crossing
the second laser standing wave, decreases when the beam
velocity increases. It is equal to 143 µm for vm = 744
m/s, to 100 µm for vm = 1062 m/s and to 70 µm for
vm = 1520 m/s.

The standing wave laser is detuned (∆ν ≈2 GHz) on
the blue side of the 2S1/2 →2 P3/2 transition of 7Li so

that the diffraction probability of 6Li is very small and,
in addition, its natural abundance is small (7.5%), so
the contribution of 6Li to the interference signal is fully
negligible. The interferometer signal I is given by:

I = I0 (1 + V cos (ϕd + ϕp)) (9)

where I0 is the mean intensity and V the fringe visibil-
ity. ϕp is the phase induced by perturbations applied on
the interferometer arms and ϕd is the phase due to the
diffraction process, ϕd = 2kL(x1 − 2x2 + x3), where kL
is the laser wave vector and xi-position of the standing
wave mirror Mi. The fringe signal is scanned by varying
the position x3 with a piezo-actuator on the mirror M3.
We can control the position x3 with an optical Michelson
interferometer. When using argon as the carrier gas, the
typical values of I0 and of V are I0 ≈ 6 × 104 atoms/s
and V ≈ 70%, .

B. The magnetic field in the pumping, deflection

and dephasing regions

The whole interferometer experience the Earth mag-
netic field: the field is modified by the presence of large
piece of steel used to support the vacuum chambers but
its magnitude is a few 10−5 T everywhere. In addition
to this field, we produce magnetic fields in three different
regions.
In the optical pumping region, just after the skimmer

and before collimation of the atomic beam, we produce
an homogeneous magnetic field by three pairs of square
Helmholtz coils [41] with 80 windings each. The square
sides are equal to 50, 40 and 30 mm, so that each smaller
one fits into a bigger one. The measured laboratory field
components are equal to Bx = −3.0 × 10−5 T, By =
−2.3× 10−5 T and |Bz | < 10−5 T. The Helmholtz coils
are used to cancel By and to produce along the x-axis
an additional contribution Bx = ±3.8 × 10−4 T. This
means that when we reverse the current we do not exactly
reverse Bx which is equal either to Bx = −4.1× 10−4 T
or to Bx = +3.5× 10−4 T.
The laser deflection experiment is made by shining a

laser beam perpendicular to the atomic beam, between
the two collimation slits and an homogenous magnetic
field is needed in order to separate the various Zeeman
components so that this deflection process can be state-
selective. The field is chosen parallel to the z-axis and it
must be strong and homogenous. Two 40 mm diameter
Helmholtz coils, with 38 windings each, produce a field
Bz/I = 18.8 × 10−4 T/A where I is the current in the
coil.
The Zeeman phase shift experiment uses magnetic

coils, originally designed to compensate the gradient of
the magnetic field used for the measurement of the He-
McKellar-Wilkens phase [1]. This 30 mm diameter coil
is located roughly at mid-distance between the first and
second laser standing waves; it has 9 windings and, with
a current IC (A), it produces a field Bx ≈ (3×10−4Ic) T
on the interferometer arms, with a gradient of the order
of ∂Bx/∂x ≈ (3× 10−3Ic) T/m.
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C. Laser system for optical pumping

Diode laser

DL 100

 !"#

 !$#

PD

M1

heatpipe

servo loop

 !$#

 !"#

M2

to experiment

to experiment

 !$#

L

L L

AOM

FIG. 5: (Color on line) Production of the laser beams needed
for optical pumping. The beam emitted by a TOPTICA DL
100 diode laser is split in two beams: a weak beam (below
2 mW) is used to generate Doppler-free signals by saturated
absorption spectroscopy on the 2S1/2,F = 1 →

2P1/2, F = 2
transition in a heat-pipe oven. The laser frequency is locked
on these signals. The main beam is sent through an acousto-
optic modulator (AOM) operating a a frequency νRF near
401.5 MHz. The direct zeroth-order beam is sent to the ex-
periment. The first-order beam is sent back through the AOM
to produce a second beam, red-shifted by 2νRF which is also
sent to the experiment.

We use an extended cavity single-frequency diode laser
from TOPTICA (model DL 100) to produce the laser
beams used to pump 7Li. The laser set-up is shown on
fig. 5. We use frequency modulation and saturated ab-
sorption spectroscopy in a heat pipe oven to lock the laser
on the 2S1/2,F = 1 →2P1/2, F

′ = 2 transition. The laser
beam is sent to an acousto-optic modulator (AOM) op-
erating with νRF ≈ 400 MHz. By tuning the RF power
sent to the AOM, we get two laser beams of roughly
equal powers. One of these beams is the zeroth-order
beam which is not shifted in frequency and is resonant
with the F = 1 → F ′ = 2 transition. The other beam
is the first-order beam which is diffracted twice and so
frequency shifted by 2νRF ≈ 803.5 MHz, this beam is res-
onant with the F = 2 → F ′ = 2 transition. Both beams
are sent to the optical pumping region and as they must
have the same circular polarization, it is difficult to com-
bine them in a single beam without large power losses:
we have chosen to propagate the two beams in the x− y
vertical plane, both perpendicular to the atomic beam
and making small angles near ±0.5 mrad with the x-axis.
The two laser beams go through the same polarizer and
the same zeroth-order quarter-wave plate before entering
the vacuum chamber and they converge in the pumping

volume where their beam waists are around 5 mm and
their power is about 5 mW per beam. We optimize νRF

by maximizing the laser power absorbed by the atomic
beam.

VII. EXPERIMENTAL RESULTS AND

ANALYSIS

A. Possible tests of the internal state distribution

Stern-Gerlach magnets or hexapole magnets have been
used to measure the electronic spin polarization [26].
This technique does not give access to the population
of individual F,mF sublevel. The usual way of measur-
ing the complete distribution over the F,mF sublevels
is based on laser induced fluorescence in the presence
of a magnetic field large enough to separate the Zee-
man components of the transition: G.W. Schinn et al.

[5] have used B ≈ 2 × 10−2 T. Another technique is
to induce radio-frequency or microwave transitions be-
tween the hyperfine levels in the presence of a magnetic
field sufficient to resolve the Zeeman components of the
transition. The radio-frequency or microwave transitions
are then detected by measuring the population of the
populated level by laser induced fluorescence. As the
transitions between hyperfine levels are very narrow, a
weaker magnetic field can be used, for instance a field of
B ≈ 7× 10−4 T was used by B.P. Masterson et al. [4].
In our experiment, only a narrow velocity class near

vx = 0 is optically pumped which complicates the mea-
surement of the population distribution over the sub-
levels. If we measure the atomic populations before col-
limation, the signal will be sensitive to velocity classes
which may not be completely pumped and which are
eliminated by the collimation process. If we make the
measurement on the atomic beam after collimation, the
atomic flux is small, below 106 atoms/s, and the beam
velocity is of the order of 1000 m/s: then, the expected
fluorescence signal is very low and laser stray light will be
a problem. Because of these considerations, we did not
tried to use any of these two techniques. Instead, we have
used two measurements techniques for which the signal is
measured on the Langmuir-Taylor ”hot-wire” detector:

• the first technique is laser deflection of the beam, in
the presence of a magnetic field sufficient to resolve
the Zeeman components of the transition. Atom
deflection has already been used by Gould et al.

[18] to characterize a sodium beam.

• the second technique is based on the modification
of the atom interferometer signals by a weak mag-
netic field gradient [42–45]. The idea is that the
magnetic field gradient induces a phase shift which
varies with the F,mF sublevel so that the phase and
visibility of the interference fringes are sensitive to
the population distribution over these sublevels.
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B. Laser deflection of the atomic beam

We assume that the magnetic field is strong enough to
lift the Zeeman degeneracy, so that the process is selec-
tive in F and mF . The collimated atomic beam has a
very narrow distribution of vx and, if a resonant laser
crosses at right angle the atomic beam, an atom will
absorb a laser photon and emit a spontaneous photon,
thus going to one of its ground state sublevels. The mo-
mentum of the spontaneous photon is random so that
the total modification of vx is between 0 and 2vr, with
a mean value equal to the recoil velocity vr ≈ 9 cm/s.
This is sufficient to reduce substantially the probability
that the atom reaches the detector. Moreover, after spon-
taneous emission, the atom has a certain probability of
being back in the same F,mF state and to be re-excited
a second time, which induces a second momentum trans-
fer identical to the first one. A complete model of this
multi-step process is needed if one wants to predict the
efficiency of laser deflection.

We choose the D1 line 2S1/2 →2P1/2 for this experi-
ment, for the same reasons we have chosen it for optical
pumping. We excite the F = 1, 2 → F ′ = 1, 2 tran-
sitions with a laser propagating along the x-axis. The
laser polarization is linear, parallel to the magnetic field
B which is along the z-axis. With π polarization the
selection rule is ∆mF = m′

F − mF = 0 and we should
observe only 12 lines (the transitions involving mF = 0
and the same F -values are forbidden). We record the
hot-wire detector signal as a function of the laser fre-
quency and we expect to see a dip in the signal each
time the laser is resonant with an excitation transition,
provided that the lower level population is not vanishing.
Ideally, we should compare the signals recorded with an
optically pumped beam to those recorded without opti-
cal pumping. Unfortunately, in the non pumping case,
all the hyperfine sublevels are equally populated and the
signal to noise ratio on each individual line is small. In
the presence of optical pumping shown in fig. 6, only
one line is well detected, corresponding to the populated
level F = 2,mF = ±2 (or −2) and the absence of the
lines corresponding to the other levels proves that their
population is considerably weaker. The dip in the signal
is rather small because it was necessary to reduce the
laser power density near 1 mW/cm2 to prevent an exces-
sive broadening of the line. From the observed signals,
for all the levels for which the detection line is well re-
solved from the line due to the populated sublevel (for
all the sublevels except the F = 2,mF = +1 sublevel
(or −1)), one can deduce that the population cannot be
larger than about 3% of the total population but it is
impossible to make a precise measurement of the atomic
distribution over the hyperfine sublevels.

FIG. 6: Laser deflection experiment: the measured atomic
beam intensity is plotted as a function of the laser frequency
in the range of the F = 2 → F ′ = 1, 2 transitions in the pres-
ence of a magnetic field B = 28.4 × 10−4 T (dashed lines for
F ′ = 1, solid lines for F ′ = 2). We have not used a larger field
because the two transitions start overlapping and this situa-
tion extends to the maximum available field. Upper panel:
pumping in the mF = +2 sublevel; lower panel: pumping in
the mF = −2 sublevel. The beam intensity is counted every
0.1s and we have reduce the noise by a sliding average over 14
data points. This experiment was made with a beam mean
velocity vm = 1062 m/s (argon as a carrier gas). The inten-
sity dip is slightly larger for the mF = −2 sublevel than for
the mF = +2 sublevel, suggesting that the pumping efficiency
is slightly better for mF = −2.

C. Magnetic dephasing of the atom interferometer

signals: theory

An inhomogeneous magnetic field on a matter wave
interferometer modifies the phase of the interference
fringes. Such an experiment [46, 47] was proposed to
test the sign reversal of a spin 1/2 wavefunction by a 2π
rotation. It was performed in 1975 by H. Rauch and co-
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workers [48] with a perfect crystal neutron interferometer
(for a review [49]). Similar experiments can be done with
atom interferometers: the application of a magnetic field
gradient induces a phase-shift ϕZ,F,mF

which is a func-
tion of F,mF and of the atom velocity. The fringe signal
is given by:

I

I0
=

∑

F,mF

P (F,mF )

〈1 + V0 cos (ϕd + ϕZ,F,mF
+ ϕSagnac)〉 (10)

where 〈...〉 refers to the average over the velocity distri-
bution P (v) given by eq. (1). We have also taken into
account the Sagnac phase shift due Earth rotation [50]:
ϕSagnac is proportional to 1/v and it is equal to 0.688 rad
for v = 1000 m/s. As the Zeeman phase shifts ϕZ,F,mF

are very different for the various sublevels, the corre-
sponding contributions to the fringe signal are no more in
phase and the fringe visibility exhibits a series of minima
and revivals when the gradient increases [42, 45, 51, 52].
The phase-shift ϕZ,F,mF

is easy to calculate if, as in
previous studies, we assume an adiabatic behavior. The
direction of the magnetic fieldB is slowly varying in space
so that the projectionmF of the F angular momentum on
an axis parallel to the local field is constant. The inter-
ferometer arms are very close to the z-axis and we note
δx (z) the distance between the two arms, the Zeeman
phase shift is related to the Zeeman energy shift UZ,F,mF

of the F,mF sublevel by:

ϕZ,F,mF
= −

∫

∂UZ,F,mF

∂B

∂B

∂x

δx (z) dz

~v
(11)

ϕZ,F,mF
varies with the atom velocity like 1/v2, with one

v factor obvious in eq. (11) and the other one hidden in
the distance between the two interferometer arms δx (z).
If the field is low enough, Zeeman effect is linear and we
can write:

ϕZ,F,mF
= gFmFJ1 = gFmFAJ1

IC

J1 = AJ1
IC =

µB

~v

∫

∂B

∂x
δx(z)dz (12)

where IC is the current in the coil producing the field
gradient. The ground state Landé factors gF are equal
to g1 ≈ −1/2 and g2 ≈ 1/2 and, throughout this discus-
sion, we will neglect the very small nuclear contribution
to Zeeman effect. However, the eq. 12 is too simple as
it neglects the laboratory field which dominates the field
due to the magnetic coil when the current IC is small.
Moreover, the gradient along the x-axis of the labora-
tory field is not negligible. It is easy to show that, for
moderate and strong fields, the effect of the laboratory
can be approximately represented by an offset I0,C of the
coil current IC and a supplementary phase shift J0,C due
to the gradient outside the region where the magnetic

field created by the magnetic field dominates the labora-
tory field. Taking these corrections into account, eq. 12
becomes:

ϕZ,F,mF
= gFmF (AJ1

|IC − I0,C |+ J0,C)

with J0,C =
µB

~v

∫

∂B0

∂x
δx(z)dz (13)

The magnetic field produced by the magnetic coil is
strong enough to partially uncouple the ground state hy-
perfine structure and nonlinear Zeeman effect appears.
We take this effect into account with the second order
term in B in the expansion of ϕZ,F,mF

. For this term
which is rather small, we do not make any correction for
the laboratory field:

ϕZ,F,mF
= gFmF (J1 |IC − I0,C |+ J0,C) +

±(1− m2
F

4
)AJ2

I2C

AJ2
I2C =

µ2
B

~v∆E

∫

B
∂B

∂x
δx(z)dz (14)

where ∆E is the ground state hyperfine splitting and the
± sign is associated to F = I ± 1/2. We assume that a
Zeeman phase shift of the third order J3 is fully negligible
since the coil is too small and the applied current are too
weak.

D. Magnetic dephasing of the atom interferometer

signals: the signals and their analysis

The atom interferometer signals versus the applied
magnetic field strongly depend whether the atoms are op-
tically pumped in a well-defined F , mF sublevel or not.
Therefore, we can estimate the efficiency of the optical
pumping using a fit of the data.
In the fig. 7, both the phase shift ∆φ = φ(Ic) − φ(0)

and the relative fringe visibility Vr(IC) = V(IC)/V(IC =
0) are plotted versus the current coils. We show three
experimental cases: when the optical pumping is turned
off (atoms are supposed to evenly populate the F , mF

sublevels) and when optical pumping is adjusted to pre-
pare the atoms either in F = 2, mF = 2 or mF = −2. In
the absence of optical pumping, the phase shifts induced
by atoms in different sublevels cancel out and the mea-
sured phase shift is equal to 0. With the optical pumping
in F = 2 mF = +2 (or mF = −2), the measured phase
shift scales linearly with the current Ic. In the experi-
ments |Ic| < 10A, so the effect of a residual population
in the unwanted sublevels is very weak and does not im-
pact the phase shift measurement. In consequence, the
phase shift signal is not suitable for the optical pumping
evaluation.
On the other hand, fitting the relative visibility allows

for a better estimation of the population in the sublevels.
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(a)

(b)

FIG. 7: (Color on line) (a) Phase shift ∆φ = φ(Ic) − φ(0)
versus the current Ic. The experimental data points are rep-
resented by (black) squares in the absence of optical pumping.
In the presence of optical pumping, the data points are (green)
triangles when pumping in the F = 2,mF = +2 sublevel and
(blue) round dots when pumping in the F = 2,mF = −2
sublevel. (b) The relative fringe visibility Vr(IC) is plotted
as a function of the current IC in the compensator coil. The
dashed line is a simulation for 100% optical pumping into the
mF = +2 state and the full lines are the best fits to the data
(see text). Around Ic = 5 we observe the velocity revival and
and a phase of π rad for the non-pumping case.

If we consider a boundary case, with no optical pumping,
the relative visibility exhibits a cancelation and a weak
revival, due to beat notes between discrete values of the
phase shifts ϕZ according to the mF sublevels. In case
of a linear Zeeman approximation, the visibility cance-
lation appears when ϕZ = ±mF × π (for details [45])).
For the other boundary, when we have a perfect optical
pumping, a single sublevel F = 2 mF = 2 (or mF = −2)
is populated. In this case, all the atoms with a given ve-
locity have an identical Zeeman phase shift scaling with
1/v2. Therefore, the average over the velocity distribu-
tion of the atoms leads to an almost a Gaussian curve for
the relative visibility. The discrepancy between the data
and the Gaussian shape comes from residual population
in the unwanted sublevels.

This data processing is a difficult task because we
have to fit a nonlinear function with several dependent
parameters. In order to estimate these parameters we
need three experimental configurations: without opti-

cal pumping, with optical pumping in F = 2, mF = 2
and mF = −2. In the configuration with optical pump-
ing, almost all the atoms are in F = 2,mF = +2 (or
F = 2,mF = −2) so the nonlinear term in eq. 14 is too
weak to have a significant impact on the fit. Therefore,
the Zeeman phase shift depends on the factor gF×mF , so
we have to consider only five (actually four normalized
populations) different values according to the sublevels
(table I).

In addition to these 4 normalized populations, we have
7 other parameters to fit the data. The first parameter is
the visibility V0 when the atoms does not feel a magnetic
field gradient. Then we have to consider the two biggest
effects: the Zeeman phase shift (equation 14) and the
hyperfine dependence of the atom diffraction.

In order to fit the Zeeman effect, we need to know the
coefficient J1 (eq. 14) which links the magnetic field ex-
perienced by the atoms along their trajectories and the
current through the coils. Since this parameter change
slightly with the temperature we added a scale factor. In
addition, the atoms see the residual magnetic field in the
vacuum chamber which is estimated by the current I0C
for which this residual magnetic field and the field due
to magnetic coils cancel. The Zeeman phase shift also
depends on the velocity distribution which impacts the
visibility. We can include this effect with a very good
approximation by assuming a gaussian velocity distribu-
tion and using the parallel velocity distribution speed
ratio S‖.

The other effect is the hyperfine dependence of the
laser diffraction of the atoms due to the laser detuning
which is not the same for the both hyperfine levels and
also because the two transitions does not have the same
optical transition amplitudes. However, we can balance
these two effects by setting the laser to a proper detun-
ing. This effect is modeled in the fit process which add
an additional parameter to consider an imperfect cance-
lation.

Finally, the fit allows for a good estimation of the pop-
ulations P (F,mF ) after optical pumping in mF = +2
and mF = −2. In the table I, we report the results for
the lithium beam with neon as a carrier gas. The pump-
ing efficiency is quite good: for a σ+ pumping (Bx > 0)
we have P (F = 2,mF = +2) = 90.1 ± 1.2% and for a
σ− pumping (Bx < 0) we have P (F = 2,mF = −2) =
94.1± 1.7%.

This fit supports what appears clearly in figure 7: the
measured visibility is closer to the predicted visibility for
a perfect pumping when we pump in the mF = 2 than
in the mF = +2 sublevel. This result is not easy to un-
derstand as we simply change the magnetic field direc-
tion. We have considered the possibility of some depump-
ing by Majorana transitions when the atom exits of the
Helmholtz coils. In this region, Bx and By change signs.
In order to change the mF -value of the pumped level, we
invert the current in the Helmholtz coils producing Bx

without changing its value, the situation is not exactly
symmetric for the two pumping cases. If this explana-
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parameter Bx > 0 Bx < 0

P(2,2) 0.000 ± 0.060 0.901 ± 0.012

P(2,-2) 0.941 ± 0.017 0.002 ± 0.032

P(2,1)+P(1,-1) 0.006 ± 0.011 0.000 ± 0.001

P(2,-1)+P(1,1) 0.050 ± 0.018 0.038 ± 0.011

P(2,0)+P(1,0) 0.004 ± 0.028 0.059 ± 0.010

TABLE I: Populations P (F,mF ) sublevels deduced from the
fits of the visibility and phase shift data set for the lithium
beam with neon as the carrier gas (mean velocity vm = 1520
m/s).

tion was correct, the depumping should be larger for the
same mF level when we vary the atomic beam velocity
and it should increase with this velocity. The measured
populations of the F = 2,mF = ±2 level for different
values of the atomic beam mean velocity are collected in
table II and these results do not exhibit any systematic
trend with the atomic beam velocity nor with the sign of
the mF value of the pumped level.

vm (m/s) mF P (2,mF )

744± 18 +2 (96 ± 6) %

−2 (93 ± 7) %

1062± 20 +2 (100 ± 13)%

−2 (95 ± 11)%

1520± 38 +2 (90 ± 1) %

−2 (94 ± 2) %

TABLE II: Optical pumping efficiency for different atom ve-
locities: the measured population P (F = 2, mF ) in the
pumped sublevel is given as a function of mF = ±2 for three
different atomic beam mean velocity vm.

Even if we have no evidence of Majorana transitions,
it would be good to improve the control on the magnetic
field in this experiment:

• a guiding field of fixed direction and of the order of
a few 10−5 T would not perturb the interferometer
and it would prevent any risk of Majorana tran-
sitions. In addition, it might help to reduce the
x-gradient of the laboratory field; this would be in-
teresting as this gradient complicates the analysis
of the Zeeman phase shifts (see eq. (13));

• the magnetic coil geometry could be improved with
a combination of Helmholtz and anti-Helmholtz
coils of different sizes. Moreover, the cooling of this
coil should be improved: presently, after a long pe-
riod of operation with a large current, the thermal
expansion of the coil support is sufficient to modify
the field gradient at the location of the interferom-
eter arms.

VIII. CONCLUSION

This paper describes the optical pumping of a super-
sonic beam of lithium atom used for atom interferometry.
Because of the narrow hyperfine structure of the 2P3/2

state, we have chosen to pump the atoms with the D1-line
and the selected pumping scheme collects all the ground
state population in a dark state, the F = 2,mF = +2
(or −2) sublevel. We developed a simplified model of
the pumping process which predicts a high pumping ef-
ficiency, even if the polarization of the laser beams is
not perfect. With previous theoretical and experimental
works, we verified that the effects due to atom density,
namely radiation trapping and spin-exchange collisions,
should be negligible in our experiment.
Our atom interferometer requires an atomic beam with

a very high transverse collimation, so that only a narrow
transverse velocity class need to be pumped: this is an
advantage because the laser beams used for the pump-
ing does not require as much power as they would have
needed for a broader class of transverse velocity. How-
ever,the weakness of the collimated beam makes it diffi-
cult to test the atom distribution over the ground state
sublevels by the usual laser induced fluorescence tech-
nique so we characterized this distribution by two other
techniques:

• following Gould et al. [18], we have used a laser
deflection experiment. This experiment has clearly
shown that a large fraction of the population is col-
lected in the aimed sublevel but because of a lim-
ited signal to noise ratio and insufficient resolution
of the lines, we have not been able to put a precise
upper limit on the residual populations of the other
sublevels;

• a magnetic dephasing experiment: as the Zeeman
phase shift is a function of the sublevels, the vis-
ibility and phase of the interferometer signals are
sensitive to the distribution of the atomic popula-
tion over the F,mF sublevels. In the range stud-
ied here, the fringe phase is not very sensitive to
a weak population distributed over the sublevels
other than the F = 2,mF = +2 (or −2) but the
fringe visibility is very sensitive to the population
distribution.

With the second technique, we estimated the popula-
tion in the aimed sublevel to be better than 95 ± 5%.
The small variations of this efficiency with the sign of
mF = ±2 or with the mean velocity of the atomic beam
are not well understood. This performance is close to
the efficiency achieved by B.P. Masterson et al. [4] with
a cesium beam (95% of the population in the aimed sub-
level) or G.W. Schinn et al. [5] with a sodium beam
(97% of the population in the aimed sublevel). We used
the optically pumped beam to perform a new measure-
ment of the topological He-McKellar-Wilkens phase [53]
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and optical pumping has considerably improved the ex-
perimental accuracy by eliminating systematic errors due
to the average over 8 sublevels [1].
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M. Büchner, A.D. Cronin and J. Vigué, Eur. Phys. J.
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and A. Cronin, Phys. Rev. A 78, 013638 (2008)
[51] J. Schmiedmayer, M.S. Chapman, C.R. Ekstrom,

T.D. Hammond, D.A. Kokorowski, A. Lenef, R.A. Ru-
binstein, E.T. Smith and D.E. Pritchard, in Atom inter-
ferometry edited by P.R. Berman (Academic Press 1997),
p. 1.

[52] D.M. Giltner, PhD thesis, University of Colorado at Fort
Collins (1996), unpublished.

[53] J. Gillot et al , submitted to Phys. Rev. Lett.


