
HAL Id: hal-00827196
https://hal.science/hal-00827196

Submitted on 11 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Robust Digital Annulus Fitting with Bounded
Error

Minh Phan Son, Yukiko Kenmochi, Akihiro Sugimoto, Hugues Talbot, Eric
Andres, Rita Zrour

To cite this version:
Minh Phan Son, Yukiko Kenmochi, Akihiro Sugimoto, Hugues Talbot, Eric Andres, et al.. Efficient
Robust Digital Annulus Fitting with Bounded Error. 17th IAPR International Conference on Discrete
Geometry for Computer Imagery, Mar 2013, Seville, Spain. pp.253-264, �10.1007/978-3-642-37067-
0_22�. �hal-00827196�

https://hal.science/hal-00827196
https://hal.archives-ouvertes.fr


Efficient robust digital annulus fitting
with bounded error ?

Minh Son Phan1,2, Yukiko Kenmochi1, Akihiro Sugimoto3, Hugues Talbot1

, Eric Andres4, and Rita Zrour4
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Abstract. A digital annulus is defined as a set of grid points lying be-
tween two circles sharing an identical center and separated by a given
width. This paper deals with the problem of fitting a digital annulus to
a given set of points in a 2D bounded grid. More precisely, we tackle the
problem of finding a digital annulus that contains the largest number
of inliers. As the current best algorithm for exact optimal fitting has
a computational complexity in O(N3 logN) where N is the number of
grid points, we present an approximation method featuring linear time
complexity and bounded error in annulus width, by extending the ap-
proximation method previously proposed for digital hyperplane fitting.
Experiments show some results and runtime in practice.
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1 Introduction

Shape fitting is widely used in computer vision, computational geometry, image
analysis and many other areas. Given a set of points S, a shape model M (for
example, lines, curves, planes, or circles), and some criterion F , the problem is
to fit M to S under F . Depending on the criteria employed, we have several
well-known methods dealing with this problem. The method of least-squares [1]
minimizes the sum of squared residuals from all given points. This method is
popular, but it is not efficient in the presence of outliers. In order to enhance
the robustness, many alternative methods have also been proposed, such as the
method of least-absolute-values [2], the method of least-median-of-squares [3].
However, these methods are still not robust in the presence of many outliers. One
of the commonly used methods for robust shape fitting is RANdom SAmple Con-
sensus (RANSAC) [4]. It can provide robust results even if there is a significant
number of outliers, with reasonable runtime in practice, while it provides neither
guarantee of optimal solution nor bound of approximation error.

? This work has been partly supported by the French Agence Nationale de la Recherche
(ANR-2010-BLAN-0205 03) and a French-Japanese joint research project called the
Sakura program (No. 27608XJ).



In this paper, we use a criterion similar to that of RANSAC. As we assume
that our input data is discrete, such as a digital image, we use a digital shape
model, instead of a continuous one as generally used for the above mentioned
conventional methods. Fitting of digital lines [5] or digital planes [6] has been
already studied. This paper aims at exploring the problem of fitting a digital
circle. We consider a digital circle as a digital annulus [7], defined as a set of grid
points lying between two circles sharing a center but with different radii. This
paper treats the problem of fitting a digital annulus to a given set of points in
a 2D bounded grid. More precisely, we tackle the problem of finding a digital
annulus that contains the largest number of inliers. The current best algorithm
for exact optimal fitting has a computational complexity in O(N3 logN) [8]. We
present an approximation method featuring linear time complexity and bounded
error in annulus width by extending an approximation method proposed for
digital hyperplane fitting [6].

We first formulate our digital annulus fitting as the digital plane fitting prob-
lem with some particular setting. For our approximation method, we then employ
the approximate halfspace range searching technique [9], which consists of two
main steps: generating an approximate range space, and providing a data struc-
ture to solve approximate halfspace range searching with a constant query time.
We follow these two steps, in the context of solving our converted digital plane
fitting, by combining two problems of approximate halfspace range searching.
We also explain how to interpret results of digital plane fitting in the context
of digital annulus fitting, with an interpretation of bounded error. Finally, we
provide experimental results and measured runtimes.

2 Problem of digital annulus fitting

2.1 Digital annulus and its fitting problem

In this paper, we follow the definition of a digital annulus as introduced by
Andres et al. [7] and used by Zrour et al. for fitting [8]. We first describe the
continuous model of circles. A continuous circle C with center (a, b) and radius
r in the Euclidean space R2 is defined by

C = {(x, y) ∈ R2 : (x− a)2 + (y − b)2 = r2} (1)

where a, b, r ∈ R. In the discrete space Z2, the digitization of (1) is defined by a
set of grid points lying between two circles that share the same center (a, b) and
two different radii r − w

2 and r + w
2 , where w ∈ R is the width between the two

circles. Namely,

A =

{
(x, y) ∈ Z2 :

(
r − w

2

)2
≤ (x− a)2 + (y − b)2 ≤

(
r +

w

2

)2}
. (2)

This is called a digital annulus, or Andres circle [7]. Given a set S of discrete
points coming from a [0, δ]2 grid, where δ ∈ N, the problem is to fit this digital



annulus model A to S such that the fitted digital annulus contains as many
points of S as possible, called inliers. This problem is described below. Points
that are not contained in the model are called outliers.

Problem 1 (Digital annulus fitting)
Input : A set S of discrete points bounded in a [0, δ]2 grid, and a fixed width w.
Output : A digital annulus A containing the maximum number of inliers in S.

This digital annulus fitting problem is solved by an exact method, introduced
in [8], in time O(|S|3 log |S|). This complexity of the exact solution is not feasible
in practice when |S| is large. In some cases it may be sufficient to compute an
approximate solution if the solution is obtained with inexpensive computational
complexity. We thus propose here an approximate method with linear runtime
and bounded error, instead of searching for the exact solution. For this purpose,
we first convert our digital annulus fitting problem into a more simple problem
in the following.

2.2 Digital plane fitting induced by digital annulus fitting

Since the inequalities (2) are non-linear with respect to the unknown parameters
a, b, r, we convert those to linear ones along the known conversion [10]. Then,
the digital annulus formula of (2) can be converted into the digital plane formula
[11], defined by two inequalities of the form 0 ≤ Ax + By + z + C ≤ W where
W is the width.

The inequalities (2) are written as:(
r − w

2

)2
≤ −2ax− 2by + x2 + y2 + a2 + b2 ≤

(
r +

w

2

)2
. (3)

Letting 
z = x2 + y2,
A = −2a,
B = −2b,

C = a2 + b2 −
(
r − w

2

)2
,

C ′ = a2 + b2 −
(
r + w

2

)2
,

(4)

we have that
0 ≤ Ax+By + z + C ≤ C − C ′.

We can thus define the converted digital plane model as follows:

P =
{

(x, y, z) ∈ Z3 : 0 ≤ Ax+By + z + C ≤ C − C ′
}
. (5)

Obviously this has the form of a digital plane [11], which is defined as a set of grid
points lying between two parallel planes, whose width is set to be W = C −C ′.
Therefore, (5) leads to the following observation.

Observation 1 The problem of digital annulus fitting is equivalent to the prob-
lem of digital plane fitting for the model defined by (5).



Fig. 1. Illustration of converting a circle (colored in blue) in 2D into a plane (colored
in red) in 3D. The converted 3D points are on the parabola z = x2 + y2 (colored in
violet).

This converted problem is described as follows.

Problem 2 (Converted digital plane fitting)
Input : A set S of discrete points bounded in a [0, δ]2 grid, and width w.
Output : A digital plane P containing the maximum number of inliers when the
input set is S′ = {(x, y, x2 + y2) : (x, y) ∈ S}.

Figure 1 illustrates the relationship between A and P, so that the 2D coordi-
nates (x, y) of A are converted into 3D coordinates (x, y, x2 +y2) of P. In fact,
the setting of new parameters in (4) is not efficient since ∀(x, y) ∈ [0, δ]2 ⇒ z =
x2 + y2 ∈ [0, 2δ2], and consequently the 2D grid of size [0, δ]2 for digital annulus
fitting is changed to the 3D grid of size [0, δ]2 × [0, 2δ2] for the converted digital
plane fitting; the grid size for z is too large in practice. We therefore define,
instead of (4), 

z = 1
2δ (x2 + y2),

A = −aδ ,
B = − b

δ ,

C = 1
2δ

(
a2 + b2 −

(
r − w

2

)2)
,

C ′ = 1
2δ

(
a2 + b2 −

(
r + w

2

)2)
,

(6)

by dividing all the terms in (3) by 2δ. With this setting, we see that x, y ∈
[0, δ] ⇒ z = 1

2δ (x2 + y2) ∈ [0, δ], so that we have a 3D grid [0, δ]3 for digital
plane fitting.

Concerning the ranges of the new parameters A, B, C and C ′, we first obtain
a, b ∈ [0, δ] ⇒ A = −aδ , B = − b

δ ∈ [−1, 0]. Accordingly, the search space for
the converted digital plane is reduced, compared with the standard digital plane

fitting. To enforce
(
r − w

2

)2
and

(
r + w

2

)2
to be positive, C and C ′ in (6) must



satisfy

C,C ′ ≤ a2 + b2

2δ
or equivalently, C,C ′ ≤ δ(A2 +B2)

2
.

This indicates that the ranges of the parameters C and C ′ depend on those of

A and B, and we can simply specify that C,C ′ ∈ [−δ, δ(A
2+B2)
2 ].

We also recall that the width W of a digital plane, converted from a digital
annulus, is given by

W = C − C
′

=
rw

δ
(7)

after the normalization of (6). This indicates that W is not constant, but depends
on the radius r of the digital annulus. Therefore, our converted digital plane
fitting problem is different from the standard one [6] in that the width W is not
a constant. Since we obtain from (6)

r =

√
δ(A2 +B2)

2
− 2δC +

w

2
, (8)

we can also say that W depends on A, B and C. In other words, once we set
the values for A, B and C, we can automatically set the value for r, and thus
for W as well.

For this converted digital plane fitting problem, we apply the approximate
method, which is originally proposed for the standard digital plane fitting prob-
lem [6]. We show in the next section that the dependency of W on A, B and C
does not critically obstruct applying the approximate method to our converted
digital plane fitting problem.

3 Approximate method for digital annulus fitting

3.1 Method outline

The proposed digital annulus fitting algorithm consists of four steps, as described
in Algorithm 1. In the first step, we convert the problem of digital annulus fitting
into a problem of digital plane fitting by using the notions presented in the
previous section. In other words, a set of points S in the 2D grid of size [0, δ]2 is

transformed into the set of points S′ = {(x, y, x
2+y2

2δ ) : (x, y) ∈ S} in the 3D grid
of size [0, δ]3. In the second step, we build a data structure with respect to S′ for
the approximate halfspace range searching algorithm. More precisely, we specify
a query set H for approximate halfspace range searching with a given bounded
error ε, and generate a data structure that allows to answer the following query:
for any plane h ∈ H, how many points of S′ are on or below h with the bounded
error ε. In the third step, we first modify the query for the digital plane fitting
with width W + 5ε, i.e., we count the number of points of S′ that lie between
two parallel planes with distance W + 5ε. We then find an approximate digital
plane with the maximum number of inliers. The final step is to interpret the
result of the converted problem as that of the original digital annulus problem.

As Steps 1 and 4 are already explained in the previous section, we describe
Steps 2 and 3. Furthermore, we discuss the complexity of our proposed method.



Algorithm 1: Approximate digital annulus fitting

Input: A set S of discrete points bounded in [0, δ]2 grid, an approximation
error ε > 0, a digital annulus width w > 0.

Output: The fitted digital annulus A containing the maximum number of
inliers in S.

1 Convert Problem 1 into Problem 2;
2 Build a data structure for approximate halfspace range searching;
3 Make queries about range counting for all of the approximate digital planes and

Find the one that contains the maximum number of inliers;
4 Interpret the result of the digital plane fitting as digital annulus fitting.

3.2 Data structure for approximate halfspace range searching

As this part is based on the work of Fonseca et al. [9], we first summarize their
method, and then explain the changes suitable for our problem.

Given a set of 3D points T and a plane h in the form Ax+By + z +C = 0,
halfspace range searching (or counting) is the problem of counting the number
of points of T that are on, or below h. In order to solve this problem, Fonseca
et al. [9] have proposed an approximate method with a bounded error ε > 0.

One of the main ideas of the method is to define a sufficiently large finite
set of planes H, so that any query plane is approximated by some plane in H
with bounded error ε. In this paper, H is obtained by generating different slopes

A,B ∈ [−1, 0] and different intercepts C ∈ [−δ, δ(A
2+B2)
2 ]; for their ranges, see

the previous section. For A and B, the interval of their variations should be set
to be ε

δ , while it should be ε for C (see [9] for more details).
For each plane h ∈ H, we compute a counting function f(T ∩h) that returns

approximately the number of points of T that are on, or below h. The objective
of constructing a data structure is to compute this function f(T ∩ h) for all
the planes h ∈ H. Points within distance ε from a plane h may or may not be
reported.

The computational complexity is described as follows:

Theorem 1. (Fonseca et al. [9]) For a set of N points in the [0, 1]3 unit grid
and some ε > 0, one can build a data structure with O(ε−3) storage space, in
O(N+ε−3logO(1)(ε−1)) time, such that for a given query plane h, the number of
points on or below h can be approximately reported in O(1) time, in the following
sense: all the points (below h) that have a larger distance than ε from h are
counted. Points that are closer to h on both sides may or may not be reported.

In fact, in order to obtain this complexity (linear to N), we build a data
structure based on an octree. Let us call a [0, δ]3 grid a primitive cube, which is
divided into 8 children. Its children are also divided recursively into 8 subcubes,
until the size of divided cubes equals ε. Let X be a cube generated from a
primitive cube, and T be a set of points bounded by X in dimension δ. We
then verify whether each plane of H passes through X, and compute f(T ∩ h),
∀h ∈ H in the following way. Let Xi denote the children of X, for i = 1..8, and



Ti = Xi ∩ T . We then compute f(T ∩ h) by summarizing all the results from its
children f(Ti ∩ h), which is also recursively computed, as follows:

f(T ∩ h) =


8∑
i=1

f(Ti ∩ h) if the size of X is larger than ε and h ∩X 6= ∅,

0 if the size of X is larger than ε and h is below X,
|T | otherwise.

(9)
Finally, the data structure of a primitive cube is built recursively. Figure 2

illustrates a 2D example for computing the counting function f(T ∩ h) of (9).

Fig. 2. Illustration for recursively computing f(T ∩h) in a 2D case (a line) by dividing
a primitive square (corresponding to a cube in 3D) into 4 children. The light grey cells
are the squares of size ε through which a query line h goes, while the dark grey cells
are the squares below h. See (9) for the definition.

3.3 Query for approximate digital plane fitting

After building a data structure for a set of points S′ in the [0, δ]3 grid, we count
the number of points lying in every digital plane, i.e., between a pair of parallel
planes with distance W . In order to calculate it approximately, we need a finite
query set Q of approximate digital planes for our converted digital plane fitting
as follows. For each plane h ∈ H, we take the values of A, B and C of h for the
digital plane parameters A, B, and C, respectively. Once the values of A, B and
C are fixed, we can automatically set C ′ or W from (7) and (8), i.e., the rest of
the digital plane parameters. To generate a query for approximate digital plane
fitting with a width W , we refer to the following theorem presented in [6].5

Theorem 2. (Aiger et al. [6]) Given a set of N points in [0, δ]3, and some
ε > 0, W > 0, a digital plane of width W +5ε that contains n > nopt points, can
be found in O(N + ( δε )3logO(1)( δε )) time, where nopt is the maximum number of
points that any digital plane of width W in [0, δ]3 can contain.

5 Even if the original theorem was proposed for N points on a [0, δ]3 grid, the theorem
itself, as well as the proposed method, is established for a more general setting such
that the N points can simply be in [0, δ]3 regardless of any grid.



In fact, we need to generate a new query set Q such that any digital plane
with width W is completely contained in at least one of the digital planes in Q.
Theorem 2 indicates that such query digital planes must have a width of at least
W + 5ε. In other words, due to this setting, the important property, n ≥ nopt, is
guaranteed. Even if W is not constant as in this paper, because it depends on
each parameter set of A, B and C, this result is still valid.

An approximate solution of the converted digital plane fitting is obtained by
finding the digital plane in Q in which the number of points is maximized.

Fig. 3. Relationship between approximate (dotted line) and optimal digital line (con-
tinuous line). There is at least one approximate digital line that contains the optimal
digital line.

3.4 Complexity of the approximate digital annulus fitting

As a result, we obtain the next corollary from Theorem 2 after minor adaptations.

Corollary 1 Given a set of N points on a grid [0, δ]2, and some ε > 0, w > 0,
a digital annulus of width w+5 δr ε that contains n > nopt points, can be found in

O(N + ( δε )3logO(1)( δε )) time, where r is the radius of a digital annulus of width

w + 5 δr ε and nopt is the maximum number of points that any digital annulus of
width w in [0, δ]2 can contain.

This corollary shows that the proposed method has linear computational
complexity with respect to N . Obviously, if we decrease the bounded error ε, the
computational time increases due to the second term, just like for approximated
digital plane fitting; see Theorem 2. The difference to Theorem 2 is that ε cannot
be tuned directly in the original 2D grid for digital annulus fitting, but in the
3D grid for the converted digital plane fitting. In other words, we can give ε as



(a) (b)

(c) (d)

Fig. 4. The fitted digital annuli (colored in red) for ε = 1.5 (a) and ε = 1.0 (b). They
contain the true digital annulus (colored in blue). The converted digital planes are also
illustrated for ε = 1.5 (c) and ε = 1.0 (d).

a constant ambiguous zone around the border of a digital plane in 3D (i.e. a
zone in which points may or may not be counted), but once we project it to 2D
before the conversion, the corresponding ambiguous zone becomes δ

r ε which is
obtained from (7).

4 Experiments

The 2D point cloud data used for the experiments were created as follows. By
using the digital annulus A of (2) with w = 3.0, a = b = 100.0, we randomly
generated 400 inliers that satisfy A, and 100n outliers that do not satisfy A,
for n = 0, . . . , 10; there are 11 variations for the number of outliers. All of the
generated points are bounded in the [0, 200]2 grid. The values for the parameters
of the converted digital planes P of (5) are also computed: A = B = −0.5,
C = 30.1975 and C ′ = 28.84. Note that the experiments were run on a standard
PC with core i3 CPU at 2.20 GHz.

In the first experiment, we had n = 1 constant (i.e., 100 outliers) for the
input data and observed the fitting results by using different bounded errors
such that ε = 3.0, 2.5, 2.0, 1.5, 1.0. As seen in Table 1 and Figure 4, the num-
ber of inliers decreases as ε becomes smaller, and it tends to converge to the
ground-truth solution. Clearly, the smaller the value of ε, the more precise the
solution. Concerning the runtime, it is in fact polynomial in factor ε (see Figure



Table 1. Results of digital annulus fitting with varied ε to the data with n = 1.

ε runtime parameters
(approx. a b r A B C C′ inliers
method)

3.0 7.80 sec 96.0 96.0 89.62 -0.48 -0.48 34.0 18.0 441

2.5 13.11 sec 92.5 97.5 90.89 -0.46 -0.49 31.5 17.5 435

2.0 26.43 sec 96.0 104.0 95.03 -0.48 -0.52 33.0 22.0 425

1.5 59.46 sec 99.0 96.0 90.64 -0.48 -0.50 31.5 22.5 419

1.0 200.54 sec 100.0 98.0 89.46 -0.50 -0.49 32.0 26.0 406

ground truth 100.0 100.0 90.5 -0.50 -0.50 30.20 28.84 400

6). Therefore, we need to select an appropriate ε (for example 1.5 or 1.0 for
this experiment) for assuring a reasonable runtime and an approximate solution
which is not far from the ground-truth.

In the second experiment, we decided to use ε = 1.5 for digital annulus
fitting, for all the input data sets (i.e., different numbers of outliers, 100n for
n = 0, . . . , 10). As seen in Table 2 and Figure 5, numbers of inliers are always
greater than 400 (i.e., the number of inliers for the ground-truth digital annulus)
and the parameter values are almost similar, while the runtimes are linear -
almost constant (around 1 minute). For comparison, the exact algorithm [8]
with computational complexity in O(N3 logN) was also applied. The obtained
parameter values are a = 99.25, b = 99.5 and r = 90.65 for all n. The runtimes,
shown in Table 2 and Figure 6, are indeed polynomial with respect to the number
of points.

Table 2. Results of digital annulus fitting with ε = 1.5 to the data with 100n outliers.
The runtimes of the approximation method and the exact method are compared.

outliers runtime parameters runtime
(100n) (approx. a b r A B C C′ inliers (exact.

method) method)

0 46.20 sec 96.0 99.0 90.65 -0.48 -0.495 31.5 22.5 400 1 m 22 sec

100 59.46 sec 96.0 99.0 90.65 -0.48 -0.495 31.5 22.5 419 2 m 45 sec

200 61.48 sec 94.5 96.0 92.46 -0.47 -0.48 28.5 19.5 437 4 m 45 sec

300 63.83 sec 94.5 96.0 92.45 -0.47 -0.48 28.5 19.5 454 7 m 43 sec

400 63.94 sec 94.5 96.0 92.45 -0.47 -0.48 28.5 19.5 476 11 m 37 sec

500 64.57 sec 94.5 96.0 92.45 -0.47 -0.48 28.5 19.5 500 16 m 43 sec

600 65.00 sec 96.0 99.0 90.65 -0.48 -0.495 31.5 22.5 519 23 m 8 sec

700 65.22 sec 96.0 102.0 90.66 -0.48 -0.51 33.0 24.0 551 30 m 49 sec

800 65.77 sec 96.0 99.0 90.65 -0.48 -0.495 31.5 22.5 570 40 m 24 sec

900 66.04 sec 96.0 99.0 90.65 -0.48 -0.495 31.5 22.5 591 51 m 3 sec

1000 66.18 sec 96.0 99.0 90.65 -0.48 -0.495 31.5 22.5 618 64 m 8 sec

ground truth 100.0 100.0 90.5 -0.50 -0.50 30.20 28.84 400



(a) (b) (c)

(d) (e) (f)

Fig. 5. The fitted digital annuli (colored in red) with 100n outliers in input for n = 1
(a), n = 4 (b), n = 10 (c). They contains the true digital annulus (colored in blue).
The converted digital planes are also illustrated for n = 1 (d), n = 4 (e), n = 10 (f).

5 Conclusion

This paper presented an approximation method for fitting a digital annulus.
Given N points in a [0, δ]2 grid, a width w and an approximation parameter ε,
the fitted digital annulus that contains the maximum number of points with a
width w + 5 δr ε, is found in O(N + ε−3logO(1)(ε−1)) time. The method is linear
in the number of points N , but it is polynomial in approximation parameter ε.
Therefore, we need to find an appropriate ε for assuring a reasonable runtime.
The method is also robust to outliers. The number of inliers converges to the
optimal solution when ε decreases.
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