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Sufficient conditions for topological invariance of
2D images under rigid transformations⋆
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2 Université de Reims, CReSTIC, EA 3804, France

Abstract. In R
2, rigid transformations are topology-preserving operations. How-

ever, this property is generally no longer true when considering digital images
instead of continuous ones, due to digitization effects. In this article, we inves-
tigate this issue by studying discrete rigid transformations (DRTs) onZ2. More
precisely, we define conditions under which digital images preserve their topo-
logical properties under any arbitrary DRTs. Based on the recently introduced
notion of DRT graph and the classical notion of simple point,we first identify a
family of local patterns that authorize topological invariance under DRTs. These
patterns are then involved in a local analysis process that guarantees topological
invariance of whole digital images in linear time.

Keywords: 2D digital image, discrete rigid transformation, topology, simple point,
DRT graph, Eulerian model.

1 Introduction

In 2D, rigid transformations (i.e., rotations composed with translations) are involved in
numerous image processing/analysis tasks,e.g., registration [1] or tracking [2]. In such
applications, the images are generally digital, and can then be considered as functions
I : S → F from a finite subsetS ⊂ Z

2 to a value spaceF. While rigid transformations
are topology-preserving operations inR2, this property is generally lost inZ2, due to
the discontinuities induced by the mandatory digitizationfrom R to Z. In particular,
discrete rigid transformations (DRTs) –that include discrete rotations [3,4,5,6]– are not
guaranteed to preserve the homotopy type of digital images,as exemplified in Fig. 1.

In this article, we study this specific issue. More precisely, we investigate some
conditions under which digital images preserve their topological properties underany
arbitrary DRTs, by considering the Eulerian (i.e., backwards) transformation model. To
reach this goal, we consider (i) the notion of DRT graph, recently introduced by the
authors in [7,8], that defines a combinatorial model of all the rigid transformations of a
digital image, and (ii ) the classical notion of simple point [9,10], that providessufficient
conditions to guarantee the preservation of homotopy type.

By combining these two notions, we first propose a way to determine transformed
images which have the same homotopy type as the initial one, by scanning the whole
DRT graph associated to this image. Then, we show that this global approach, which
presents a polynomial complexity, can be simplified into a local approach, based on a

⋆ The research leading to these results has received funding from the FrenchAgence Nationale
de la Recherche(Grant Agreement ANR-2010-BLAN-0205 03).



Fig. 1. Left: a binary digital image and the grid modeling its discrete structure. Middle: a rigid
transformation applied on this grid. Right: the resulting transformed image, with a homotopy
different from the initial one (the black pixels, in the 8-adjacency, have been split).

spatial decomposition of the image into covering samples. In order to do so, we identify
a family of local patterns that authorize topological invariance under DRTs. These pat-
terns can then be involved in a procedure based on look-up tables (LUT) that guarantee
topological invariance of a whole digital image in linear time.

The article is organised as follows. Sec. 2 presents background notions related to
rigid transformations and digital topology. Sec. 3 describes the topological issues in-
duced by DRTs. Sec. 4 explains how DRT graphs and simple points can be combined to
evaluate topological invariance under DRTs, leading to an algorithm detailed in Sec. 5.
Experiments are proposed in Sec. 6, while Sec. 7 concludes the article.

2 Background notions

2.1 (Discrete) rigid transformations

In R
2, a rigid transformation (i.e., a transformation composed of a translation and a

rotation) is expressed as a bijectionT : R2→ R
2 defined, for anyx = (x, y) ∈ R2 by

T (x) =

(

cosθ − sinθ
sinθ cosθ

) (

x
y

)

+

(

a
b

)

with a, b ∈ R andθ ∈ [0, 2π[ (1)

Such a transformation (also notedTabθ) is unambiguously modeled by the triplet of
parameters (a, b, θ). It is not possible to apply directlyT on a digital imageI : S→ F,
since there is no guarantee thatT (x) ∈ Z2, for anyx ∈ S ⊂ Z

2. The handling ofdiscrete
rigid transformations (DRTs) then requires the definition of a functionT : Z2 → Z

2,
which is the “discrete analogue” ofT . Considering the standard rounding functionD :
R

2 → Z
2, this can be conveniently performed by settingT = D ◦ T , as illustrated on

the diagram below.
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The functionT : Z2→ Z
2 is then explicitly defined, for anyp = (p, q) ∈ Z2, by

T(p) = D ◦ T (p) =

(

[pcosθ − qsinθ + a]
[psinθ + qcosθ + b]

)

(2)

In general, this function is not bijective. However, by setting T−1 = D◦T −1 : Z2 → Z
2,

we can define the transformed digital imageI ◦ T−1 : Z2 → F with respect toT. Note
thatT−1 is not the inverse function ofT in general.
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Fig. 2. Examples of simple points (x, y) and non-simple points (z, t). Modifying the value ofz
would merge two black connected components, while modifying the value oft would create a
white connected component. In both cases, the homotopy typeof the image would be modified.

2.2 Digital topology

Several frameworks are available to model the topological structure of a digital im-
age. InZ2, most of these frameworks (see,e.g., [11,12]) can be conveniently unified
within the frequently used –and also simple– framework of digital topology [9]. In this
framework, the topological notions derive from a graph structure induced by two adja-
cency relations, namely the 4- and 8-adjacencies, which aredefined for any two points
p, q ∈ Z

2 such thatp andq are 4-adjacent(resp. 8-adjacent) if ||p − q||1 ≤ 1 (resp. if
||p− q||∞ ≤ 1). It is well known that, to deal with topological paradoxesrelated to the
digital version of the Jordan theorem, we generally use in one binary digital image a
pair of different adjacency relations, and denote as (α, β) whereα andβ are adjacency
relations for foreground (black) and background (white) pixels respectively. In 2D, we
consider in particular (α, β) = (4,8) or (8,4).

In the graph-based framework of digital topology, the concept of simple point[9,10]
(see Fig. 2) relies on the local notion of adjacency and on theinduced global notion of
connectedness. The simple points provide a way to characterise the preservation of
topological properties in a (binary) image during its transformation. Practically, a pixel
x ∈ S of an imageI : S → F is simpleif its binary value can be switched without
modifying the topological properties ofI . In particular, the simplicity of a pixel can be
tested, in constant time, by only studying its 3× 3 neighbourhood [9]. We will say that
two imagesI and I ′ aresimple-equivalent[13] if I ′ is obtained fromI by iteratively
modifying (successive) simple points. ThusI andI ′ present the same homotopy type.

3 Discrete rigid transformations: topological issues

A (continuous) rigid transformationT establishes a bijection fromR2 to itself. By
opposition, due to the digitisation process induced byD (see Eq. (2)), a discrete rigid
transformationT is, most of the time, not a bijection fromZ2 to itself.

It is plain that for any three distinct pixelsx1, x2, x3 ∈ Z2, we have maxi, j∈{1,2,3}{||xi−
x j||2} ≥

√
2. This leads to the following definition that enables to characterise the status

of a pixel; there are only three possibilities, as illustrated in Fig. 3.

Definition 1 For a pixelx ∈ Z2 and a given DRT T, let M(x) = {y ∈ Z2 | T(y) = x}.
– If |M(x)| = 0, we say thatx is anull pixel.
– If |M(x)| = 1, we say thatx is asinglepixel.
– If |M(x)| = 2, we say thatx is adoublepixel.



Fig. 3. Left: a digital image support and the grid modeling its discrete structure. Right: examples
of a null pixel (in green), a single pixel (in blue) and a double pixel (in red) with respect to a
discrete rigid transformation.

Similar notions for the case of discrete rotations can be found in [5,6].
In particular, a discrete rigid transformationT behaves like a bijection for single

pixels. However the possible existence of null (resp. double) pixels may forbidT to
be a surjection (resp. an injection). Null and double pixelsthus raise topological issues
in both Lagrangian and Eulerian transformation models (seeSec. 3.1). In addition to
these “cardinality-based” issues, supplementary topological problems are induced by
the alteration of adjacency relations between pixels (see Sec. 3.2).

3.1 Transformation models

Two standard transformation models can be considered: the Lagrangian (or forwards)
and the Eulerian (or backwards) models. The Lagrangian model consists of observing
T (x) for every pixelx in the initial space, while the Eulerian model consists of observ-
ing T −1(y) for every pixely in the transformed space. These models are equivalent in
R

2, sinceT is bijective. InZ2, they are however generally distinct, sinceT andT−1

may not be inverse functions.
Depending on each model, null and double pixels lead to different interpretations.

In the Lagrangian model (see Fig. 4(a)), a double pixel in thetransformed space may
receive two different pixel values, and a null pixel receive no pixel value. While this
may be conveniently handled in the case of binary images (which can be considered in
a set-based paradigm), it can lead to correctness and completeness issues in the case of
multivalued images. In the Eulerian model (see Fig. 4(b)), adouble pixel of the initial
space may transfer its value to two pixels of the transformedspace, while the value of a
null pixel will be lost.

In this preliminary work, we consider the Eulerian model which enables us to focus
on the topological issues raised by the alteration of adjacency relations (see Sec. 3.2),
and as the Lagrangian model is fraught with additional difficulties (see Sec. 7). For the
sake of readability, our study is carried out in the context of binary images, but the
introduced methodology remains valid in the case of multivalued images (see Sec. 7).

3.2 Adjacency alterations

In order to illustrate the topological issues raised by the alterations of adjacency rela-
tions during discrete rigid transformations, let us consider a 2× 2 pixel sample of the
transformed space (see Fig. 5(a)). Such a sample is composedof pixels of valuesa, b, c
andd, and all the possible local pixel configurations of the initial space from which the
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(a) Lagrangian model (b) Eulerian model

Fig. 4. The interpretations of double pixels (left figures) and nullpixels (right figures) in the
context of discrete rigid transformations for (a) the Lagrangian and (b) the Eulerian models.
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Fig. 5. (a) A 2× 2 pixel sample with valuesa, b, c,d. (b) Local pixel configurations (up to rota-
tions and symmetries) leading to the sample (a) when applying a discrete rigid transformation. (c)
Examples of transformations in which the sample preserves the topology of local pixel configu-
rations. (d) Examples of transformations in which the sample provokes a topological alteration.

sample is generated (see Fig. 5(b)). Despite local adjacency alterations between pixels,
the global topology of the sample may sometimes be preserved(see Fig. 5(c)). Unfortu-
nately, such local alterations may also lead to topologicalalterations in the sample (see
Fig. 5(d)), and further in the whole image possibly. In the next section, we propose an
algorithm enabling the detection of potential topologicalchanges during a DRT. On the
contrary, this algorithm can be used to guarantee the topological invariance between an
image and all of its transformed ones. This algorithm is based on (i) the recently intro-
duced notion of DRT graph [7,8], and (ii ) the classical notion of simple point [9,10]. The
first notion provides a way to exhaustively explore the spaceof transformed (sub)images
while the second provides information on the possible topological modifications when
performing such an exploration.

4 Mathematical tools for topological verification of imagesunder
rigid transformations

4.1 Discrete rigid transformation graph

In opposition to rigid transformations inR2, discrete rigid transformations (DRTs) are
not continuously defined w.r.t. the parametersa, b andθ. In particular, the parameter



Fig. 6. A part of the parameter space subdivided by four 2D surfaces corresponding to the dis-
continuities of DRTs (left), and the associated part of the DRT graph (right).

space (a, b, θ) ∈ R
3 is divided into 3D open cells, in each of which the functionsTabθ

are equal, while the 2D surfaces bounding these open cells represent to discontinuities
of the DRTs, induced by the digitisation process (see Eq. (2)). In fact, each 2D surface
is corresponded to an elementary modification of one pixel.

From a theoretical point of view, each 3D open cell can be seenas the equivalent
class of the rigid transformationsT that leads to a same DRTT = T ◦D whose bound-
aries are the 2D surfaces. By mapping any 3D cell onto a 0D point and any 2D surface
onto a 1D edge, the combinatorial structure of the parameterspace can be modeled in a
dual way by a connected graph, as illustrated in Fig. 6. In particular, each 0D point cor-
responds to a transformed image generated by the associatedT and an 1D edge between
two cells indicates that the two associated images differ at exactly one pixel.

Definition 2 (DRT graph [7]) A DRT graph G= (V,E) is defined such that:
– any vertex v∈ V models a 3D open cell and associates to a transformed image;
– any (labeled) edge e= (v,w, (p, p′)) ∈ E models a 2D discontinuity surface be-

tween the transformed images corresponding to the DRTs v andw which differ at the
singlepixel p′. Note thatp is the pixel corresponding top′ in the original image.

The label (p, p′) on each edge is –implicitly– associated to a function indicating
the value modification of the pixelp′ that differs between the DRTsv and w. More
precisely, the value ofp at the vertexv is defined byIv(p′) = I (p) whereI : S → F
is the original image function. After the elementary rigid motion ate, we then obtain
a new imageIw by simply changing the pixel value atp as Iw(p′) = I (p + δ) where
δ = (±1, 0) or (0,±1). Note thatδ corresponds to anelementary motion, i.e., a smallest
pixel movement, that changes eitherx- or y-coordinate by 1.

It was proved in [7] that the DRT graph associated to a digitalimage of sizeN2 has a
space complexity ofO(N9) (and can be built with a similar time complexity [7,8]). Note
that the structure of the DRT graph depends only on the support of the given images, but
not on their pixel values. By construction, the DRT graph provides all the transformed
images of a given imageI . In particular, these transformed images can be generated by
progressively and exhaustively scanning the DRT graph.



Remark 3 Let I : S → F, and G = (V,E) be its DRT graph. For each edge e=
(v,w, (p, p′)) (i.e., each elementary modification of a pixelp′ ∈ S ), two cases can occur:

(i) Iv(p′) = Iw(p′), i.e., the images of I by the DRTs v and w are equal (Iv = Iw);
(ii ) Iv(p′) , Iw(p′), i.e., Iv , Iw.

In the (considered) case of binary images, the value ofp′ may then be flipped from
white to black (orvice versa), and this may constitute the only modification between the
transformed images of I by the DRTs v and w.

4.2 Topological analysis of binary images from DRT graphs

From a DRT graph, one can generate exhaustively all the DRT images of an imageI .
Moreover, from Rem. 3, we know that this can be done by modifying (at most) one
pixel value between two successive transformed images. In the case of binary images,
it is actually possible to check if such a local modification involves a simple point.

Practically, the edges of a DRT graphG = (V,E) can then be classified in two
categories: those that do not modify the topology of the transformed images (i.e., the
edges that correspond to case (i) in Rem. 3, as well as those that correspond to case (ii )
for which p is a simple point); and those that modify this topology (i.e., the edges that
correspond to case (ii ) in Rem. 3 for whichp is not simple).

The partial graphG′ = (V,E′) is obtained by maintaining only the edgesE′ ⊆ E
of the first category.G′ is composed of connected components of vertices whose as-
sociated transformed images are simple-equivalent (see Sec. 2.2), and thus have the
same homotopy type. In particular, the connected componentcontains the vertexu cor-
responding to the initial imageI , as well as those corresponding to transformed images
obtained fromI by elementary motion sequences which are topology-preserving. This
specific set of vertices can be straightforwardly computed by using a standard spanning-
tree algorithm, initialized from the seed vertexu (see Alg. 1).

Remark 4 The connected component of G′ that contains u may constitute only astrict
subset of the vertices/transformed images that are simple-equivalent to u/I. Indeed, the
edges of the DRT graph G only model the local modifications associated to DRTs. In
particular, there may exist other series of local modifications relying on simple points
but not modeled in the DRT graph. In other words, the analysisof the DRT graph pro-
vides sufficient (but not necessary) conditions to guarantee homotopy-type preservation.

In the case whereV′ = V (see Alg. 1),i.e., when all the vertices of the DRT can
be reached fromu by a sequence of edges involving only simple points, the algorithm
successfully detects –as a side effect– an imageI that is actually topologically invariant
underany DRTs. The algorithmic cost of this algorithm is directly linked to the size
of the DRT graph, that isO(N9). This algorithmic complexity is indeed reached in the
worst cases. In the next section, we show that this problem can however be decomposed
spatially, thus leading to a practical, lower complexity algorithm.

5 Local evaluation of topological invariance under DRTs

In the previous section, we have proposed to explore the whole DRT graph of an image
I in order to check its potential topological invariance under DRTs. For each edgee =



Algorithm 1: Construction of simple-equivalent DRT images
Input : A DRT graphG = (V,E); the vertexu ∈ V associated toI .
Output : A connected partial subgraphG′′ = (V′, E′′) of vertices simple-equivalent tou/I .

1 V′ ← {u}; E′′ ← ∅; S ← {u}; U ← V;
2 while S , ∅ do
3 Let v ∈ S; S ← S \ {v};
4 if v ∈ U then
5 U ← U \ {v};
6 foreach e= (v,w, (p, p′)) ∈ E such that w∈ U do
7 if p′ is a simple pointthen V′ ← V′ ∪ {w}; E′′ ← E′′ ∪ {e}; S ← S ∪ {w};

(v,w, (p, p′)) of the DRT graph, we verify that the pixelp′ whose value is modified
at this edge is actually a simple point for the transformed imagesIv and Iw. This test
is performed locally, more precisely in the 3× 3 neighbourhood centered onp′ in the
transformed space.

We now take advantage of the local nature of these tests to develop a spatial de-
composition strategy that will lead to alocal version of the previously proposedglobal
method. To this end, we first need to introduce basic notions and properties related to
the influence of DRTs on pixel neighbourhoods.

5.1 Neighbourhoods and DRTs

Let p ∈ Z2 be a pixel. We define the neighbourhoods ofp as follows:N8(p) = {q ∈ Z2 |
||q − p||2 < 2}; N20(p) = {q ∈ Z

2 | ||q − p||2 < 2
√

2}. The first 3× 3 neighbourhood
is classically used in digital geometry and topology. The second corresponds to a 5× 5
square from which the 4 extremal corner pixels have been removed. We provide the
following property where we consider any arbitrary DRTT : Z2→ Z

2.

Property 5 Let p ∈ Z2 andq ∈ N8(p). We then have T−1(q) ∈ N20(T−1(p)).

Proof This property derives from the above definitions of the neighbourhoods, and
from the fact that a DRTT (due to the digitization induced byD, see Eq. (2)) implies a
possible (strict) majoration of

√
2 for the distance between transformed points, w.r.t. its

associated rigid transformationT . �

5.2 A local approach for topological analysis

As stated above, a DRT graph modelsall the rigid transformations of a given digital
image I . Despite the fact that the space of these transformations isactually infinite,
the DRT graph is defined as a finite structure. This restriction can be made without
loss of correctness/completeness by considering translation invariance. Indeed, a rigid
transformation is defined as a composition of a rotation and atranslation (Eq. (1)). In
particular, a rigid transformationT = t ◦ r, composed of a rotationr around the origin
and a translationt ∈ R2, can be also expressed asT = t ◦ t′−1 ◦ r′ ◦ t′, wheret′ is the
translation by a vectorp ∈ Z2, andr′ is the rotation aroundp. Such a translation inZ2



(that induces no topological modification, since the whole image is translated), allows
any pixelp of S of the imageI to be considered as the origin ofS.

Let come back to the DRT graphG = (V,E) considered until now, and involved
in the global process defined in the previous section. We now focus on an edgee =
(v,w, (p, p′)) of G. Obviously, the verticesv andw exist inG, and also in the (equiva-
lent) DRT graph where we considerp as origin. In the later graph, any edge that does not
involve in its label a pixel ofN20(p) has no influence on the topological modifications
in N8(p′) (see Prop. 5). Without loss of correctness, such topological modifications at
p′ in N8(p′) (and thus ofp′ in the whole image) only depends on the part of the DRT
graph that corresponds to the restriction ofI to N20(p), denoted byI |N20(p). Based on
these considerations, it appears that if for any pixelq in the initial imageI , the restric-
tion I |N20(q) does not lead to topological modifications under any DRTs, then the same
conclusion holds for the whole imageI . In other words, every elementary topological
change occurring on the DRT graphG of I can be observed locally. Therefore, we need
only to verify the topological invariance for every pixel ofI in its neighbourhoodN20

in the original binary image.

Proposition 6 Given a binary image I: S → F, for everyp ∈ S if I|N20(p) is a local
binary configuration which is topologically invariant under any rigid transformations,
then the image I is topologically invariant.

We assume that the modified pixelp′ at each elementary rigid modification of the
DRT graph corresponds to the origino2 in the transformed image, and that the corre-
sponding pixelp is the origino1 in the original image of size in itsN20(o1). Then, we
simply need to construct the DRT graph withp′ ∈ [−1, 1]2, p ∈ [−2, 1]2 (i.e., the DRT
graph of edges labels (p, p′) with this constraint), denoted byGp = (Vp,Ep). We use
Alg. 1 proposed in Sec. 4.2 to verify inGp the topological equivalence between two
adjacent verticesv andw whose edge has the label (o1, o2). If every edge has topologi-
cally equivalent vertices, then the center pointo1 of such a configuration is topologically
invariant under any rigid transformations. This approach,in particular, leads to the fol-
lowing consideration: if we study the topological invariance property for all the binary
image configurations ofN20(o1), we can identify a family of elementary configurations
that authorise topological invariance under DRTs.

From Prop. 6, we propose a look-up-table-based algorithm for characterizing the
topologically invariance property of any binary image. More precisely, we generate a
setP4 (resp.P8) which contains only topologically invariant configurations in (4, 8)-
(resp. (8, 4)-) adjacent relations. Then we useP4 and P8 to verify whether the given
image is topologically invariant. The method for buildingP4 andP8 is given in Alg. 2.
LetC be the set of all binary image configurations of sizeN20, which is used to buildP4

andP8, |C| ≤ 220. From Rem. 3 we haveIv , Iw if Iv(o1) , Iw(o1), whereIv(o1) = I (o2)
and Iw(o1) = I (o2 + δ). We thus need to consider the configurations ofN20 whose the
central pixel valueI (o2) and that of its 4-neighbouring pixelI (o2+ δ) are different,e.g.,
I (o2) = 1 andI (o2+δ) = 0. Here we setδ = (0, 1), i.e., o2+ (1, 0) is the right pixel ofo2.
In other words, the pixel values ofo2 and its right pixelo2 + δ are pre-set. Under such
conditions,|C| is reduced to 218. Thanks to the reflection and rotational symmetries, we
can again reduce|C| to 124 260 configurations. Then, we use Alg. 1 proposed in Sec.4.2



to study the topologically invariance property of each configurations inC. We store in
P4 and P8 the subset ofC containingonly the topologically invariant configurations
w.r.t. the (4, 8)- and (8, 4)-adjacent relations. Using Alg. 2, we obtain sets of 10 643and
19 446 topologically invariant configurations inP4 andP8 respectively. Fig. 7 shows
some elements ofP4 andP8.

Algorithm 2: Generation of topologically invariant configuration setP4 (resp.P8)
Input : The DRT graphGp = (Vp,Ep) and the setC of 124 260 binary local configurations

of sizeN20.
Output : The setP4 (resp.P8).

1 P4← ∅; (resp.P8 ← ∅;)
2 foreach IC ∈ C do
3 B← TRUE; U ← Vp; S ← {u} whereu is the vertex associated toIC in Gp;
4 while S , ∅ and B= TRUEdo
5 Let v ∈ S; S ← S \ {v};
6 if v ∈ U then
7 U ← U \ {v};
8 foreach e= (v,w, (p, p′)) ∈ Ep such that w∈ U doS ← S ∪ {w};
9 if ∃ e= (v,w, (o1, o2)) ∈ Ep such that w∈ U and o2 is not a simple point in

its (4, 8) (resp.(8,4))-adjacency relationsthen B← FALS E;

10 if B = TRUEthen P4← P4 ∪ {IC}; (resp.P8 ← P8 ∪ {IC};)

Based on Prop. 6 and the setsP4 andP8, the algorithm for characterizing the topo-
logically invariant property of a given binary imageI : S → F by a local verification
of pixels is given in Alg 3. The algorithm scansI and considers for each pixelp ∈ S its
N20(p) with eitherP4 or P8 depending on the binary value ofp. Note thatI (p) = 1−I (p).

Algorithm 3: Local verification of the topology invariance of a binary image
Input : A binary imageI : S→ F and the setsP4 andP8.
Output : Yes if I is topologically invariant and No otherwise.

1 foreach p ∈ S do
2 if I (p) = 1 and I|N20(p) < P4 then return No;

3 if I (p) = 0 andI |N20(p) < P8 then return No;

4 return Yes;

6 Experiments

In this section, we illustrate the relevance of our approachby presenting images which
have been detected as topology-invariant (see Fig. 8(a-c),(d-f)), or topology-variant (see
Fig. 8(g,h), (i,j), (k,l)). Thanks to our LUT-based approach, such a detection can be
carried out in linear time w.r.t. the image size.

As mentioned in Rem. 4, we only have a sufficient condition for homotopy-type
preservation, so far we do not have a proof for a necessary condition. Nonetheless we
have not found any example for which our algorithm fails to characterize its topological
invariance.
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Fig. 7. Some topologically invariant configurations ofP4 (a) andP8 (b).

(a) (b) (c) (d) (e) (f)

(g) (h) (i)
Fig. 8. (a-f) Some examples of topology-invariant images. (g-i) Three examples of topology-
variant images (left) with their transformed images (right) exhibiting different topologies from
their respective original images.



7 Conclusion

We have proposed an algorithmic process for determining thetopological invariance
of digital images under any discrete rigid transformations. This work is based on the
recently introduced notion of DRT graph [7,8], which presents a polynomial complexity
that generally forbids its practical application on whole images. Nevertheless, DRT
graphs have been successfully involved in a preliminary local analysis that finally led
to a low complexity methodology, relying on image spatial decomposition.

Beyond its theoretical aspects, this work may contribute tothe better understand-
ing of the relationships that exist between geometry and topology in the framework of
digital imaging, where both notions are more strongly linked than in continuous spaces.

This study was carried out in the context of binary images. However, it remains
relevant whenever a notion of simple point (or more generally a local characterisation
of topology preservation) is available. This is verified, for instance, in the context of
n-ary images [14]. On the other hand, only the Eulerian (backwards) model has been
considered in this study. In future work, we will extend these results to the case of the
Lagrangian (forwards) model. Note that additional difficulties arise in the Lagrangian
model, such as double pixels in the transformed space that may receive two different
values, and null pixels that do not have any value. The Lagrangian model thus involves
a value decision problem for such pixels.
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