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Sufficient conditions for topological invariance of
2D images under rigid transformations*

Phuc Ngd, Yukiko Kenmocht, Nicolas Passatand Hugues Talbbt

1 Université Paris-Est, LIGM, UPEMLV-ESIEE-CNRS, France
2 Université de Reims, CReSTIC, EA 3804, France

Abstract. InR?, rigid transformations are topology-preserving operatid¢iow-
ever, this property is generally no longer true when congidedigital images
instead of continuous ones, due to digitizatidfeets. In this article, we inves-
tigate this issue by studying discrete rigid transformai¢DRTs) onZ?. More
precisely, we define conditions under which digital imagesserve their topo-
logical properties under any arbitrary DRTs. Based on tleenidy introduced
notion of DRT graph and the classical notion of simple poig,first identify a
family of local patterns that authorize topological inearce under DRTs. These
patterns are then involved in a local analysis process thatagtees topological
invariance of whole digital images in linear time.

Keywords: 2D digital image, discrete rigid transformation, topolpsiynple point,
DRT graph, Eulerian model.

1 Introduction

In 2D, rigid transformations .., rotations composed with translations) are involved in
numerous image processjagalysis tasks.g, registration [1] or tracking [2]. In such
applications, the images are generally digital, and can bteeconsidered as functions
| : S — F from a finite subse® c Z? to a value spac€g. While rigid transformations
are topology-preserving operationsi3, this property is generally lost ifi?, due to
the discontinuities induced by the mandatory digitizatimm R to Z. In particular,
discrete rigid transformations (DRTs) —that include déserrotations [3,4,5,6]— are not
guaranteed to preserve the homotopy type of digital imaagesexemplified in Fig. 1.

In this article, we study this specific issue. More preciselg investigate some
conditions under which digital images preserve their topwal properties undexny
arbitrary DRTSs, by considering the Euleriare( backwards) transformation model. To
reach this goal, we considei) the notion of DRT graph, recently introduced by the
authors in [7,8], that defines a combinatorial model of altigid transformations of a
digital image, andi{() the classical notion of simple point [9,10], that providesiicient
conditions to guarantee the preservation of homotopy type.

By combining these two notions, we first propose a way to dater transformed
images which have the same homotopy type as the initial gns¢énning the whole
DRT graph associated to this image. Then, we show that thisaglapproach, which
presents a polynomial complexity, can be simplified into@l@pproach, based on a

* The research leading to these results has received fundingthe FrenctAgence Nationale
de la RecherchéGrant Agreement ANR-2010-BLAN-0205 03).
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Fig. 1. Left: a binary digital image and the grid modeling its digerstructure. Middle: a rigid
transformation applied on this grid. Right: the resultingnsformed image, with a homotopy
different from the initial one (the black pixels, in the 8-adjamge have been split).

spatial decomposition of the image into covering samptesrder to do so, we identify
a family of local patterns that authorize topological ingace under DRTs. These pat-
terns can then be involved in a procedure based on look-UgstdbUT) that guarantee
topological invariance of a whole digital image in lineané.

The article is organised as follows. Sec. 2 presents baakglrootions related to
rigid transformations and digital topology. Sec. 3 dessithe topological issues in-
duced by DRTSs. Sec. 4 explains how DRT graphs and simplegcamt be combined to
evaluate topological invariance under DRTSs, leading tolgarghm detailed in Sec. 5.
Experiments are proposed in Sec. 6, while Sec. 7 concludextitle.

2 Background notions

2.1 (Discrete) rigid transformations

In R?, a rigid transformationife., a transformation composed of a translation and a
rotation) is expressed as a bijectidn: R? — R? defined, for any = (x,y) € R? by

sing cosf)\y b

Such a transformation (also not&@dy) is unambiguously modeled by the triplet of
parametersg, b, 6). It is not possible to apply directlty on a digital imagd : S — F,
since there is no guarantee thia(x) € 72, for anyx € S c Z2. The handling ofliscrete
rigid transformations (DRTS) then requires the definitiémdunctionT : Z2 — Z2,
which is the “discrete analogue” Gf. Considering the standard rounding function
R? — 72, this can be conveniently performed by settihg= D o 7, as illustrated on
the diagram below.

T(x) = (COS@ ~sind )(X) " (a) withabe Randoe[0.21] (1)

T=DoT"
7?2 ——— 77

lld TD

RZLRZ

The functionT : Z? — Z? is then explicitly defined, for anp = (p, q) € Z2, by

()

T(P) = DoT(p) = ([pcos@—qsin9+a])

[psing + qcosd + b]

In general, this function is not bijective. However, by segfl X = Do 7 1 : 72 — 72,
we can define the transformed digital imageT ! : Z? — F with respect toT. Note
thatT~! is not the inverse function &f in general.



Fig. 2. Examples of simple pointsx(y) and non-simple pointsz(t). Modifying the value ofz
would merge two black connected components, while modijfyire value oft would create a
white connected component. In both cases, the homotopyatyihe image would be modified.

2.2 Digital topology

Several frameworks are available to model the topologitaktire of a digital im-
age. InZ?, most of these frameworks (se=g, [11,12]) can be conveniently unified
within the frequently used —and also simple— framework gftel topology [9]. In this
framework, the topological notions derive from a graphatite induced by two adja-
cency relations, namely the 4- and 8-adjacencies, whiclefieed for any two points
p. q € Z? such thatp andq are 4adjacent(resp. 8adjacenj if ||p— qll1 < 1 (resp. if
[lp- dle < 1). Itis well known that, to deal with topological paradoxetated to the
digital version of the Jordan theorem, we generally use i loinary digital image a
pair of different adjacency relations, and denote@a@) wherea andp are adjacency
relations for foreground (black) and background (whitedejs respectively. In 2D, we
consider in particulard, 8) = (4,8) or (8,4).

In the graph-based framework of digital topology, the caioésimple poin{9,10]
(see Fig. 2) relies on the local notion of adjacency and orirttieced global notion of
connectedness. The simple points provide a way to chaisetére preservation of
topological properties in a (binary) image during its tfansation. Practically, a pixel
x € Sof animagel : S — F is simpleif its binary value can be switched without
modifying the topological properties of In particular, the simplicity of a pixel can be
tested, in constant time, by only studying it 3 neighbourhood [9]. We will say that
two imagesl and!l’ aresimple-equivalenfl3] if I’ is obtained froml by iteratively
modifying (successive) simple points. Thuandl’ present the same homotopy type.

3 Discrete rigid transformations: topological issues

A (continuous) rigid transformatiofi” establishes a bijection from? to itself. By
opposition, due to the digitisation process inducedbfsee Eq. (2)), a discrete rigid
transformatiori is, most of the time, not a bijection froi? to itself.

Itis plain that for any three distinct pixelg, x,, X3 € Z2, we have maXie2,3{IXi—
Xjll2} > V2. This leads to the following definition that enables to eleerise the status
of a pixel; there are only three possibilities, as illustthin Fig. 3.

Definition 1 For a pixelx € Z? and a given DRT T, let k) = {y € Z? | T(y) = x).
—If IM(X)| = 0, we say thak is anull pixel.
—If IM(X)| = 1, we say thak is asinglepixel.
—If IM(X)| = 2, we say thak is adoublepixel.



Fig. 3. Left: a digital image support and the grid modeling its digerstructure. Right: examples
of a null pixel (in green), a single pixel (in blue) and a daubpixel (in red) with respect to a
discrete rigid transformation.

Similar notions for the case of discrete rotations can badan [5,6].

In particular, a discrete rigid transformatidnbehaves like a bijection for single
pixels. However the possible existence of null (resp. deuplxels may forbidl to
be a surjection (resp. an injection). Null and double pitlelss raise topological issues
in both Lagrangian and Eulerian transformation models & 3.1). In addition to
these “cardinality-based” issues, supplementary topodgroblems are induced by
the alteration of adjacency relations between pixels (see £2).

3.1 Transformation models

Two standard transformation models can be considered: dlgeaingian (or forwards)
and the Eulerian (or backwards) models. The Lagrangian hoahsists of observing
T (x) for every pixelx in the initial space, while the Eulerian model consists oferf-
ing 7(y) for every pixely in the transformed space. These models are equivalent in
R?, since7 is bijective. InZ?, they are however generally distinct, sinteand T~*
may not be inverse functions.

Depending on each model, null and double pixels lead fiemint interpretations.
In the Lagrangian model (see Fig. 4(a)), a double pixel intthesformed space may
receive two diferent pixel values, and a null pixel receive no pixel valudilé/this
may be conveniently handled in the case of binary imagescfwtan be considered in
a set-based paradigm), it can lead to correctness and ctamess issues in the case of
multivalued images. In the Eulerian model (see Fig. 4(bioable pixel of the initial
space may transfer its value to two pixels of the transforapate, while the value of a
null pixel will be lost.

In this preliminary work, we consider the Eulerian model g¥hénables us to focus
on the topological issues raised by the alteration of adjaceelations (see Sec. 3.2),
and as the Lagrangian model is fraught with additionfildilties (see Sec. 7). For the
sake of readability, our study is carried out in the contéxbioary images, but the
introduced methodology remains valid in the case of mulied images (see Sec. 7).

3.2 Adjacency alterations

In order to illustrate the topological issues raised by tierations of adjacency rela-
tions during discrete rigid transformations, let us coasia 2x 2 pixel sample of the
transformed space (see Fig. 5(a)). Such a sample is compbpeals of values, b, ¢

andd, and all the possible local pixel configurations of the alifpace from which the
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(a) Lagrangian model (b) Eulerian model

Fig. 4. The interpretations of double pixels (left figures) and rpikels (right figures) in the
context of discrete rigid transformations for (a) the Langsian and (b) the Eulerian models.
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Fig.5. (a) A 2x 2 pixel sample with valueg, b, c,d. (b) Local pixel configurations (up to rota-
tions and symmetries) leading to the sample (a) when agplyitiscrete rigid transformation. (c)

Examples of transformations in which the sample presehesapology of local pixel configu-
rations. (d) Examples of transformations in which the sampbvokes a topological alteration.

sample is generated (see Fig. 5(b)). Despite local adjgadterations between pixels,
the global topology of the sample may sometimes be preséseed-ig. 5(c)). Unfortu-
nately, such local alterations may also lead to topologittatations in the sample (see
Fig. 5(d)), and further in the whole image possibly. In thatreection, we propose an
algorithm enabling the detection of potential topologid@nges during a DRT. On the
contrary, this algorithm can be used to guarantee the tgpabinvariance between an
image and all of its transformed ones. This algorithm is dase() the recently intro-
duced notion of DRT graph [7,8], aniil)(the classical notion of simple point[9,10]. The
first notion provides a way to exhaustively explore the spdit@nsformed (sub)images
while the second provides information on the possible togichl modifications when
performing such an exploration.

4 Mathematical tools for topological verification of imagesunder
rigid transformations
4.1 Discrete rigid transformation graph

In opposition to rigid transformations i&?, discrete rigid transformations (DRTS) are
not continuously defined w.r.t. the parametarb andé. In particular, the parameter
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Fig. 6. A part of the parameter space subdivided by four 2D surfaoe®sponding to the dis-
continuities of DRTSs (left), and the associated part of tfl@raph (right).

space b, ) € R3 is divided into 3D open cells, in each of which the functidisg
are equal, while the 2D surfaces bounding these open cellegent to discontinuities
of the DRTSs, induced by the digitisation process (see E{. [2fact, each 2D surface
is corresponded to an elementary modification of one pixel.

From a theoretical point of view, each 3D open cell can be ssethe equivalent
class of the rigid transformatiofiS that leads to a same DRIT = 7 o D whose bound-
aries are the 2D surfaces. By mapping any 3D cell onto a ODt poith any 2D surface
onto a 1D edge, the combinatorial structure of the paransptze can be modeled in a
dual way by a connected graph, as illustrated in Fig. 6. Itiq@dar, each OD point cor-
responds to a transformed image generated by the assotiatatlan 1D edge between
two cells indicates that the two associated imagégsidat exactly one pixel.

Definition 2 (DRT graph [7]) A DRT graph G= (V, E) is defined such that:
—any vertex \e V models a 3D open cell and associates to a transformed image;
—any (labeled) edge e (v,w, (p, p)) € E models a 2D discontinuity surface be-
tween the transformed images corresponding to the DRTs wawdich dffer at the
singlepixel p'. Note thatpis the pixel corresponding tp’ in the original image.

The label @, p’) on each edge is —implicitly— associated to a function iatiligy
the value modification of the pixg¥ that difers between the DRTg andw. More
precisely, the value op at the vertex is defined byl,(p’) = I(p) wherel : S - F
is the original image function. After the elementary rigidtion ate, we then obtain
a new imagd,, by simply changing the pixel value g@asly(p) = I(p + 6) where
6 = (x1,0) or (O +1). Note thats corresponds to aelementary maotioyi.e., a smallest
pixel movement, that changes eithermr y-coordinate by 1.

It was proved in [7] that the DRT graph associated to a digitalge of sizeN? has a
space complexity a@(N°) (and can be built with a similar time complexity [7,8]). ot
that the structure of the DRT graph depends only on the stipptire given images, but
not on their pixel values. By construction, the DRT graphvites all the transformed
images of a given image In particular, these transformed images can be genergted b
progressively and exhaustively scanning the DRT graph.



Remark3 Let | : S —» F, and G = (V,E) be its DRT graph. For each edge e
(v, w, (p, p)) (i.e., each elementary modification of a pixle S), two cases can occur:

) Iy(p) = lw(p), i.e, the images of | by the DRTs v and w are equakl,);

i) W(p) # lw(p), i.e, Iy # L.
In the (considered) case of binary images, the valugyahay then be flipped from
white to black (owice versd, and this may constitute the only modification between the
transformed images of | by the DRTs v and w.

4.2 Topological analysis of binary images from DRT graphs

From a DRT graph, one can generate exhaustively all the DRD&® of an imagé.
Moreover, from Rem. 3, we know that this can be done by moudgfyiat most) one
pixel value between two successive transformed imageselcdse of binary images,
it is actually possible to check if such a local modificationdlves a simple point.
Practically, the edges of a DRT gragh = (V,E) can then be classified in two
categories: those that do not modify the topology of thediammed imagesi.€., the
edges that correspond to cagarf Rem. 3, as well as those that correspond to ci@se (
for which pis a simple point); and those that modify this topologg.( the edges that
correspond to casé ) in Rem. 3 for whichpis not simple).
The partial graptG’ = (V, E’) is obtained by maintaining only the edgésc E
of the first categoryG’ is composed of connected components of vertices whose as-
sociated transformed images are simple-equivalent (see23#), and thus have the
same homotopy type. In particular, the connected compamertains the verten cor-
responding to the initial image as well as those corresponding to transformed images
obtained froml by elementary motion sequences which are topology-prisgervhis
specific set of vertices can be straightforwardly computegking a standard spanning-
tree algorithm, initialized from the seed vertexsee Alg. 1).

Remark 4 The connected component ofBat contains u may constitute onlystict
subset of the verticggansformed images that are simple-equivalentfolndeed, the
edges of the DRT graph G only model the local modifications@ated to DRTs. In
particular, there may exist other series of local modifioas relying on simple points
but not modeled in the DRT graph. In other words, the analykike DRT graph pro-
vides sificient (but not necessary) conditions to guarantee hometgpg preservation.

In the case wher¥’ = V (see Alg. 1),.e., when all the vertices of the DRT can
be reached from by a sequence of edges involving only simple points, therdlgo
successfully detects —as a sidkEeet— an imagé that is actually topologically invariant
underany DRTs. The algorithmic cost of this algorithm is directlyKked to the size
of the DRT graph, that i©®(N®). This algorithmic complexity is indeed reached in the
worst cases. In the next section, we show that this problenhoeever be decomposed
spatially, thus leading to a practical, lower complexityaithm.

5 Local evaluation of topological invariance under DRTs

In the previous section, we have proposed to explore theaDBIT graph of an image
| in order to check its potential topological invariance und&Ts. For each edge=



Algorithm 1: Construction of simple-equivalent DRT images

Input: A DRT graphG = (V, E); the vertexu € V associated tb.

Output: A connected partial subgrasi’ = (V’, E”) of vertices simple-equivalent tg/|.
1V «{u; B < 0;S—{u;U <V,

2 while S # 0 do

3 Letve S; S « S\ {v};

4 if ve U then

5 U« U\ {V};

6 foreache = (v,w, (p, p')) € E such that we U do

7 | if pisasimple pointhenV’ « V' U {w}); E” < E” U {€e}; S « S U {w};

(v,w, (p, p)) of the DRT graph, we verify that the pixgd whose value is modified
at this edge is actually a simple point for the transformedgesl, andl,,. This test
is performed locally, more precisely in thex33 neighbourhood centered gnin the
transformed space.

We now take advantage of the local nature of these tests telajea spatial de-
composition strategy that will lead td@acal version of the previously proposegbbal
method. To this end, we first need to introduce basic notiodspeoperties related to
the influence of DRTs on pixel neighbourhoods.

5.1 Neighbourhoods and DRTs

Let p € Z? be a pixel. We define the neighbourhoodgafs follows:Ng(p) = {q € Z? |
lla—pllz2 < 2} Noo(p) = {q € Z2 | |lg— pll2 < 2V2}. The first 3x 3 neighbourhood
is classically used in digital geometry and topology. Theosel corresponds to a65
square from which the 4 extremal corner pixels have been vethdNe provide the
following property where we consider any arbitrary DRT Z? — Z?2.

Property 5 Letp e Z? andq € Ng(p). We then have T(q) € Noo(T(p)).

Proof This property derives from the above definitions of the nkalrhoods, and
from the fact that a DRT (due to the digitization induced by, see Eqg. (2)) implies a
possible (strict) majoration of/2 for the distance between transformed points, w.r.t. its
associated rigid transformation. |

5.2 Alocal approach for topological analysis

As stated above, a DRT graph modalkthe rigid transformations of a given digital
imagel. Despite the fact that the space of these transformatioastigally infinite,
the DRT graph is defined as a finite structure. This restrictian be made without
loss of correctnegsompleteness by considering translation invariance.ddde rigid
transformation is defined as a composition of a rotation atrdreslation (Eq. (1)). In
particular, a rigid transformatign = t o r, composed of a rotationaround the origin
and a translation € R?, can be also expressedfs= to t’ 1o 1’ o t’, wheret’ is the
translation by a vectop € Z2, andr’ is the rotation aroung. Such a translation if?



(that induces no topological modification, since the whotage is translated), allows
any pixelp of S of the imagd to be considered as the origin &f

Let come back to the DRT graph = (V, E) considered until now, and involved
in the global process defined in the previous section. We mmmud on an edge =
(v,w, (p, p)) of G. Obviously, the vertices andw exist inG, and also in the (equiva-
lent) DRT graph where we considgas origin. In the later graph, any edge that does not
involve in its label a pixel ofNyg(p) has no influence on the topological modifications
in Ng(p') (see Prop. 5). Without loss of correctness, such topaddgimodifications at
p’ in Ng(p’) (and thus ofp’ in the whole image) only depends on the part of the DRT
graph that corresponds to the restrictionl db Nao(p), denoted byl n,,p. Based on
these considerations, it appears that if for any pixel the initial imagel, the restric-
tion Ijn,(q does not lead to topological modifications under any DRTen tihe same
conclusion holds for the whole imadeln other words, every elementary topological
change occurring on the DRT gra@of | can be observed locally. Therefore, we need
only to verify the topological invariance for every pixel bfn its neighbourhood,g
in the original binary image.

Proposition 6 Given a binary image I S — F, for everyp € S if I,y is a local
binary configuration which is topologically invariant undany rigid transformations,
then the image | is topologically invariant.

We assume that the modified pixgl at each elementary rigid modification of the
DRT graph corresponds to the origia in the transformed image, and that the corre-
sponding pixelp is the origino; in the original image of size in itBlyg(01). Then, we
simply need to construct the DRT graph withe [-1,1], p € [-2,1]? (i.e., the DRT
graph of edges labelg(p’) with this constraint), denoted b@, = (V,, Ep). We use
Alg. 1 proposed in Sec. 4.2 to verify i@, the topological equivalence between two
adjacent verticeg andw whose edge has the labek(o,). If every edge has topologi-
cally equivalent vertices, then the center panof such a configuration is topologically
invariant under any rigid transformations. This approaciparticular, leads to the fol-
lowing consideration: if we study the topological invariarproperty for all the binary
image configurations dfl,o(0;), we can identify a family of elementary configurations
that authorise topological invariance under DRTSs.

From Prop. 6, we propose a look-up-table-based algorithmetiaracterizing the
topologically invariance property of any binary image. Marecisely, we generate a
setP, (resp.Pg) which contains only topologically invariant configurat®in (4 8)-
(resp. (84)-) adjacent relations. Then we uBg and Pg to verify whether the given
image is topologically invariant. The method for buildiRg andPg is given in Alg. 2.
LetC be the set of all binary image configurations of k&g, which is used to buildP,
andPg, [C| < 2?0, From Rem. 3 we havi # |, if 1,(01) # Iw(01), wherel,(0;) = 1(0p)
andly(or) = 1(02 + 6). We thus need to consider the configuration®gf whose the
central pixel valud(0,) and that of its 4-neighbouring pix&{o, + 8) are diferent.e.g,
I(0z) = 1andl(o,+6) = 0. Here we sed = (0, 1),i.e.,, 0+(1, 0) is the right pixel ofo,.

In other words, the pixel values @f and its right pixelo, + & are pre-set. Under such
conditions)C| is reduced to ¥. Thanks to the reflection and rotational symmetries, we
can again redud€| to 124 260 configurations. Then, we use Alg. 1 proposed in&2c.



to study the topologically invariance property of each agunfations inC. We store in
P, and Pg the subset o containingonly the topologically invariant configurations
w.r.t. the (4 8)- and (84)-adjacentrelations. Using Alg. 2, we obtain sets of 10 &4@3
19 446 topologically invariant configurations By and Pg respectively. Fig. 7 shows
some elements d?; andPsg.

Algorithm 2: Generation of topologically invariant configuration Bgt(resp.Pg)

Input: The DRT graphG, = (V,, Ep) and the seC of 124 260 binary local configurations
of sizeNyo.
Output: The setP, (resp.Pg).
1 Py « 0; (resp.Pg < 0;)
2 foreachlc € C do
B~ TRUE U « V,; S « {u} whereu is the vertex associated g in Gy,
while S # 0 and B= TRUEdo
Letve §; S « S\ {v};
if ve U then
U< U\ (v
foreache = (v,w, (p, p')) € Ep such thatwe U do S « S U {w};
if 3e=(v,w, (01, 3)) € Ep such that we U and o, is nota simple point in
its (4, 8) (resp.(8, 4))-adjacency relationshen B — FALS E

10 if B=TRUEthen P4 « P, U {lc}; (resp.Pg « Pg U {lc};)

© 00 N o 00 B~ W

Based on Prop. 6 and the s@&gandPg, the algorithm for characterizing the topo-
logically invariant property of a given binary image S — F by a local verification
of pixels is given in Alg 3. The algorithm scah&nd considers for each pixple S its
Noo(p) with eitherP4 or Pg depending on the binary value pfNote that (p) = 1-1(p).

Algorithm 3: Local verification of the topology invariance of a binary igea
Input: A binary imagel : S — F and the set®, andPs.
Output: Yes if | is topologically invariant and No otherwise.

1 foreach pe Sdo

2 if 1(p) = Land Inyy(p ¢ Pa thenreturn No;

3 L if 1(p) = 0and I,y ¢ Ps then return No;

4 return Yes;

6 Experiments

In this section, we illustrate the relevance of our apprdachresenting images which
have been detected as topology-invariant (see Fig. 8(@-%), or topology-variant (see
Fig. 8(g,h), (i,j), (k,1)). Thanks to our LUT-based apprbasuch a detection can be
carried out in linear time w.r.t. the image size.

As mentioned in Rem. 4, we only have affstient condition for homotopy-type
preservation, so far we do not have a proof for a necessamittmm Nonetheless we
have not found any example for which our algorithm fails taretcterize its topological
invariance.
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Fig. 7. Some topologically invariant configurations Bf (a) andPg (b).
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Fig. 8. (a-f) Some examples of topology-invariant images. (g-iyéehexamples of topology-
variant images (left) with their transformed images (rjgithibiting diferent topologies from
their respective original images.




7 Conclusion

We have proposed an algorithmic process for determiningapelogical invariance
of digital images under any discrete rigid transformatiortsis work is based on the
recently introduced notion of DRT graph [7,8], which pretsempolynomial complexity
that generally forbids its practical application on whabeages. Nevertheless, DRT
graphs have been successfully involved in a preliminargllaoalysis that finally led
to a low complexity methodology, relying on image spatiat@®mposition.

Beyond its theoretical aspects, this work may contributthtobetter understand-
ing of the relationships that exist between geometry andlamy in the framework of
digital imaging, where both notions are more strongly lishkean in continuous spaces.

This study was carried out in the context of binary imagesweéier, it remains
relevant whenever a notion of simple point (or more gengialbcal characterisation
of topology preservation) is available. This is verified;, fiastance, in the context of
n-ary images [14]. On the other hand, only the Eulerian (backia) model has been
considered in this study. In future work, we will extend thessults to the case of the
Lagrangian (forwards) model. Note that additiondfidulties arise in the Lagrangian
model, such as double pixels in the transformed space thatretaive two diferent
values, and null pixels that do not have any value. The Lagemodel thus involves
a value decision problem for such pixels.
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