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Abstract

We establish the global asymptotic equivalence between a pure jumps Lévy
process with unknown Lévy measure ν and a sequence of independent Pois-
son random variables with parameters depending on ν. Combining this result
with the one in Brown and Low (1996), we deduce an asymptotic equiva-
lence between an additive process with unknown drift and Lévy measure
and a discrete model composed by a non-parametric regression plus some
independent Poisson random variables.
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1. Introduction

In recent years, the Le Cam theory on the asymptotic equivalence be-
tween statistical models has aroused great interest and a large number of
works has been published on this subject. Roughly speaking, asymptotic
equivalence means that any statistical inference procedure can be trans-
ferred from one experiment to the other in such a way that the asymptotic
risk remains the same, at least for bounded loss functions. One can use
this property in order to obtain asymptotic results working in a simpler but
equivalent setting. For the basic concepts and a detailed description of the
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notion of asymptotic equivalence, we refer to [18, 19]. A short review on this
topic will be given in Subsection 2.2.

The main result of this paper is that the observation in the time inter-
val [0, T ] of a pure jumps Lévy process with unknown Lévy measure ν is
asymptotically equivalent to observe independent Poisson random variables
whose parameters are of the form Tν

(]

k + j−1
m , k + j

m

])

. More precisely, in
Theorem 2.12 below, we prove that, under certain conditions on the class
of admissible Lévy measures ν, observing the 2m2 + 2 independent Poisson
random variables































R−∞ ∼ P

(

Tν
(

]

−∞,−m
]

)

)

,

Rj,k ∼ P

(

Tν
(

]

k + j−1
m , k + j

m

]

)

)

,

R∞ ∼ P

(

Tν
(

]

m,∞
[

)

)

,

where j = 1, . . . ,m, k = −m, . . . ,m − 1, is asymptotically equivalent, as m

goes to infinity, to observe a trajectory {xt} of a pure jumps Lévy process
with Lévy measure ν, that is to say a Lévy process whose characteristic
function is given by

E
[

eiuxt
]

= exp
(

t

∫

R

(

eiuy − 1
)

ν(dy)
)

∀u ∈ R, ∀t ∈ [0, T ].

Generalizing this result, we consider an additive process {xt} whose char-
acteristic function is given by

E
[

eiuxt
]

= exp
(

iu

∫ t

0
f(r)dr− u2

2

∫ t

0

σ2(r)

n
dr− t

∫

R

(

1− eiuy
)

ν(dy)
)

. (1)

Here f(·) and ν (the latter is supposed to be homogeneous in time) are
unknown whereas σ2(·) is supposed to be known. An introduction to additive
processes can be found in [7, 25]. We recall the notions which we will be
interested in in Subsection 2.1.

Brown and Low [2] have already treated the case ν ≡ 0, which corre-
sponds to the study of the experiments:

dyt = f(t)dt+
σ(t)√
n
dBt, t ∈ [0, T ], (2)

where Bt is a standard Brownian motion. They found out that the contin-
uous model (2) is asymptotically equivalent to its discrete counterpart, i.e.,
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the non-parametric regression

Yi = f(ti) + σ(ti)ξi, i = 1, . . . , n, (3)

with a uniform grid ti = T (i−1)
n and standard normal variables ξi. They

required f to vary in a non-parametric subset of L2([0, T ]), defined by a
moderate smoothness condition and the discretization f̄n of f to tend to f

quickly enough in the L2 norm.
Combining our results with the one of Brown and Low, we prove the

global asymptotic equivalence between the statistical models associated to
(1) and its discrete counterpart, that turns out to be:

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















Yi ∼ N
(

f
(

T (i−1)
n

)

, σ2
(

T (i−1)
n

)

)

R−∞ ∼ P

(

Tν
(

]

−∞,−m
]

)

)

Rj,k ∼ P

(

Tν
(

]

k + j−1
m , k + j

m

]

)

)

R∞ ∼ P

(

Tν
(

]

m,∞
[

)

)

(Y1, . . . , Yn)∐ (R−∞, R1,−m, . . . , Rm,−m, . . . , R1,m−1, . . . , Rm,m−1, R∞),

(4)
where i = 1, . . . , n, j = 1, . . . ,m, k = −m, . . . ,m − 1, N (·) stands for the
Gaussian distribution, P(·) for the Poisson one and ∐ means independent.
Heuristically, one wants to treat the continuous and discontinuous parts of
{xt} as in (1) separately, because they are independent. Then the former
is settled by the result of Brown and Low and the latter by Theorem 2.12
below. However, some care is needed to combine those two results. Intrinsic
properties of the Le Cam distance, proved in Subsection 2.2, allow us to do
so, thus proving the equivalence between models (1) and (4) (Proposition
2.15 below).

As a “toy example”, one can think about the case where ν = λδ1; then,
Proposition 2.15 below states that a process obtained adding a white noise
with drift problem to a homogeneous Poisson process with intensity λ is
asymptotically equivalent to (Y1, . . . , Yn, R), where R has a Poisson distri-
bution of parameter λT and is independent of (Y1, . . . , Yn).

In parametric statistics, Le Cam’s theory has successfully been applied to
a huge variety of experiments, because in this case it usually reduces to the
property of local asymptotic normality (LAN) and its modification (see [19]).
The asymptotic equivalence for non-parametric experiments is conceptually
more demanding, and has been the object of several recent papers.
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In particular, asymptotic equivalence theory has been developed for non-
parametric regression in [2, 4, 5, 13, 21, 24], nonparametric density estimation
models in [1, 23], generalized linear models in [12], nonparametric autore-
gression in [14, 22], diffusion models in [8, 9, 10], GARCH model in [3],
functional linear regression in [20] and spectral density estimation in [11].

The estimation of the characteristic triplet of a Lévy process has been
the subject of numerous papers. More generally, recent years have witnessed
a great revival of interest in Lévy processes, which form the fundamental
building block for stochastic continuous-time models with jumps. There is
an important trend using Lévy models in finance, see e.g. [7] for a detailed
treatment and many references, but also many recent models in queueing,
telecommunications, extreme value theory, quantum theory or biology rely
on Lévy processes. To our knowledge, this is the first work studying the case
of a local characteristics (f(·), σ2(·), ν) where f and σ are inhomogeneous in
the time and ν possibly infinite. However, we must require that σ is known
a priori.

We refer e.g. to [6, 15, 16] and references therein for a non-parametric
approach to inference for Lévy processes.

The paper is organized as follows. Subsections 2.1 to 2.4 fix assump-
tions and notation while the main results, as well as examples, are given in
Subsection 2.5. The proofs are postponed to Section 3 and, in part, to the
Appendix.

2. Assumptions and main results

2.1. Additive processes

Definition 2.1. A stochastic process {Xt} = {Xt : t ∈ [0, T ]} on R de-
fined on a probability space (Ω,A ,P) is an additive process if the following
conditions are satisfied.

1. X0 = 0 P-a.s.

2. For any choice of n ≥ 1 and 0 ≤ t0 < t1 < . . . < tn, random variables
Xt0 , Xt1 −Xt0 , . . . ,Xtn −Xtn−1are independent.

3. There is Ω0 ∈ A with P(Ω0) = 1 such that, for every ω ∈ Ω0, Xt(ω) is
right-continuous in t ≥ 0 and has left limits in t > 0.

4. It is stochastically continuous.
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Thanks to the Lévy-Khintchine formula (see [7], Theorem 14.1), the char-
acteristic function of any additive process {Xt} can be expressed, for all u
in R, as:

E
[

eiuXt
]

= exp
(

iu

∫ t

0
f(r)dr−u2

2

∫ t

0
σ2(r)dr−t

∫

R
(1−eiuy+iuyI|y|≤1)ν(dy)

)

,

(5)
where f is a real function on [0, T ] with finite variation, σ2 belongs to L1[0, T ]
and ν is a positive measure on R satisfying

ν({0}) = 0 and
∫

R
(y2 ∧ 1)ν(dy) < ∞.

In the sequel we shall refer to (f(·), σ2(·), ν) as the local characteristics of
the process {Xt} and ν as above will be called a Lévy measure. This data
characterizes uniquely the law of the process {Xt}. When f(·) and σ(·) are
constant functions the increments of the process {Xt} satisfying (5) are sta-
tionary; in this case the process {Xt} is called a Lévy process of characteristic
triplet (f, σ2, ν).

Let D = D([0, T ],R) be the space of mappings ω from [0, T ] into R that
are right-continuous with left limits. Define the canonical process x : D → D

by
∀ω ∈ D, xt(ω) = ωt, ∀t ∈ [0, T ].

Let D be the smallest σ-algebra of parts of D that makes xs, s in [0, T ],
measurable. Further, for any t ∈ [0, T ], let Dt be the smallest σ-algebra that
makes xs, s in [0, t], measurable.

Let {Xt} be an additive process defined on (Ω,A ,P) having local charac-
teristics (f(·), σ2(·), ν). It is well known that it induces a probability measure
P (f,σ2,ν) on (D,D) such that {xt} defined on

(

D,D , P (f,σ2,ν)
)

is an additive
process identical in law with ({Xt},P) (that is the local characteristics of
{xt} under P (f,σ2,ν) is (f(·), σ2(·), ν)).

In the sequel we will denote by
(

{xt}, P (f,σ2 ,ν)
)

such an additive process,
stressing the probability measure.

Further, for every function x in D, we will denote by ∆xr its jump at
the time r and by xc, xd its continuous and discontinuous part, respectively:

∆xr = xr − lim
s↑r

xs, xdt =
∑

r≤t

∆xr, xct = xt − xdt .

In the case where
∫

|y|≤1 |y|ν(dy) < ∞, we let

ην :=

∫

|y|≤1
yν(dy) (6)
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and we adopt the notation from [25], pages 38-39

(f(·), σ2(·), ν)0 = (f(·) + ην , σ
2(·), ν).

Note that, if ν is a finite Lévy measure, then the process ({xt}, P (ην ,0,ν)) of
characteristic triplet (0, 0, ν)0 is a compound Poisson process.

We now recall the Lévy-Itô decomposition, i.e. the decomposition in con-
tinuous and discontinuous parts of an additive process.

Theorem 2.2 (See [25], Theorem 19.3). Suppose that
∫

|y|≤1 |y|ν(dy) < ∞
and consider

(

{xt}, P (f+ην ,σ2,ν)
)

. Then the following holds.

(i) The process {xdt } is a Lévy process on R with characteristic triplet
(ην , 0, ν).

(ii) The process {xct} is an additive process on R with local characteristics
(f(·), σ2(·), 0).

(iii) The two processes {xdt } and {xct} are independent.

For the proofs of our results we also need the following theorem on the
equivalence of measures for Lévy processes. We will use the notation P |Dt

for the restriction of the probability P to Dt and we will write ν ≈ ν̃ to
indicate that the measures ν and ν̃ are equivalent.

Theorem 2.3 (See [25], Theorems 33.1–33.2). Let
(

{xt}, P (0,0,ν̃)
)

and
(

{xt}, P (γν ,0,ν)
)

be two Lévy processes on R, where

γν :=

∫

|y|≤1
y(ν − ν̃)(dy) (7)

is supposed to be finite. Then P (γν ,0,ν) is locally equivalent to P (0,0,ν̃) if and
only if ν ≈ ν̃ and the density dν

dν̃ = ρ satisfies
∫

(
√

ρ(y)− 1)2ν̃(dy) < ∞. (8)

When P (γν ,0,ν) is locally equivalent to P (0,0,ν̃), the density is

dP (γν ,0,ν)

dP (0,0,ν̃)

∣

∣

∣

Dt

(x) = exp(Uρ
t (x)),

with

U
ρ
t (x) = lim

ε→0

(

∑

r≤t

ln ρ(∆xr)I|∆xr|>ε −
∫

|y|>ε
t(ρ(y)− 1)ν̃(dy)

)

, P (0,0,ν̃)-a.s.

(9)
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The convergence in (9) is uniform in t on any bounded interval, P (0,0,ν̃)-a.s.
Besides, Uρ(x) defined by (9) is a Lévy process satisfying EP (0,0,ν̃) [eU

ρ
t (x)] = 1,

∀t ∈ [0, T ].

Remark that the finiteness of the integral appearing in (7) follows from
(8).

2.2. Some properties of the Le Cam ∆-distance

The concept of asymptotic equivalence that we shall adopt in this pa-
per is tightly related to the Le Cam ∆-distance between statistical ex-
periments [17]. A statistical model or statistical experiment is a triplet
Pj = (Xj ,Aj , {Pj,θ; θ ∈ Θ}) where {Pj,θ; θ ∈ Θ} is a family of proba-
bility distributions all defined on the same σ-field Aj over the sample space
Xj and Θ is the parameter space. For two statistical models P1 and P2

indexed by the same parameter space, Le Cam (1964) introduced a quantity,
the deficiency δ(P1,P2) of P1 with respect to P2, which quantifies “how
much information we lose” by using P1 instead of P2. Closely associated
with the notion of deficiency or, equivalently, for the (undefined) amounts of
information carried by the experiments, is the so called ∆-distance, i.e. the
pseudo metric defined by:

∆(P1,P2) := max(δ(P1,P2), δ(P2,P1)).

The original definition of the Le Cam deficiency involves “transitions”. More
specifically, the deficiency δ(P1,P2) of P1 with respect to P2 is defined
as δ(P1,P2) = infK supθ∈Θ ||KP1,θ − P2,θ||TV , where TV stands for “total
variation” and the infimum is taken over all “transitions” K (see [18], page
18). In our setting, however, the general notion of “transitions” can be re-
placed with the notion of Markov kernels. Indeed, when the model P1 is
dominated and the sample space (X2,A2) of the experiment P2 is a Polish
space, the infimum appearing on the definition of the deficiency δ can be
taken over all Markov kernels K on X1×A2 (see [23], Proposition 10.2), i.e.

δ(P1,P2) = inf
K

sup
θ∈Θ

sup
A∈A2

∣

∣

∣

∣

∫

X1

K(x,A)P1,θ(dx)− P2,θ(A)

∣

∣

∣

∣

.

Two sequences of statistical models (Pn
1 )n∈N and (Pn

2 )n∈N are called asymp-
totically equivalent if ∆(Pn

1 ,P
n
2 ) tends to zero as n goes to infinity. As

a corollary of such an equivalence, every procedure which is asymptotically
minimax in (Pn

1 )n∈N yields a corresponding minimax procedure in (Pn
2 )n∈N.

There are various techniques to bound the ∆-distance. In our context we
will only use the following two well-known properties (see [18]):
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Property 2.4. Let, for i = 1, 2, Pi = (X ,A , {Pi,θ, θ ∈ Θ}) be two domi-
nated statistical models with the same sample space X and parameter space

Θ. Let ξ be a common dominating measure and gi,θ =
dPi,θ

dξ . Define

L1(P1,P2) = sup
θ∈Θ

∫

X

|g1,θ(x)− g2,θ(x)|ξ(dx).

Then,
∆(P1,P2) ≤ L1(P1,P2).

Property 2.5. Let, for i = 1, 2, Pi = (Xi,Ai, {Pi,θ, θ ∈ Θ}) be two sta-
tistical models and let (X1,A1) be a Polish space. Let S : X1 → X2 be a
sufficient statistics such that the distribution of S under P1,θ is equal to P2,θ.
Then ∆(P1,P2) = 0.

In order to prove our statements we shall also need the following two
properties. Their proofs can be found at Appendix A .

Property 2.6. Let F be the space of functions on [0, T ] with finite variation
and M (4) be the space of the Lévy measures satisfying Assumptions (M1)–
(M4) below. Consider the statistical models

P
∗ =

(

D,D ,
{

P (f+ην ,σ2,ν); (f, ν) ∈ F × M
(4)

}

)

,

P
⊗ =

(

D2,D⊗2,
{

P (f,σ2,0) ⊗ P (ην ,0,ν); (f, ν) ∈ F × M
(4)

}

)

.

Then ∆(P∗,P⊗)=0.

Property 2.7. Let us consider, for i = 1, 2, the following statistical models,

P
n
i =

(

X
n
i ,A n

i ,
{

P
i,n
θ ; θ ∈ Θ

}

)

P3 =
(

X3,A3,
{

P 3
θ ; θ ∈ Θ̃

}

)

P
n
i,3 =

(

X
n
i,3,A

n
i,3,

{

P
i,3,n
θ = P

i,n
θ ⊗ P 3

θ̃
; (θ, θ̃) ∈ Θ× Θ̃

}

)

,

where X n
i,3 = X n

i × X3, A n
i,3 = A n

i ⊗ A3 and (X n
i ,A n

i ) are dominated
Polish spaces. Then, lim

n→∞
∆(Pn

1 ,P
n
2 ) = 0 entails lim

n→∞
∆(Pn

1,3,P
n
2,3) = 0.
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2.3. The parameter spaces

In order to handle the added aspect of an unknown Lévy measure, the
parameter space will be expanded to include both the smooth function f

and the Lévy measure ν, namely Θ = F × M . To formulate our results we
need to impose the following regularity assumptions on the elements of F

and those of M . We will require that F is a class of real functions satisfying
the following conditions:

(F1)
sup
f∈F

{

|f(t)| : t ∈ [0, T ]
}

= B < ∞.

(F2) Denote, for j = 1, . . . , n, Ij =
[ (j−1)T

n , jTn
[

. Define the step function
f̄n(·) as

f̄n(t) =

n
∑

j=1

f
((j − 1)T

n

)

IIj(t).

We ask that:

lim
n→∞

sup
f∈F

n

∫ T

0
(f(t)− f̄n(t))

2dt = 0.

The hypotheses (F1) and (F2) were already present in the work of Brown
and Low [2], where one can also find examples of some functional classes
satisfying them. Concerning conditions on the class of measures M , we will
require that:

(M1) There exists a Lévy measure ν̃ such that ν ≈ ν̃ for all ν in M (we will
write ρν for the density dν

dν̃ ).

(M2)
∫

R(
√

ρν(y)− 1)2ν̃(dy) < ∞, for all ν in M .

Moreover, following the same principle as in [2], we introduce a discretization
of the measure ν. To that aim define

ρ̄νm(y) :=



























































ν(J−∞)
ν̃(J−∞) if y ∈ J−∞

...
ν(Jj,k)
ν̃(Jj,k)

if y ∈ Jj,k and Jj,k *]− 1
m , 1

m ],
...

1 if y ∈]− 1
m , 1

m ],
...

ν(J∞)
ν̃(J∞) if y ∈ J∞,

(10)
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where, for j = 1, . . . ,m and k = −m, . . . ,m− 1,

J−∞ =
]

−∞,−m
]

, Jj,k =
]

k +
j − 1

m
,k +

j

m

]

, J∞ =
]

m,∞
[

.

Define two more conditions as:

(M3) lim
m→∞

sup
ν∈M

∫

R |ρν(y)− ρ̄νm(y)|ν̃(dy) = 0,

(M4) sup
ν∈M

∫

|y|≤1 |y|ν(dy) < ∞ and
∫

|y|≤1 |y|ν̃(dy) < ∞,

where we have denoted by ν̄m the measure having ρ̄νm in (10) as a density
with respect to ν̃. For brevity’s sake, in the sequel we will omit the symbol
ν simply writing ρ = ρν or ρ̄n = ρ̄νn, when this causes no confusion.

Notation 2.8. In the following, we will denote by M (3) a class of Lévy
measures satisfying (M1)–(M3) and by M (4) a class of Lévy measures sat-
isfying (M1)–(M4). Further, F will always denote a class of functions on
[0, T ] satisfying (F1) and (F2).

Here are some examples of possible choices of M (4). Proofs can be found
at Appendix B.

Example 2.9. Let ν̃ be a known finite Lévy measure and L,K be fixed
finite positive real numbers. Consider

M
(4)
ν̃,L,K =

{

ν Lévy measure : ρ =
dν

dν̃
> 0 exists, differentiable ν̃-a.e.,

L-Liptschtiz and |ρ(0)| ≤ K
}

.

Remark that the stated conditions on ν̃ and ρ imply in particular that ν

must be finite, i.e. ν(R) < ∞.

Example 2.10. Let ε, C and M be fixed positive real numbers, with ε and
C known. Consider the class of all Gamma Lévy measures, defined by:

M
Γ,(4)
ε,C,M =

{

ν Lévy measure : its density with respect to Lebesgue is

g(y) = Ce−λyy−1Iy>0 where ε ≤ λ ≤ M
}

.
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Example 2.11. Let α, ε, C1, C2 be known positive real numbers such that
α < 1 and let M be a positive number. Consider the class of all tempered
stable Lévy measures, that is

M
T,(4)
α,C1,C2,M,ε =

{

ν Lévy measure : its density with respect to Lebesgue is

g(y) =
C1

|y|1+α
e−λ1|y|Iy<0 +

C2

y1+α
e−λ2yIy≥0

where ε ≤ λj ≤ M, j = 1, 2
}

.

2.4. Definition of the experiments

Let us now introduce the classes of experiments that we shall consider.
From now on we assume that σ2(·) is a function in L1[0, T ] supposed to be
known. Further we consider 2m2 + 2 observations of the form























































R−∞ ∼ P

(

Tν
(

]

−∞,−m
]

)

)

,

...

Rj,k ∼ P

(

Tν
(

]

k + j−1
m , k + j

m

]

)

)

,

...

R∞ ∼ P

(

Tν
(

]

m,∞
[

)

)

.

where P(·) stands for the Poisson distribution and the components of the
vector R = (R−∞, . . . , Rj,k, . . . , R∞), j = 1, . . . ,m, k = −m, . . . ,m− 1, are
independent. Let Q

m,R
ν be the law of R. Then, the first pair of statistical

experiments is described by

P
(γν ,0,ν) =

(

D,D ,
{

P (γν ,0,ν); ν ∈ M
(3)

}

)

(11)

Q
R
m =

(

N2m2+2,P(N2m2+2),
{

Qm,R
ν ; ν ∈ M

(3)
}

)

. (12)

The second pair consists of the experiments

P
′(ην ,0,ν) =

(

D,D ,
{

P (ην ,0,ν); ν ∈ M
(4)

}

)

(13)

Q
′R
m =

(

N2m2+2,P(N2m2+2),
{

Qm,R
ν ; ν ∈ M

(4)
}

)

. (14)

11



The asymptotic equivalence between the statistical models P(γν ,0,ν), QR
m

and between P
′(ην ,0,ν), Q

′R
m will be the subject of Theorem 2.12 below.

Furthermore, we will consider the non-parametric regression:

Yi = f(ti) + σ(ti)ξi, i = 1, . . . , n, (15)

for a uniform grid ti =
T (i−1)

n and standard i.i.d. normal variables ξi. For-
mally,

Q
Y
n =

(

Rn,B(Rn),
{

Q
n,Y
f ; f ∈ F

}

)

, (16)

where Q
n,Y
f is the law of (Y1, . . . , Yn). Asymptotic equivalence between QY

n

and
P

(f,σ2/n,0) =
(

D,D ,
{

P (f,σ2/n,0); f ∈ F
}

)

has already been proved by Brown and Low [2].
Finally, we will be interested in the product statistical model between

Q
′R
m and QY

n , i.e.

Q
Y
n ⊗Q

′R
m =

(

Rn×N2m2+2,B(Rn)⊗P(N2m2+2),
{

Q
n,Y
f ⊗Qm,R

ν ; (f, ν) ∈ F×M
(4)

}

)

.

(17)
Asymptotic equivalence of statistical models QY

n ⊗ Q
′R
m and

P
′(f+ην ,σ2/n,ν) =

(

D,D ,
{

P (f+ην ,σ2/n,ν); (f, ν) ∈ F × M
(4)

}

)

will be treated in Proposition 2.15.

2.5. Main results and Examples

Notations will be kept as in Notation 2.8 and Subsection 2.4.

Theorem 2.12. The experiments P(γν ,0,ν) and QR
m are asymptotically equiv-

alent, that is
lim

m→∞
∆
(

P
(γν ,0,ν),QR

m

)

= 0. (18)

We also have
lim

m→∞
∆
(

P
′(ην ,0,ν),Q

′R
m

)

= 0. (19)

Remark 2.13. The asymptotic equivalence in (19) involves the parameter
space M (4) which is smaller than that in (18), but this allows us to treat the
model P

′(ην ,0,ν), that is, the case of pure jumps Lévy processes. This will
be helpful for Proposition 2.15 stated below.

12



Loosely speaking, the main interest in Le Cam’s asymptotic decision
theory lies in the approximation of general statistical experiments by simpler
ones. Adopting this point of view, we can reformulate Theorem 2.12 as
follows.

Corollary 2.14. As a by-product of Theorem 2.12, we obtain that, so far the
study of ν is concerned, observing a Lévy process {Xt} of characteristic triplet
(γν , 0, ν) (or (ην , 0, ν)) asymptotically gives the same amount of information
as the a priori coarser process

{
∑

t≤T IA(∆Xt)
}

A∈Am
, where A m is the set

defined by A m =
{

J±∞, Jj,k; k = −m, . . . ,m− 1, j = 1, . . . ,m
}

.

Combining the result of Brown and Low [2] with Theorem 2.12 we obtain
the following statement.

Proposition 2.15. Let σ2(·) > 0 be a known absolutely continuous function
on [0, T ] such that

∣

∣

∣

∣

d

dt
lnσ(t)

∣

∣

∣

∣

≤ C1, t ∈ [0, T ], (20)

for some C1 < ∞. Then the experiments P
′(f+ην ,σ2/n,ν) and QY

n ⊗Q
′R
m are

asymptotically equivalent, that is

lim
n,m→∞

∆
(

P
′(f+ην ,σ2/n,ν),QY

n ⊗ Q
′R
m

)

= 0. (21)

Remark 2.16. An important consequence of the asymptotic equivalence be-
tween P(γν ,0,ν) and QR

m is that every inference procedure (such as estimators
or tests) available in P(γν ,0,ν) have a corresponding procedure in QR

m that
performs nearly as well and vice versa.

Theorem 2.12 allows us to rewrite the asymptotic equivalence (18) be-
tween the statistical models P(γν ,0,ν) and QR

m in terms of decision theory as
follows.

If there exists a procedure τ1 in P(γν ,0,ν) with risk P (γν ,0,ν)Lm(τ1) then,
for bounded loss functions Lm, there exists a procedure τm2 relative to QR

m

such that

lim
m→∞

sup
(f,ν)∈F×M (3)

∣

∣

∣
P (γν ,0,ν)Lm(τ1)−Qm,R

ν Lm(τm2 )
∣

∣

∣
= 0.

Clearly, a similar interpretation also exists for the asymptotic equivalences
(19) and (21).

13



Remark 2.17. Hypotheses (M1)–(M2) ensure good convergence properties
for an appropriate transformation of

(

{xdt }, P (f,σ2 ,ν)
)

which plays an impor-
tant role in proving Theorem 2.12. Hypotheses (M3) and (M4) are uniform
smoothness conditions on ν. The four hypotheses (M1)–(M4) are satisfied
in a wide variety of examples, in particular in Examples 2.9, 2.10 and 2.11.
For a discussion about hypotheses (F1) and (F2) we refer to Brown and Low
[2] who proved (21) in the case ν ≡ 0, under hypothesis (20) on σ(·).

We now propose two different examples fitting in the hypotheses of The-
orem 2.12. The first one treats the class of the compound Poisson processes,
hence it is an example where the class of Lévy measures M (4) consists of
finite measures. The second one enlightens how the Theorem 2.12 can be
applied in situations where the Lévy measure is not finite by treating the
class of the tempered stable processes.

Compound Poisson Process

Consider the process

Xt =

Nt
∑

i=1

Yi, P-a.s.

where jumps size Yi are i.i.d. random variables with unknown distribution µ

(µ(·) = P(Y1 ∈ ·)) and ({Nt},P) is a Poisson process with unknown intensity
λ, independent from (Yi)i≥1. Thus, {Xt} is a Lévy process with characteristic
triplet

(

λ
∫ 1
−1 yµ(dy), 0, λµ(dy)

)

. Moreover, let us assume that:

• the law µ of Y1 varies in a family dominated by a given finite measure
µ̃ such that dµ

dµ̃ > 0,

• the density r := dµ
dµ̃ is L-Lipschitz, |r(0)| ≤ K and sup

λ,µ
λ
∫

|y|≤1 |y|µ(dy) <
∞, for some L,K < ∞.

Those assumptions entail that the Lévy measure ν(dy) = λµ(dy) of {Xt} be-

longs to the class M
(4)
µ̃,L,K of Example 2.9. Hence we can deduce the asymp-

totic equivalence between the statistical models associated to the process
{Xt} and to the variables:















R±∞ ∼ P
(

Tλµ(J±∞)
)

...

Rj,k ∼ P
(

Tλµ(Jj,k)
)

14



where j = 1, . . . ,m and k = −m, . . . ,m− 1.
We can also reinterpret this result in light of Corollary 2.14 and Remark

2.16 that allow us to construct an asymptotically minimax estimator for
the parameter (λ, µ) in the statistical model associated to the process {Xt}
from a minimax estimator of the same parameter in the submodel associated
to the process {∑NT

i=1 IA(Yi)}A∈Am
. Note that the latter is simply a sum of

independent Bernoulli random variables counting the number of jumps whose
amplitude falls in a given set A in Am.

Tempered Stable Processes

Let {Tt} be a tempered stable process, that is, a Lévy process on R with
no Gaussian component and such that its Lévy measure has a density of the
form

ρ(y) =
C−

|y|1+α
e−λ−|y|Iy<0 +

C+

y1+α
e−λ+yIy>0,

where the parameters satisfy C± > 0, λ± > 0 and α < 2, with λ± unknown.
Further, consider the statistical model associated to:















R±∞ ∼ P

(

T
∫

J±∞
ρ(y)dy

)

Rj,k ∼ P

(

T
∫

Jj,k
ρ(y)dy

) (22)

where j = 1, . . . ,m and k = −m, . . . ,m− 1.
If we suppose that:

• 0 < α < 1 and C± < ∞ are kept fixed and known;

• there exist fixed ε > 0 and M < ∞ such that ε ≤ λ± ≤ M , with ε

known;

• the quantity C+λ
α−1
+ − C−λ

α−1
− is supposed to be known (that is, ην

is known);

then, thanks to Example 2.11, the statistical models associated to {Tt} and
to (22) are asymptotically equivalent.

Here is an example of a model fitting in the framework of Proposition
2.15.
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Merton model with inhomogeneous drift

Consider:

Xt =

∫ t

0
f(r)dr +

∫ t

0

σ(r)√
n
dBr +

Nt
∑

i=1

Yi P-a.s. (23)

where ({Bt},P) is a standard Brownian motion, ({Nt},P) is a Poisson pro-
cess of unknown intensity λ and (Yi)i is a sequence, independent of the
process {Nt}, of i.i.d. random variables distributed as N (µ, ξ2), µ and ξ2

unknown.
Further, note by φµ,ξ2(A) := P(X ∈ A), ∀A ∈ B(R) where X ∼

N (µ, ξ2). Consider the statistical model associated to the variables:






























Yi ∼ N
(

f
(

T (j−1)
n

)

, σ2
(

T (j−1)
n

)

)

R±∞ ∼ P
(

Tλφµ,ξ2
(

J±∞
))

Rj,k ∼ P
(

TλPφµ,ξ2
(

Jj,k

)

)

(Y1, . . . , Yn)∐ (R−∞, R1,−m, . . . , Rm,−m, . . . , R1,m−1, . . . , Rm,m−1, R∞),

(24)
where i = 1, . . . , n, j = 1, . . . ,m, k = −m, . . . ,m− 1.

Then, if we suppose that

• f(·) satisfies (F1) and (F2) and σ(·) verifies (20),

• there exist real numbers ε > 0 and L,M < ∞ such that ξ2 ≥ 2ε2,
µ ≤ M and λ ≤ L with ε and L known,

the statistical models associated to (23) and to (24) are asymptotically equiv-
alent. To prove this fact, simply remark that the Lévy measure of {Xt}
belongs to the class M

(4)
ν̃,C,K of Example 2.9 taking ν̃(A) = Lφ0,ε2(A), C =

1
2ε exp

(

M2

ε2
−1

2

)

and K = 1√
2
. Indeed, with such a choice of ν̃, we have ρ(y) :=

dν
dν̃ (y) =

λε
L|ξ| exp

(

(y−µ)2

2ξ2 − y2

2L2

)

, hence
∣

∣

∣

∣

∣

∣

dρ(y)
dy

∣

∣

∣

∣

∣

∣

∞
= λε

L|ξ|

√
ξ2−ε2

ξ2 exp
( ε2+µ2−ξ2

2(ξ2−ε2)

)

≤
1

2
√
2ε

exp
(

M2

ε2
− 1

2

)

.

3. Proofs

This section is devoted to the proofs of our main results.
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3.1. Proof of Theorem 2.12

We will proceed in three steps.
STEP 1. The task is to prove that: lim

m→∞
∆
(

P(γν ,0,ν),P(γν̄m ,0,ν̄m)
)

= 0.

Recall that ν̄m is the Lévy measure defined in Subsection 2.3 and recall also
the notation:

γν =

∫

|y|≤1
y(ν(dy)− ν̃(dy)),

(this quantity is finite thanks to Assumption (M2), see [25], Remark 33.3).
Moreover, γν̄m is finite thanks to Hypothesis (8) and the definition of ρ̄m. We
know, by Theorem 2.3, that the L1 distance between P (γν ,0,ν) and P (γν̄m ,0,ν̄m)

is given by

L1

(

P (γν ,0,ν), P (γν̄m ,0,ν̄m)
)

= EP (0,0,ν̃)

[

∣

∣

∣

dP (γν ,0,ν)

dP (0,0,ν̃)
(x)− dP (γν̄m ,0,ν̄m)

dP (0,0,ν̃)
(x)

∣

∣

∣

]

= EP (γν ,0,ν)

[

∣

∣

∣
1− dP (γν̄m ,0,ν̄m)

dP (γν ,0,ν)
(x)

∣

∣

∣

]

= EP (γν ,0,ν)

[

∣

∣1− exp
(

U
ρ̄m
T (x)− U

ρ
T (x)

)∣

∣

]

,

with U
ρ
T (x) defined as in (9). Introduce the quantity Rm

T (x) := exp
(

U
ρ̄m
T (x)−

U
ρ
T (x)

)

and observe that, by definition, P (γν ,0,ν) a.s., we have:

Rm
T (x) = exp

(

lim
ε→0

(

∑

r≤T

ln
dν̄m

dν
(∆xr)I|∆xr |>ε − T

∫

|y|>ε

(dν̄m

dν
(y)− 1

)

ν(dy)
)

)

,

so, by Lemma Appendix A.2, we get:

L1

(

P (γν ,0,ν), P (γν̄m ,0,ν̄m)
)

≤ 2 sinh
(

T

∫

R
|ρ(y)− ρ̄m(y)|ν̃(dy)

)

. (25)

Thus, thanks to Assumption (M3), we have

lim
m→∞

sup
ν∈M (3)

L1

(

P (γν ,0,ν), P (γν̄m ,0,ν̄m)
)

= 0.

By Property 2.4, we conclude that the models P(γν ,0,ν) and P(γν̄m ,0,ν̄m) are
asymptotically equivalent as m goes to infinity.

STEP 2. The goal is to prove that: ∆
(

P(γν̄m ,0,ν̄m),QR
m

)

= 0 for all m.

Consider the statistics S : (D,D) →
(

N̄2m2+2,P(N̄2m2+2)
)

defined by

S(x) =

(

N
x;−∞
T , N

x; 1,−m
T , . . . , N

x;m,m−1
T , N

x;∞
T

)

,
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where
N

x;±∞
T =

∑

r≤T

IJ±∞(∆xr), N
x; j,k
T =

∑

r≤T

IJj,k(∆xr).

We shall prove, using the Fisher’s factorization theorem, that S is a sufficient
statistics for the family of probability measures {P (γν̄m ,0,ν̄m); ν ∈ M (3)}. To
that aim, we need to insure the existence of a density function for P (γν̄m ,0,ν̄m)

with respect to a dominating measure, that can be written as a function of
ν and S(x). The existence of such a density is guaranteed by Theorem 2.3
applied to

(

{xt}, P (γν̄m ,0,ν̄m)
)

and ({xt}, P (0,0,ν̃)). The fact that the hypothe-
ses of the mentioned theorem are satisfied is guaranteed by the definition of
ρ̄m. Indeed, the finiteness of

∫

(
√
ρ̄m− 1)2dν̃ < ∞ follows from the fact that

ρ̄m ≡ 1 close to zero and that ν̄m and ν̃ are Lévy measures. Hence, with the
usual notations, we have

dP (γν̄m ,0,ν̄m)

dP (0,0,ν̃)
(x) = eU

ρ̄m
T

(x) = exp

(

ln
ν(J−∞)

ν̃(J−∞)
N

x;−∞
T + ln

ν(J∞)

ν̃(J∞)
N

x;∞
T

+
∑

j=1,...,m
k=−m,...,m−1

ln
ν(Jj,k)

ν̃(Jj,k)
N

x; j,k
T + T

∫

R
(ρ̄m(y)− 1)ν̃(dy)

)

.

Now note that, by definition, γν̄m depends only on the parameters ν̃ and
ν, hence we conclude that S is a sufficient statistics for {P (γν̄m ,0,ν̄m); ν ∈
M (3)}. Furthermore, under P (γν̄m ,0,ν̄m), the random variables N

x;j,k
T (resp.

N
x;−∞
T and N

x;∞
T ) have Poisson distributions with parameters T ν̄m

(

Jj,k
)

(resp. T ν̄m
(

J−∞
)

and T ν̄m
(

J∞
)

), which, by the definition of ν̄m, is equal to
Tν

(

Jj,k
)

(resp. Tν
(

J−∞
)

, Tν
(

J∞
)

). Moreover, since the J’s intervals are
disjoint, the random variables N

x,·
T are independent. It follows that the law

of S under P (γν̄m ,0,ν̄m) is Q
m,R
ν . Then, by means of Property 2.5, we get

∆(P(γν̄m ,0,ν̄m),QR
m) = 0, for all m.

STEP 3. The purpose is to prove that: if ν belongs to M (4) then,

∆(P(γν ,0,ν),P
′(ην ,0,ν)) = 0.

To that aim, consider the Markov kernels π1, π2 defined as follows

π1(x,A) = IA(x
d),

π2(x,A) = IA(x
d − ην̃),

x ∈ D,A ∈ D .

18



On the one hand we have:

π1P
(γν ,0,ν)(A) =

∫

D
π1(x,A)P

(γν ,0,ν)(dx) =

∫

D
IA(x

d)P (γν ,0,ν)(dx)

= P (ην ,0,ν)(A),

where in the last equality we have used the fact that, under P (γν ,0,ν), {xdt } is
a Lévy process with characteristic triplet (ην , 0, ν) (see point (i) of Theorem
2.2). On the other hand:

π2P
(ην ,0,ν)(A) =

∫

D
π2(x,A)P

(ην ,0,ν)(dx) =

∫

D
IA(x

d − ην̃)P
(ην ,0,ν)(dx)

= P (γν ,0,ν)(A),

since, by definition, γν is equal to ην − ην̃ . The conclusion follows by the
definition of the ∆-distance.

3.2. Proof of Corollary 2.14

It is enough to note that, for all A in Am, the random variable
∑

t≤T IA(∆xt)

has a Poisson distribution of parameter Tν(A) under both P (γν ,0,ν) and
P (ην ,0,ν).

3.3. Proof of Proposition 2.15

Recall that, using our notations, Brown and Low have proved in [2] the
asymptotic equivalence between P(f,σ2/n,0) and QY

n . Making use of the
previous results, we conclude:

∆
(

P
′(f+ην ,σ2/n,ν),P(f,σ2/n,0) ⊗ P

′(ην ,0,ν)
)

= 0 (by Property 2.6),

lim
n→∞

∆
(

P
(f,σ2/n,0) ⊗ P

′(ην ,0,ν),QY
n ⊗ P

′(ην ,0,ν)
)

= 0 (by [2] and Property 2.7),

lim
m→∞

∆
(

Q
Y
n ⊗ P

′(ην ,0,ν),QY
n ⊗ Q

′R
m

)

= 0 (by Theorem 2.12 and Property 2.7).

Remark that, in the last expression, the convergence is uniform in n, there-
fore Proposition 2.15 is proved.

Appendix A. Some technical proofs

In the following, we will limit ourselves to defining Markov kernels on the
rectangular sets since they generate the product σ-algebra.
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Proof of Property 2.6. Let us consider the Markov kernels π∗, π⊗ defined as
follows, for xj ∈ D, Aj ∈ D :

π⊗((x1, x2), A1) = IA1(x1 + x2),

π∗(x1, A1 ×A2) = IA1(x
c
1)IA2(x

d
1).

Then, on the one hand we have:

π⊗P (f,σ2,0) ⊗ P (ην ,0,ν)(A) =

∫∫

D2

π⊗((x1, x2), A)P
(f,σ2 ,0)(dx1)P

(ην ,0,ν)(dx2)

=

∫∫

D2

IA1(x1 + x2)P
(f,σ2,0)(dx1)P

(ην ,0,ν)(dx2)

= P (f,σ2,0) ∗ P (ην ,0,ν)(A)

= P (f+ην ,σ2,ν)(A) ∀A ∈ D .

On the other hand we have:

π∗P (f+ην ,σ2,ν)(A1 ×A2) =

∫

D
π∗(x,A1 ×A2)P

(f,σ2,0) ∗ P (ην ,0,ν)(dx)

=

∫∫

D2

π∗(x+ y,A1 ×A2)P
(f,σ2,0)(dx)P (ην ,0,ν)(dy)

=

∫∫

D2

IA1(x
c)IA2(x

d)P (f,σ2,0)(dx)P (ην ,0,ν)(dy)

= P (f,σ2,0)(A1)P
(ην ,0,ν)(A2) ∀A1, A2 ∈ D ,

that concludes the proof by the definition of the ∆-distance.

Proof of Property 2.7. By hypothesis, there exist πn
i,j : X n

i → A n
j , (i, j) =

(1, 2), (2, 1), Markov kernels which do not depend on the parameter space Θ
such that

lim
n→∞

sup
A∈A n

j

|πn
i P

i,n
θ (A)− P

j,n
θ (A)| = 0.

We conclude by considering the Markov kernels πn
i,j,3 : X n

i,3 → A n
j,3 defined,

for (i, j) = (1, 2), (2, 1), by:

πn
i,j,3

(

(xi, x3);Aj ×A3

)

:= πn
i (xi;Aj)IA3(x3).

We now prove two technical lemmas needed for the proof of Theorem
2.12.
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Lemma Appendix A.1. For all x, y in R we have:

|1− ex+y| ≤ 1 + ex

2
|1− ey|+ 1 + ey

2
|1− ex|. (A.1)

Proof. Consider the cases:

• x, y ≥ 0: In this case we have that |1 − ex+y| is exactly equal to
1+ex

2 |1− ey|+ 1+ey

2 |1− ex|.

• x ≥ 0, y ≤ 0, x + y ≥ 0: Then the member on the right hand side of
(A.1) is equal to ex − ey ≥ ex − 1 ≥ ex+y − 1.

• x ≥ 0, y ≤ 0, x+ y ≤ 0: In this case the member on the right of (A.1)
is equal to ex − ey ≥ 1− ey ≥ 1− ex+y.

• x, y ≤ 0: Also in this case we have that |1 − ex+y| is exactly equal to
1+ex

2 |1− ey|+ 1+ey

2 |1− ex|.

We handle the remaining cases by symmetrical arguments.

Lemma Appendix A.2. The following limit

Rm
T (x) := lim

ε→0

(

exp
(

∑

r≤T

ln
ρ̄m

ρ
(∆xr)I|∆xr |>ε − T

∫

|y|>ε
(ν̄m − ν)(dy)

)

)

,

(A.2)
with ρ, ρ̄m, γν and ν̄m as in Section 2, exists uniformly in t in any bounded
interval, P (γν ,0,ν)-a.s. and

EP (γν,0,ν)

[

∣

∣1−Rm
T (x)

∣

∣

]

≤ 2 sinh

(

T

∫

R
|ρ(y)− ρ̄m(y)|ν̃(dy)

)

. (A.3)

Proof. To prove the existence of the limit in (A.2) we want to apply Theorem
2.3. To that aim just note that Assumption (M2) implies the finiteness of

the integral
∫

R

(

√

dν̄m
dν (y)− 1

)2

ν(dy). Indeed, integrating the last quantity
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separately over the intervals
[

− 1
m , 1

m

]

,
]

1
m ,∞

[

and
]

−∞,− 1
m

[

, we obtain

∫

R

(

√

dν̄m

dν
(y)− 1

)2

ν(dy) =

∫

R

(
√

ρ̄m(y)−
√

ρ(y)
)2
ν̃(dy)

=

∫ 1
m

− 1
m

(

1−
√

ρ(y)
)2
ν̃(dy) +

∫ ∞

1
m

(
√

ρ̄m(y)−
√

ρ(y)
)2
ν̃(dy)

+

∫ − 1
m

−∞

(
√

ρ̄m(y)−
√

ρ(y)
)2
ν̃(dy)

≤
∫ 1

m

− 1
m

(

1−
√

ρ(y)
)2
ν̃(dy) + 4ν

(

] 1

m
,∞

[

∪
]

−∞,− 1

m

[

)

,

that is finite thanks to Assumption (M2) and the fact that ν is a Lévy
measure (in the last inequality we have used the elementary inequality: for
a, b ≥ 0, (

√
a−

√
b)2 ≤ 2a+ 2b).

In order to simplify the notations let us write

A±(x) := lim
ε→0

(

∑

r≤T

ln f±(∆xr)I|∆(xr)|>ε − T

∫

|y|>ε
(f∓(y)− 1)ν(dy)

)

with f+ =
(

ρ̄m
ρ

)Iρ̄m≥ρ

and f− =
(

ρ̄m
ρ

)Iρ>ρ̄m

, so that

Rm
T (x) = exp(A+(x) +A−(x)).

Then, using Lemma Appendix A.1 and the fact that A+(x) ≥ 0 and A−(x) ≤
0 we get:

EP (γν,0,ν)

[

|1−Rm
T (x)|

]

= EP (γν ,0,ν)

∣

∣1− exp(A+(x) +A−(x))
∣

∣

≤ EP (γν ,0,ν)

[

1 + eA
+(x)

2

∣

∣

∣
1− eA

−(x)
∣

∣

∣
+

1 + eA
−(x)

2

∣

∣

∣
1− eA

+(x)
∣

∣

∣

]

= EP (γν ,0,ν)

[

eA
+(x) − eA

−(x)
]

.

In order to compute the last quantity we apply Theorem 2.3 and the fact
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that both A+(x) and A−(x) have the same law under P (γν ,0,ν) and P (0,0,ν):

EP (γν,0,ν)

[

eA
+(x) − eA

−(x)
]

= exp

(

T

∫

R
(f+(y)− f−(y))ν(dy)

− exp

(

T

∫

R
(f−(y)− f+(y))ν(dy)

)

= 2 sinh

(

T

∫

R
(f+(y)− f−(y)ν(dy)

)

= 2 sinh

(

T

∫

R
|ρ(y)− ρ̄m(y)|ν̃(dy)

)

.

Appendix B. Proofs of the examples

Proof of example 2.9. Assumption (M1) is obvious by construction, Assump-
tions (M2) and (M4) follow from the finiteness of the measures ν and ν̃ plus
the inequality (

√
ρ− 1)2 ≤ ρ+1. Finally, Assumption (M3) is a straightfor-

ward consequence of the inequality:

|ρ(y)− ρ̄m(y)| ≤ 1

m

∥

∥

∥

∥

dρ(y)

dy

∥

∥

∥

∥

∞
∀y ∈

]

−m,− 1

m

]

∪
] 1

m
,m

]

. (B.1)

Indeed, since
∥

∥

∥

dρ(y)
dy

∥

∥

∥

∞
≤ L, we have

∫

R
|ρ(y)− ρ̄m(y)|ν̃(dy) =

∫

1
m
≤|y|<m

|ρ(y)− ρ̄m(y)|ν̃(dy)

+

∫

|y|≥m

|ρ(y)− ρ̄m(y)|ν̃(dy) +
∫

|y|< 1
m

|ρ(y)− 1|ν̃(dy)

≤ L

m
ν̃
( 1

m
≤ |y| < m

)

+ 2ν
(

|y| ≥ m
)

+

∫

|y|< 1
m

(K + L|y|+ 1)ν̃(dy)

≤ L

m
ν̃
( 1

m
≤ |y| < m

)

+ 2

∫

|y|≥m
(K + L|y|)ν̃(dy) +

∫

|y|< 1
m

(K + L|y|+ 1)ν̃(dy),

that tends to zero, uniformly on ν, as m goes to infinity, since ν̃ is a finite
Lévy measure.
In order to prove (B.1), fix an interval Jj,k, j = 1, . . . ,m and k = −m, . . . ,m−
1 and note that, by construction of ρ̄m, there always exist y1, y2 verifying

ρ̄m(y) ≤ ρ(y1) and ρ̄m(y) ≥ ρ(y2) ∀y ∈ Jj,k.
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Thus, by the continuity of ρ, we conclude that, for all y in Jj,k, there exists
ŷ such that ρ̄m(y) = ρ(ŷ). Then we apply the mean value theorem to bound
|ρ(y)− ρ̄m(y)|.

Proof of example 2.10. Consider ν in M
Γ,(4)
ε,C,M and define a Lévy measure ν̃,

absolutely continuous with respect to Lebesgue, whose density is Ce−εyy−1Iy>0.
Consequently, ρ(y) = dν

dν̃ (y) = ey(ε−λ)Iy>0. Condition (M2) writes
∫

R
(
√

ρ(y)− 1)2ν̃(dy) =

∫ ∞

0

(

e
y
2
(ε−λ) − 1

)2
e−εyy−1dy

≤
∫ 1

0

(y2

4
(ε− λ)2 +O(y3)

)

y−1dy +
1

ε
< ∞.

To verify condition (M3), treat separately the integral
∫∞
0 |ρ(y)−ρ̄m(y)|ν̃(dy)

over the intervals
[

0, 1
m

]

,
]

1
m ,m

]

, ]m,∞[ :

C

∫ 1
m

0
|ρ(y)− 1|e−εyy−1dy ≤ C

λ− ε

m
+O

( 1

m2

)

≤ C
M − ε

m
+O

( 1

m2

)

,

C

∫ m

1
m

|ρ(y)− ρ̄m(y)|e−εyy−1dy ≤ 2C
M − ε

m
log(m), using (B.1)

∫ ∞

m
|ρ(y)− ρ̄m(y)|ν̃(dy) ≤

∫ ∞

m
(ρ(y) + ρ̄m(y))ν̃(dy) = 2ν̃([m,∞)),

we conclude since the quantities above tend to zero, uniformly in ν, as m

goes to infinity. Finally, condition (M4) follows from

∫

|y|≤1
|y|ν(dy) =

∫ 1

0
Ce−λydy =

C

λ
(1 − e−λ) ≤ C

M
(1− e−ε),

∫

|y|≤1
|y|ν̃(dy) =

∫ 1

0
Ce−εydy =

C

ε
(1− e−ε).

Proof of Example 2.11. Let ν belong to M
T,(4)
α,C1,C2,M,ε and consider the mea-

sure ν̃ having density (with respect to Lebesgue) given by C1
e−ε|y|

|y|1+α Iy<0 +

C2
e−εy

y1+α Iy>0. Hence, ρ(y) = dν
dν̃ (y) = e−|y|(λ1−ε)Iy<0 + e−y(λ2−ε)Iy>0. Condi-

tion (M2) writes:

C1

∫ 0

−∞

(

e
y
2
(λ1−ε) − 1

)2 eεy

(−y)1+α
dy + C2

∫ ∞

0

(

e
y
2
(ε−λ2) − 1

)2 e
−εy

y1+α
dy < ∞,
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which is true since, near zero, the integrands are equivalent to 1
|y|α−1 and

are integrable for α < 1. To verify condition (M3) treat again separately

the integral
∫∞
0 |ρ(y) − ρ̄m(y)|ν̃(dy) over the intervals ±

[

0, 1
m

]

, ±
]

1
m ,m

]

,

±]m,∞[. The computations are essentially the same as in the previous proof,
thanks to the integrability of y−α between − 1

m and 1
m . The integrals between

1
m and m and between −m and − 1

m are bounded by max{C1, C2}(M −
ε)
(

mα−1

α − 1
αmα+1

)

, hence tend to zero. Condition (M4) follows as above.
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