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Partial Differential Equations/Differential Geometry

QUASILINEAR ELLIPTIC HAMILTON-JACOBI EQUATIONS ON COMPLETE MANIFOLDS

Marie-Françoise Bidaut-Véron 1 , Marta Garcia-Huidobro 2 , Laurent Véron 3

Résumé. Let (M n , g) be a n-dimensional complete, non-compact and connected Riemannian manifold, with Ricci tensor Riccg and sectional curvature Secg. Assume Riccg ≥ (1-n)B 2 , and either p > 2 and Secg(x) = o(dist 2 (x, a)) when dist 2 (x, a) → ∞ for a ∈ M , or 1 < p < 2 and Secg(x) ≤ 0. If q > p -1 > 0, any C 1 solution of (E) -∆pu + |∇u| q = 0 on M satisfies |∇u(x)| ≤ cn,p,qB 1 q+1-p for some constant cn,p,q > 0. As a consequence there exists cn,p > 0 such that any positive p-harmonic function v on M satisfies v(a)e -cn,p Bdist (x,a) ≤ v(x) ≤ v(a)e cn,p Bdist (x,a) for any (a, x) ∈ M × M .

Equations de Hamilton-Jacobi quasilinéaires sur une variété complète

Résumé. Soit (M n , g) une variété riemannienne n-dimensionnelle complète, non compacte et connexe de courbures de Ricci Riccg et sectionnelle Secg.

On suppose Riccg ≥ (1-n)B 2 et Secg(x) = o(dist 2 (x, a)) si dist 2 (x, a) → ∞ pour a ∈ M si p > 2, ou Secg(x) ≤ 0 si 1 < p < 2. Si q > p-1 > 0, toute solution de classe C 1 de (E) -∆pu + |∇u| q = 0 sur M satisfait à |∇u(x)| ≤ cn,p,qB 1 q+1-p
où cn,p,q > 0 est une constante. On en déduit qu'il existe cn,p > 0 tel que toute fonction p-harmonique positive v sur M satisfait à l'encadrement suivant, v(a)e -cn,p Bdist (x,a) ≤ v(x) ≤ v(a)e cn,p Bdist (x,a) pour tout (a, x) ∈ M × M .

Version française abrégée. Soit (M n , g) une variété riemannienne complète, non-compacte et connexe de courbure de Ricci Ricc g et courbure sectionnelle Sec g .

Pour tout p > 1, on dénote par u → ∆ p u := div |∇u| p-2 ∇u le p-Laplacien sur M pour la métrique g. Notre résultat principal est le suivant

Theorème 1. Soit B ≥ 0 tel que Ricc g ≥ (1 -n)B 2 et q > p -1 > 0. On suppose (1) lim dist(x,a)→∞ Sec g (x) (dist(x, a)) 2 = 0 pour tout a ∈ M si p > 2, ou Sec g ≤ 0 si 1 < p < 2. Il existe alors c n,p,q > 0 telle que toute solution u ∈ C 1 (M ) de (2) -∆ p u + |∇u| q = 0 sur M vérifie (3) |∇u(x)| ≤ c n,p,q B 1 q+1-p ∀x ∈ M.
Une des conséquences est un théorème de type Liouville.
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(5) v(a)e -c(n,p)Bdist (x,a) ≤ v(x) ≤ v(a)e c(n,p)Bdist (x,a) ∀(a, x) ∈ M × M.
Quand p = 2 Cheng et Yau [START_REF] Cheng | Differential equations on Riemannian manifolds and their geometric applications[END_REF] ont montré que toute fonction harmonique positive sur une variété riemannienne complète à courbure de Ricci positive est une constante. Dans le cas des fonctions p-harmoniques positives et sous l'hypothèse de minoration uniforme de la courbure sectionnelle, Sec g ≥ -B 2 , Kotschwar et Ni [START_REF] Kotschwar | Local gradient estimates of p-harmonic functions, 1/H-flow, and an entropy formula[END_REF] montrent que toute fonction p-harmonique positive v sur M vérifie l'estimation suivante, ( 6)

|∇v| v ≤ (p -1)B.
Notons que leur hypothèse implique

Ricc g ≥ (1 -n)B 2 .
-------------------------------Let (M n , g) be a complete, connected and non compact Riemannian manifold with Ricci curvature Ricc g and sectionnal curvature Sec g . For p > 1 we denote by ∆ p the p-Laplacian defined in the metric g by

∆ p u := div |∇u| p-2 ∇u ,
and thus ∆ 2 is the Laplace-Beltrami operator on M. If p = 2 a classical result due to Cheng and Yau [START_REF] Cheng | Differential equations on Riemannian manifolds and their geometric applications[END_REF] asserts that if Ricc g is nonnegative, any nonnegative harmonic function v is a constant. In [START_REF] Kotschwar | Local gradient estimates of p-harmonic functions, 1/H-flow, and an entropy formula[END_REF], Kotschwar et Ni obtained sharper results dealing with positive p-harmonic functions under the assumption that Sec g ≥ -B 2 . They proved that if v is such a function, it satisfies

(1) |∇v| v ≤ (p -1)B.
Their assumption on Sec g implies Ricc g ≥ (1-n)B 2 . They also noticed that if p = 2 their estimate holds under the previous lower estimate on the Ricci curvature. In this note we give an extension of their result in imbedding it the more general class of quasilinear Hamilton-Jacobi type equations

(2) -∆ p u + |∇u| q = 0 on M.

Our main result is the following

Theorem 1. Let B ≥ 0 such that Ricc g ≥ (1 -n)B 2 . If p > 2 we assume that for any a ∈ M (3) lim dist(x,a)→∞ Sec g (x) (dist(x, a)) 2 = 0,
and if 1 < p < 2 that Sec g ≤ 0. Then there exists c n,p,q > 0 such that any solution u ∈ C 1 (M ) of ( 2) satisfies

(4) |∇u(x)| ≤ c n,p,q B 1 q+1-p ∀x ∈ M.
A clear consequence of (3) is the following Liouville theorem Corollary 2. Assume Ricc g ≥ 0 and that the assumptions of Theorem 1 concerning Sec g hold if p = 2. Then any solution u ∈ C 1 (M ) of ( 2) is constant.

If v is a positive p-harmonic function on M , then u := -(p -1) ln v satisfies (5) -∆ p u + |∇u| p = 0 on M.
Therefore estimate (4) yields to the following result Theorem 3. Assume that p > 1 and the curvature assumptions of Theorem 1 are fulfilled. Then there exists a constant c n,p > 0 such that any positive p-harmonic function v on M satisfies

(6) v(a)e -c(n,p)Bdist (x,a) ≤ v(x) ≤ v(a)e c(n,p)Bdist (x,a) ∀(a, x) ∈ M × M. Proof of Theorem 1. Let M + := {x ∈ M : |∇u(x)| > 0}. Then M + is open and u ∈ C 3 (M +
) since the equation is no longer degenerate. The proof is based upon the fact that z = |∇u| 2 is a subsolution of an elliptic differential inequality with a superlinear absorption term (see [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF] for other applications). We denote by T M the tangent bundle of M and by ., . the scalar product induced by the metric g. We recall that any C 3 -function u verifies the Böchner-Weitzenböck formula ; combined with Schwarz inequality it yields to

(7) 1 2 ∆ 2 |∇u| 2 = D 2 u 2 + ∇∆ 2 u, ∇u + Ricc g (∇u, ∇u) ≥ 1 n |∆ 2 u| 2 + ∇∆ 2 u, ∇u + Ricc g (∇u, ∇u),
where

D 2 u is the Hessian. If u is a C 1 solution of (2), then z = |∇u| 2 satisfies (8) -∆ 2 u - p -2 2 ∇z, ∇u z + z q+2-p 2 = 0 on M + . Replacing ∆ 2 u in (7) it follows that, for any a > 0, (9) 
∆ 2 z + (p -2) D 2 z(∇u), ∇u z ≥ 2a 2 N z q+2-p - 1 N a 2 ∇z, ∇u 2 z 2 - (p -2) 2 |∇z| 2 z + (p -2) ∇z, ∇u 2 z 2 + (q + 2 -p)z q-p 2 ∇z, ∇u -(N -1)B 2 z. Since z q-p 2 | ∇z, ∇u | ≤ z q+1-p 2 |∇z| √ z
, we can take a = a(p, q) > 0 large enough so that the right-hand side of (9) is bounded from below by Cz q+2-p -D |∇z| 2 z for some C, D > 0 which depend only on p and q. We set

A(v) := -∆ 2 v -(p -2) D 2 v(∇u), ∇u |∇u| 2 = - N i,j=1 a ij v xixj
where the a ij depend on ∇u and satisfy

θ |ξ| 2 ≤ N i,j=1 a ij ξ i ξ j ≤ Θ |ξ| 2 ∀ξ = (ξ 1 , ..., ξ n ) ∈ R n ,
where θ = min{1, p -1} and Θ = max{1, p -1}. Then (10)

L * (z) := A(z) + Cz q+2-p -D |∇z| 2 z -(n -1)B 2 z ≤ 0 in M + .
The next lemma is a local estimate.

Lemma 1. Let B R (a) ⊂ M n (g) be the geodesic ball of radius R > 0 and center a.

Assume that Ricc g ≥ -(n -1)B 2 and either Sec g ≥ -S 2 for some

S 2 := S 2 R in B R (a) if p > 2, or Sec g ≤ 0 if 1 < p < 2.
Then there exists c = c(n, p, q) > 0 such that the function

(11) w(x) = λ R 2 -r 2 (x) -2 q+1-p + µ with r = r(x) = d(x, a), satisfies L * (w) ≥ 0 in B R (a), provided (12) 
λ = c max (R 4 B 2 ) 1 q+1-p , ((1 + B + (p -2) + S)R 3 ) 1 q+1-p and (13) µ = ((n -1)B 2 ) 1 q+1-p .
Proof. We recall that ∆ 2 w = w ′′ + w ′ ∆ 2 r and by [6, Lemma 1]

∆ 2 r ≤ (n -1)B coth(Br) ≤ n -1 r (1 + Br) . Then (14) ∆ 2 w ≤ 4 q + 1 -p (R 2 -r 2 ) -2(q+2-p) q+1-p 2r 2 (q + 3 -p) q + 1 -p + (R 2 -r 2 )(1 + (n -1) (1 + Br) .
Moverover 

≤ 4 q + 1 -p (R 2 -r 2 ) -2(q+2-p) q+1-p 2r 2 (q + 3 -p) q + 1 -p + (R 2 -r 2 )(2 + Sr) , while, if p ≤ 2 and Sec g ≤ 0, (18) D 2 w(∇u), ∇u |∇u| 2 ≤ 4 q + 1 -p (R 2 -r 2 ) -2(q+2-p) q+1-p 2r 2 (q + 3 -p) q + 1 -p + 2(R 2 -r 2 ) . As a consequence (19) A(w) = -∆w -(p -2) D 2 w(∇u), ∇u |∇u| 2 ≥ -kλ(R 2 -r 2 ) -2(q+2-p) q+1-p (R 2 + (R 2 -r 2 )B p r)
for some k = k(n, p, q), where

B p = B + (p -2) + S. Since w q+2-p ≥ λ q+2-p R 2 -r 2 -2(q+1-p) q+1-p + µ q+2-p ,
we have (20)

L * (w) ≥ λ(R 2 -r 2 ) -2(q+2-p) q+1-p -k(R 2 + (R 2 -r 2 )B p r) -D 16 (q + 1 -p) 2 r 2 + Cλ q+1-p + µ q+2-p -(n -1)B 2 λ R 2 -r 2 -2 q+1-p -(n -1)B 2 µ.
We first take

(21) µ = ((n -1)B 2 ) 1 q+1-p .
Next we choose λ in order to have, uniformly for 0 ≤ r < R, 

2 -1 Cλ q+1-p ≥ k R 2 + (R 2 -r 2 )B p r + 16Dr 2 (q + 1 -p) 2

3 .

 3 ) est constante. Si v est une fonction p-harmonique positive sur M , la fonction u := -(p -1) ln v vérifie (4) -∆ p u + |∇u| p = 0 sur M. En utilisant le résultat du théorème 1, on en déduit Théorème Supposons que p > 1 et que les hypothèses du Théorème 1 portant sur la courbure soient vérifiées. Il existe alors une constante c n,p > 0 telle que toute fonction p-harmonique et positive v sur M vérifie

and 2 - 1 1 q+1-p , ( 1 + B p ) 1 2 2 z - |∇w| 2 w ≤ 0 .

 21111220 Cλ q+2-p (R 2r 2 ) -2(q+2-p) q+1-p ≥ (n -1)B 2 λ R 2r 2 -2 q+1-p .There exists c = c(n, p, q) such that, if(22) λ = c max (R 4 B 2 ) 1 q+1-p , ((1 + B p )R 3 ) 1 q+1-p , then L * (w) ≥ 0 holds. Lemma 2. Under the assumptions of Lemma 1, any C 1 solution of (2) in M satisfies (23) |∇u(x)| ≤ c n,p,q max B (q+1-p) (d(x, ∂Ω)) -1 2(q+1-p) ∀x ∈ Ω,for every domain Ω ⊂ M , where B p = B + (p -2) + S and S = S d(x,∂Ω) .Proof. Assume a ∈ Ω, with R < d(a, ∂Ω). Let w be as in Lemma 1, then in any connected component G of {x ∈ B R (a) : z(x)w(x) > 0} we find (24)A(zw) + C z q+2-pw q+2-p -(n -1)B 2 (zw) -D |∇z|By the mean value theorem and since w(a) is the minimum of w, there holds (25) C(z q+2-pw q+2-p ) -(n -1)B 2 (zw) > 0,

  ′′ dr ⊗ dr + w ′ D 2 r.

	from [3, Chap 2, p. 23]		
	(15) D 2 w = w If 0 ≥ Sec g (x) ≥ -S 2 , there holds (16) 0 ≤ D 2 r ≤ S coth(Sr)g ≤	S r	(1 + Sr) g.
	Therefore, if p ≥ 2 and Sec g ≥ -S 2 , we get		
	(17)		
	D 2 w(∇u), ∇u |∇u| 2		

provided C(q + 2p)(w(a)) q+1-p > (n -1)B 2 . Since w(a) > µ = (n -1)B 2 1 q+1-p and q + 2p > 1, this condition is fulfilled, up to replacing µ by Aµ for some A = A(p, q) > 1. If x 0 ∈ G is such that zw is maximal at x 0 , we derive that

The proof of Theorem 1 and Corollary 2 follows by taking Ω = B R (x) and letting R → ∞.

Proof of Theorem 3. We take q = p and assume that v is p-harmonic and positive. If we write v = e -u p-1 , then u satisfies -∆ p u + |∇u| p = 0.

If Ricc g (x) ≥ 0, u is constant by Corollary 2, and so is v. Then [START_REF] Ratto | Conformal immersion of complete Riemannian manifolds and extensions of the Schwarz lemma[END_REF] follows since u = (1p) ln v.
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