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Lower bounding edit distances between permutations *

A number of fields, including the study of genome rearrangements and the design of interconnection networks, deal with the connected problems of sorting permutations in "as few moves as possible", using a given set of allowed operations, or computing the number of moves the sorting process requires, often referred to as the distance of the permutation. These operations often act on just one or two segments of the permutation, e.g. by reversing one segment or exchanging two segments. The cycle graph of the permutation to sort is a fundamental tool in the theory of genome rearrangements, and has proved useful in settling the complexity of many variants of the above problems. In this paper, we present an algebraic reinterpretation of the cycle graph of a permutation π as an even permutation π, and show how to reformulate our sorting problems in terms of particular factorisations of the latter permutation. Using our framework, we recover known results in a simple and unified way, and obtain a new lower bound on the prefix transposition distance (where a prefix transposition displaces the initial segment of a permutation), which is shown to outperform previous results. Moreover, we use our approach to improve the best known lower bound on the prefix transposition diameter from 2n/3 to ⌊3n/4⌋, and investigate a few relations between some statistics on π and π.

Introduction

Given a set S of allowed operations and two permutations π and σ of {1, 2, . . . , n}, we study the related problems of computing, on the one hand, a sequence of elements of S of minimum length that transforms π into σ, and on the other hand, computing the length of such a sequence, referred to as the distance between π and σ. The operations in S usually yield an edit distance d S (•, •) with the property that d S (π, σ) = d S (σ -1 • π, ι) for any two permutations π and σ of the same set, where ι is the identity permutation 1 2 • • • n . This property allows us to restrict our attention to sorting permutations using a minimum number of operations from S, or to computing the distance of a given permutation to the identity permutation rather than to another arbitrary permutation. Two areas in which these questions have applications are the fields of genome rearrangements and interconnection network design, which we briefly review below.

In genome rearrangements (see Fertin et al. [START_REF] Fertin | Combinatorics of Genome Rearrangements[END_REF] for a survey), the permutation to sort represents an ordering of genes in a given genome, and the allowed operations model mutations that are known to actually occur in evolution. Rearrangements studied in that context include reversals [START_REF] Kececioglu | Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement[END_REF], which reverse a segment of the permutation, block-interchanges [START_REF] Christie | Sorting permutations by block-interchanges[END_REF], which exchange two not necessarily contiguous segments, and transpositions [START_REF] Bafna | Sorting by transpositions[END_REF], which displace a block of contiguous elements. Those seemingly easy problems turn out to be more challenging than they might appear at first: although a polynomial-time algorithm is known for sorting by block-interchanges or computing the associated distance [START_REF] Christie | Sorting permutations by block-interchanges[END_REF], the same problems were shown to be NP-hard for reversals [START_REF] Caprara | Sorting permutations by reversals and Eulerian cycle decompositions[END_REF], and more recently for transpositions [START_REF] Bulteau | Sorting by transpositions is difficult[END_REF].

In interconnection network design (see Lakshmivarahan et al. [START_REF] Lakshmivarahan | Symmetry in interconnection networks based on Cayley graphs of permutation groups: A survey[END_REF] for a thorough survey), permutations stand e.g. for processors, or other devices to be connected, and form the vertex set of a graph whose edges correspond to physical connections between two devices. One wants to build a graph with small degree and small diameter, among other desirable properties. Akers and Krishnamurthy's landmark paper [START_REF] Akers | A group-theoretic model for symmetric interconnection networks[END_REF] proposed the idea of choosing a set S that generates all permutations of {1, 2, . . . , n}, and to use the corresponding Cayley graph, whose vertex set is the set of all permutations and whose edges connect any two permutations that can be obtained from one another by applying a transformation from S, as an interconnection network. In that setting, sorting algorithms for permutations correspond to routing algorithms for the corresponding networks, since a sequence of ele-ments of S transforming π into σ corresponds to a path of the same length in the network. Two kinds of operations that received a lot of attention in that context are prefix reversals [START_REF] Gates | Bounds for sorting by prefix reversal[END_REF], which reverse the initial segment of the permutation, and prefix exchanges [START_REF] Akers | The star graph: An attractive alternative to the n-cube[END_REF], which swap the first element of the permutation with another element. Those operations gave birth to the pancake network and star graph topologies, respectively, which are extensively studied models in that field. We also mention prefix transpositions, which displace the initial segment of the permutation, and were introduced by Dias and Meidanis [START_REF] Dias | Sorting by prefix transpositions[END_REF] in the context of genome rearrangements in the hope that their study would shed light and give insight on the challenging problem of sorting by transpositions. Those more restricted versions of operations studied in the context of genome rearrangements do not lead to problems simpler than their unrestricted counterparts: the sorting and distance computation problems related to prefix exchanges can be solved in polynomial time [START_REF] Akers | The star graph: An attractive alternative to the n-cube[END_REF], but the complexity of those problems in the case of prefix transpositions is open, and the problem of sorting by prefix reversals has only recently been showed to be NP-hard [START_REF] Bulteau | Pancake Flipping is Hard[END_REF], more than thirty years after the first works on the subject [START_REF] Gates | Bounds for sorting by prefix reversal[END_REF][START_REF] Györi | Stack of pancakes[END_REF].

The cycle graph of a permutation is a ubiquitous structure in the field of genome rearrangements, and has proved useful in resolving many questions related to the problems discussed in the above paragraphs. In this paper, we present a new way of encoding the cycle graph of a permutation π as an even permutation π, inspired by a previous work of ours [START_REF] Doignon | On Hultman numbers[END_REF], and show how to reformulate any sorting problem of the form described above in terms of particular factorisations of the latter permutation. We first illustrate the power of our framework by recovering known lower bounds on the block-interchange and transposition distances in a simple and unified way, and then use it to prove a new lower bound on the prefix transposition distance. We prove that our lower bound always outperforms that obtained by Dias and Meidanis [START_REF] Dias | Sorting by prefix transpositions[END_REF], and show experimentally that it is a significant improvement over both that result and the only other known lower bound proved by Chitturi and Sudborough [START_REF] Chitturi | Bounding prefix transposition distance for strings and permutations[END_REF]. We then use this new result to improve the previously best known lower bound on the maximal value of the prefix transposition distance from 2n/3 to ⌊3n/4⌋. Finally, we examine some further properties of the model, and establish connections between statistics on π and π.

Notation and definitions

Permutations and conjugacy classes

Let us start with a quick reminder of basic notions on permutations (for details, see e.g. Wielandt [START_REF] Wielandt | Finite permutation groups, Translated from German[END_REF]). Definition 2.1. A permutation of a set Ω is a bijective application of Ω onto itself.

It is convenient to set Ω = {1, 2, . . . , n}, and we will follow this convention here, although we will also sometimes use the set {0, 1, 2, . . . , n}. The symmetric group S n is the set of all permutations of a set of n elements, together with the usual function composition •, applied from right to left. Permutations are denoted by lower case Greek letters, and we will follow the convention of shortening the traditional two-row notation

π = 1 2 • • • n π 1 π 2 • • • π n by keeping only the second row, i.e. π = π 1 π 2 • • • π n , where π i = π(i).
Definition 2.2. The graph Γ(π) of the permutation π in S n is the directed graph with ordered vertex set (π 1 , π 2 , . . . , π n ) and arc set {(i, j)

| π i = j, 1 ≤ i ≤ n}.
Definition 2.1 implies that Γ(π) decomposes in a single way into disjoint cycles (up to the ordering of cycles and of elements within each cycle), leading to another notation for π based on its disjoint cycle decomposition. For instance, when π = 4 1 6 2 5 7 3 , the disjoint cycle notation is π = (1, 4, 2)(3, 6, 7)(5) (notice the parentheses and the commas).

Definition 2.3. The length of a cycle in a graph is the number of vertices it contains, and a k-cycle is a cycle of length k.

The number of cycles in a graph G will be denoted by c(G), and the number of cycles of length k will be denoted by c k (G). We will also distinguish between cycles of odd (resp. even) length, denoting the number of such cycles in G using c odd (G) (resp. c even (G)). It is common practice to omit 1-cycles in the cycle decomposition of (the graph of) a permutation, and to call that permutation a k-cycle if the resulting decomposition consists of a single cycle of length k > 1. Cycles of length 1 in the disjoint cycle decomposition of a permutation are referred to as fixed points. Definition 2.4. A permutation π is even if the number of even cycles in Γ(π) is even or, equivalently, if it can be expressed as a product of an even number of 2-cycles.

The alternating group A n is the subgroup of S n formed by the set of all even permutations, together with •. The following notion will be central to this work.

Definition 2.5. The conjugate of a permutation π by a permutation σ, both in S n , is the permutation π σ = σ • π • σ -1 , and can be obtained by replacing every element i in the disjoint cycle decomposition of π with σ i . All permutations in S n that have the same disjoint cycle decomposition form a conjugacy class (of S n ).

Generating sets and edit distances

We are interested in distances between permutations based on operations that can themselves be modelled as permutations. More formally, given a subset S of S n and two permutations π and σ in S n , we have two goals:

1. to find a sequence of elements s 1 , s 2 , . . . , s t from S whose cardinality is minimum and whose product transforms π into σ (or conversely, σ into π):

π • s 1 • s 2 • • • • • s t = σ.
2. to find the length of such a sequence, called the S distance between π and σ. Distances whose definition is based on a set of allowed operations as described above are often referred to as edit distances.

Note that S must be symmetric, i.e. s ∈ S if and only if s -1 ∈ S, for the corresponding distance to satisfy the symmetry axiom. An immediate corollary of this property is that for any π in S n , we have d(π, ι) = d(π -1 , ι). For any two permutations of the same set to be a finite distance apart, S must also satisfy the following property. Definition 2.6. A set S ⊂ S n is said to generate S n , or to be a generating set of S n , if every element of S n can be expressed as the product of a finite number of elements of S. We call the elements of S generators of S n .

Moreover, all generating sets we will consider in this paper yield distances that satisfy the following property. Definition 2.7. A distance d on S n is left-invariant if for all π, σ, τ in S n , we have:

d(π, σ) = d(τ • π, τ • σ).
Intuitively, left-invariance models the fact that, given any two permutations π and σ to be transformed into one another, we can rename the elements of either permutation as we wish without changing the value of the distance between both permutations, as long as we renumber the elements of the other permutation accordingly. Since we will most of the time be considering the distance between a permutation π and the identity permutation ι, we will often abbreviate d(π, ι) to d(π).

It can be easily seen that both problems mentioned at the beginning of this section can be reformulated in terms of finding a minimum-length factorisation of π that consists only of elements of S, since

π • s 1 • s 2 • • • • • s t = ι ⇔ π = s -1 t • s -1 t-1 • • • • • s -1 1
and S is symmetric. Finally, another parameter of interest in the study of those distances is the largest value they can reach.

Definition 2.8. The diameter of a set U under a distance d is max s,t∈U d(s, t).

Genome rearrangements and the cycle graph

We recall here a few operations that are commonly used in the fields of genome rearrangements and interconnection network design to build generating sets of S n .

Definition 2.9. [START_REF] Christie | Sorting permutations by block-interchanges[END_REF] The block-interchange β(i, j, k, l) with 1 ≤ i < j ≤ k < l ≤ n + 1 is the permutation that exchanges the closed intervals determined respectively by i and j -1 and by k and l -1:

1 • • • i -1 i • • • j -1 j j + 1 • • • k -1 k • • • l -1 l l + 1 • • • n 1 • • • i -1 k • • • l -1 j j + 1 • • • k -1 i • • • j -1 l l + 1 • • • n .
Two particular cases of block-interchanges are of interest:

1. when j = k, the resulting operation exchanges two adjacent intervals, and is called a transposition [START_REF] Bafna | Sorting by transpositions[END_REF], denoted by τ (i, j, l); 2. when j = i + 1 and l = k + 1, the resulting operation swaps two not necessarily adjacent elements in respective positions i and k, and is called an exchange, denoted by ε(i, k).

We use the notation bid(π), td(π) and exc(π) for the block-interchange distance, the transposition distance, and the exchange distance of π, respectively. The operations we described above can be further restricted by setting i = 1 in their definition, thereby transforming them into so-called "prefix rearrangements". The corresponding "prefix distances" are defined in an analogous manner, with the additional restriction that all operations must act on the initial segment of the permutation. We denote ptd(π) and pexc(π) the prefix transposition distance and prefix exchange distance of π, respectively. While sorting by transpositions is NP-hard [START_REF] Bulteau | Sorting by transpositions is difficult[END_REF] and the computational complexity of sorting by prefix transpositions is unknown, polynomial-time algorithms exist for sorting by block-interchanges [START_REF] Christie | Sorting permutations by block-interchanges[END_REF], exchanges [START_REF] Jerrum | The complexity of finding minimum-length generator sequences[END_REF] or prefix exchanges [START_REF] Akers | The star graph: An attractive alternative to the n-cube[END_REF], as well as formulas for computing the associated distances.

We will have more to say about sorting by transpositions and sorting by block-interchanges in Section 4, where we will give simple proofs of lower bounds on the two corresponding distances, as well as about sorting by prefix transpositions in Section 5, where we will prove new and improved lower bounds on the associated distance and diameter. Meanwhile, we conclude this section with the following traditional tool introduced by Bafna and Pevzner [START_REF] Bafna | Sorting by transpositions[END_REF], which has proved most useful in the study of genome rearrangements.

Definition 2.10. The cycle graph of a permutation π in S n is the bicoloured directed graph G(π), whose vertex set (π 0 = 0, π 1 , . . . , π n ) is ordered by positions, and whose arc set consists of:

• black arcs {(π i , π i-1 ) | 1 ≤ i ≤ n} ∪ {(π 0 , π n )}; • grey arcs {(π i , π i + 1) | 0 ≤ i ≤ n} ∪ {(n, 0)}.
The arc set of G(π) decomposes in a single way into arc-disjoint alternating cycles, i.e. cycles that alternate black and grey arcs. The length of an alternating cycle in G(π) is the number of black arcs it contains, and a k-cycle in G(π) is an alternating cycle of length k (note that this differs from Definition 2.3). Figure 1 shows an example of a cycle graph, together with its decomposition into a 5-cycle and a 3-cycle. 

A general lower bounding technique

We now present a framework for obtaining lower bounds on edit distances between permutations in a simple and unified way. To that end, we adapt a bijection previously introduced by Doignon and Labarre [START_REF] Doignon | On Hultman numbers[END_REF]:

f : S n → A n+1 : π → π = (0, 1, 2, . . . , n) • (0, π n , π n-1 , . . . , π 1 ), (1) 
which in particular maps ι onto ι = 0 1 2 • • • n . That mapping allows us to encode the structure of a cycle graph G(π) using an even permutation π in an intuitive way, which corresponds to decomposing the cycle graph into the product of two "monochromatic cycles", namely, the cycle made of all black arcs (i.e. (0, π n , π n-1 , . . . , π 1 )) and the cycle made of all grey arcs (i.e. (0, 1, 2, . . . , n)). The construction is perhaps best understood using an example: let π = 4 1 6 2 5 7 3 , whose cycle graph is depicted in Figure 1(a). Then

π = (0, 1, 2, 3, 4, 5, 6, 7) • (0, 3, 7, 5, 2, 6, 1, 4) = (0, 4, 1, 5, 3)(2, 7, 6),
and the two disjoint cycles of π correspond to the two alternating cycles of G(π), whose elements they list in the order they are encountered (up to rotation); indeed:

1. the first cycle of G(π) (Figure 1(b)) starts with 0, then visits 4 after following a black-grey path (i.e. a black arc followed by a grey arc), then visits 1 after following a black-grey path, and in the same way visits 5 and 3 before coming back to 0, which corresponds to the first cycle of π;

2. the second cycle of G(π) (Figure 1(c)) starts with 2, then visits 7 after following a black-grey path, and in the same way visits 6 before coming back to 2, which corresponds to the second cycle of π.

Note that the order in which we decide to follow arcs (first a black arc and then a grey arc) is given by the order in which the two cycles are multiplied. An alternative definition1 of π could therefore have been (0, π n , π n-1 , . . . , π 1 ) • (0, 1, 2, . . . , n), which can be seen to be equivalent to our definition when conjugated by (0, n, n-1, . . . , 1), and whose cycles are interpreted exactly as above, with the modification that grey arcs are followed first. Consequently, speaking about cycles of π, of Γ(π) or of G(π) is equivalent. We will now demonstrate how f (•) can be used to obtain results on the sorting and distance computation problems we discussed in Section 2.2. The following lemma expresses how the action of any rearrangement operation σ on π is translated on π. We will find it convenient to identify permutations in S n with their extended versions in S n+1 (i.e. we identify π with 0 π 1 π 2 • • • π n ). This allows us to express any permutation π in S n as follows:

π = (0, π n , π n-1 , . . . , π 1 ) • π • (0, 1, 2, . . . , n). (2) 
Lemma 3.1. For all π, σ in S n , we have π

• σ = π • σ π .
Proof. By definition, we have:

π • σ = (0, 1, 2, . . . , n) • (0, (π • σ) n , (π • σ) n-1 , . . . , (π • σ) 1 ) = (0, 1, 2, . . . , n) • π • (0, σ n , σ n-1 , . . . , σ 1 ) • π -1 = (0, 1, 2, . . . , n) • (0, π n , π n-1 , . . . , π 1 ) • π • (0, 1, 2, . . . , n) •(0, σ n , σ n-1 , . . . , σ 1 ) • π -1 (using Equation 2) = π • σ π .
We are now ready to prove our main result. Theorem 3.1. Let S be a subset of S n whose elements are mapped by f (•) onto S ′ ⊆ A n+1 . Moreover, let C be the union of the conjugacy classes (of S n+1 ) that intersect with S ′ ; then for any π in S n , any factorisation of π into t elements of S yields a factorisation of π into t elements of C .

Proof. Induction on t. The base case is π ∈ S, and clearly π ∈ S ′ ⊆ C . For the induction, let

π = g t • g t-1 • • • • • g 1 , where g i ∈ S for 1 ≤ i ≤ t, and let σ = g t-1 • • • • • g 2 • g 1 ; by Lemma 3.1, we have: π = g t • g t-1 • • • • • g 2 • g 1 = g t • σ = g t • σ gt . By induction, σ = g ′ t-1 • g ′ t-2 • • • • • g ′ 1 , where g ′ i ∈ C for 1 ≤ i ≤ t -1; therefore: g t • σ • g -1 t = g t • g ′ t-1 • g ′ t-2 • • • • • g ′ 1 • g -1 t = g t • g ′ t-1 • g -1 t h t-1 • g t • g ′ t-2 • g -1 t h t-2 •g t • • • • • g -1 t • g t • g ′ 1 • g -1 t h 1 ,
and h 1 , h 2 , . . . , h t-1 ∈ C , which completes the proof.

We will use Theorem 3.1 in the next two sections to prove lower bounds on several edit distances between permutations.

Recovering previous results

We illustrate how to use Theorem 3.1 to recover two previously known results on bid and td. The general idea is as follows: as we explained in Section 2.2, if S is symmetric, then any sorting sequence of length t for π made of elements of S yields a factorisation of π into the product of t elements of S, which can in turn be converted, as in the proof of Theorem 3.1, into a factorisation of π into the product of t elements of S ′ ⊆ C . Therefore, the length of a shortest factorisation of π into the product of elements of C is a lower bound on the length of a factorisation of π into the product of elements of S, and we can obtain a lower bound on the distance of interest by: 1. characterising the set of images of the elements in S by f (•), and 2. computing the distance of π with respect to C .

Let us now show how we can obtain a lower bound on the block-interchange distance. We start by characterising the image of a block-interchange by our mapping.

Lemma 4.1. For any block-interchange β(i, j, k, l) in S n , we have

β(i, j, k, l) = (j, l) • (i, k).
Proof. Equation 1 and Definition 2.9 yield

(0, 1, 2, . . . , n) • (0, n, n -1, . . . , l, j -1, j -2, . . . , i, k -1, k -2, . . . , j, l -1, l -2, . . . , k, i -1, i -2, . . . , 1) = (0)(n)(n -1) • • • (l + 1)(l, j)(l -1) • • • (i + 1)(i, k)(i -1) • • • (1) = (j, l) • (i, k).
Note that (j, l) and (i, k) might not be disjoint, since Definition 2.9 allows for j = k (hence the use of • in the expression of β(i, j, k, l)). We can now recover a known lower bound on the block-interchange distance, which is actually the exact distance as shown by Christie [START_REF] Christie | Sorting permutations by block-interchanges[END_REF].

Theorem 4.1. [START_REF] Christie | Sorting permutations by block-interchanges[END_REF] For all π in S n , we have bid(π) ≥ n+1-c(Γ(π))

2

.

Proof. By Theorem 3.1 and Lemma 4.1, a lower bound on bid(π) is given by the length of a minimum factorisation of π into the product of pairs of exchanges. Since this length equals (n + 1 -c(Γ(π)))/2 (see e.g. Jerrum [START_REF] Jerrum | The complexity of finding minimum-length generator sequences[END_REF]), the proof follows.

Let us now characterise the image of a transposition by our mapping. Lemma 4.2. For any transposition τ (i, j, l), we have τ (i, j, l) = (i, l, j).

Proof. As noted in Section 2.2, we have τ (i, j, l) = β(i, j, j, l); Lemma 4.1 yields τ (i, j, l) = β(i, j, j, l) = (j, l) • (i, j) = (i, l, j).

We can now recover the following known lower bound on the transposition distance. Recall that c odd (Γ(π)) denotes the number of odd cycles in Γ(π). Proof. By Theorem 3.1 and Lemma 4.2, a lower bound on td(π) is given by the length of a minimum factorisation of π into the product of 3-cycles. Since this length equals (n + 1 -c odd (Γ(π)))/2 (see e.g. Jerrum [START_REF] Jerrum | The complexity of finding minimum-length generator sequences[END_REF]), the proof follows.

New results on the prefix transposition distance

Dias and Meidanis [START_REF] Dias | Sorting by prefix transpositions[END_REF] initiated the study of sorting by prefix transpositions, and derived a lower bound on the corresponding distance using the following concepts.

Definition 5.1. Given a permutation π in S n , build the permutation

π = 0 π 1 • • • π n n + 1 ; a pair ( π i , π i+1 ) with 0 ≤ i ≤ n is a prefix transposition breakpoint if π i+1 = π i + 1 or if i = 0
, and an adjacency otherwise.

The number of prefix transposition breakpoints of π is denoted by ptb(π). Noting that a prefix transposition can create at most two adjacencies and that ι is the only permutation with one prefix transposition breakpoint, Dias and Meidanis obtained the following lower bound. Lemma 5.1. [START_REF] Dias | Sorting by prefix transpositions[END_REF] For any π in S n :

ptd(π) ≥ ptb(π) -1 2 . ( 3 
)
Chitturi and Sudborough [START_REF] Chitturi | Bounding prefix transposition distance for strings and permutations[END_REF] later obtained another lower bound on the prefix transposition distance. They used the following concepts, based on permutations of {0, 1, 2, . . . , n -1} rather than {1, 2, . . . , n}. Definition 5.2. For a permutation π of {0, 1, 2, . . . , n -1}, an ordered pair (π i , π i+1 ) is an anti-adjacency if π i+1 = π i -1 (mod n). A strip in a permutation π is a maximal interval of π that contains only adjacencies, and a clan is a maximal interval of π that contains only anti-adjacencies.

Chitturi and Sudborough proved the following lower bound. Lemma 5.2. [START_REF] Chitturi | Bounding prefix transposition distance for strings and permutations[END_REF] For any permutation π of {0, 1, 2, . . . , n-1}, let Υ(π) denote the set of all clans of π of length at least 3, and s(π) denote the number of strips of π. Then

ptd(π) ≥ s(π) + C∈Υ(π) (|C|-2) 3 2 . ( 4 
)
We will prove a new lower bound on the prefix transposition distance (Theorem 5.2 page 14), using our model and Akers et al.'s results [START_REF] Akers | The star graph: An attractive alternative to the n-cube[END_REF] on computing the prefix exchange distance: Theorem 5.1. [START_REF] Akers | The star graph: An attractive alternative to the n-cube[END_REF] For any π in S n , we have

pexc(π) = n + c(Γ(π)) -2c 1 (Γ(π)) - 0 if π 1 = 1, 2 otherwise, 
where c 1 (Γ(π)) denotes the number of 1-cycles in Γ(π), or equivalently the number of fixed points of π.

An improved lower bound

Using our theory, we prove a new lower bound on ptd(π) and show that it always outperforms (3). We will find it convenient to express ptb(π) as follows.

Lemma 5.3. For any π in S n , we have

ptb(π) = n + 1 -c 1 (Γ(π)) + 1 if π 1 = 1, 0 otherwise.
Proof. The formula results from the observation that, among the n + 1 pairs of adjacent elements in π, each adjacency in π gives rise to a 1-cycle in Γ(π), and from the fact that if π 1 = 1, then we counted the 1-cycle that corresponds to (0, 1) as an adjacency, which is contrary to Definition 5.1 and which we correct by adding 1.

As explained in Section 4, we can obtain a lower bound on the prefix transposition distance by characterising the image of a prefix transposition by f (•) and computing the associated distance. We already know that transpositions are mapped onto 3-cycles (see Lemma 4.2 page 11); in the case of prefix transpositions, it is easily seen that these 3-cycles will always contain element 0. Therefore, we need to be able to compute the length of a minimum factorisation of π in S n into a product of 3-cycles, where each 3-cycle in the factorisation is further required to contain the first element. Let us denote the corresponding distance d 1 3 (π); the following result shows how to compute it. Lemma 5.4. For any π in A n , we have

d 1 3 (π) = n + c(Γ(π)) 2 -c 1 (Γ(π)) - 0 if π 1 = 1, 1 otherwise.
Proof. Given a minimum factorisation of length ℓ of an even permutation π into prefix exchanges, we can construct a sequence of ℓ/2 3-cycles by noting that (1, j)

• (1, i) = (1, i, j). Therefore d 1 3 (π) ≤ ℓ/2.
On the other hand, assume there exists a shorter sequence of 3-cycles acting on the first element whose product is π; then one can split each of these 3-cycles into two prefix exchanges using the relation above and find a shorter expression for π as a product of prefix exchanges, a contradiction. The result follows from Theorem 5.1.

As a corollary, we obtain the following new lower bound on the prefix transposition distance.

Theorem 5.2. For any π in S n , we have

ptd(π) ≥ n + 1 + c(Γ(π)) 2 -c 1 (Γ(π)) - 0 if π 1 = 1, 1 otherwise. (5) 
Proof. Follows immediately from Theorem 3.1 and Lemma 5.4.

An immediate question is how tight this new lower bound actually is. We will answer this question experimentally in Section 6, where we will see that many more permutations are tight with respect to our new result than with respect to the previously known lower bounds. We will in the meantime conclude this section by proving that our lower bound always outperforms Dias and Meidanis' (given by Lemma 5.1).

Theorem 5.3. For all π in S n , the value of lower bound (5) always exceeds that of lower bound (3).

Proof. Assume π = ι (otherwise the result trivially holds); this implies that Γ(π) has at least one cycle of length at least 2, which means that c(Γ(π))c 1 (Γ(π)) ≥ 1. There are two cases to prove: if π 1 = 1, then lower bound (3) becomes

(n + 1 -c 1 (Γ(π)) + 1) -1 2 = n + 1 -c 1 (Γ(π)) 2 ,
and lower bound [START_REF] Bulteau | Pancake Flipping is Hard[END_REF] satisfies

n + 1 + c(Γ(π)) -2c 1 (Γ(π)) 2 ≥ n + 2 -c 1 (Γ(π)) 2 ≥ n + 1 -c 1 (Γ(π)) 2 .
On the other hand, if π 1 = 1, then lower bound (3) becomes

(n + 1 -c 1 (Γ(π))) -1 2 = n -c 1 (Γ(π)) 2 ,
and Definition 2.4 implies that for any π in A n , we have n ≡ c(Γ(π)) (mod 2). Lower bound [START_REF] Bulteau | Pancake Flipping is Hard[END_REF] becomes

n + 1 + c(Γ(π)) 2 -c 1 (Γ(π)) -1 = n + 1 + c(Γ(π)) -2c 1 (Γ(π)) -2 2 ≥ n -c 1 (Γ(π)) 2 .

A tighter lower bound on the prefix transposition diameter

Dias and Meidanis [START_REF] Dias | Sorting by prefix transpositions[END_REF] observed that the prefix transposition diameter lies between n/2 and n -1, and conjectured that it is equal to n -n 4 . Chitturi and Sudborough [START_REF] Chitturi | Bounding prefix transposition distance for strings and permutations[END_REF] then improved those bounds to 2n/3 and n -log 8 n, respectively. Using our new lower bound, we further improve the lower bound on the prefix transposition diameter. We prove our result in a constructive way, by building families of permutations whose prefix transposition distance is at least ⌊3n/4⌋. Figure 2, which follows our result, shows examples of such permutations. The proof uses permutations from the following class, which has proved useful in the analysis of several other rearrangement problems [START_REF] Fertin | Combinatorics of Genome Rearrangements[END_REF]. Definition 5.3. A permutation π in S n is a 2-permutation if all cycles in π have length 2.

Note that the above definition requires n ≡ 3 (mod 4): indeed, n + 1 must be even in order to obtain a partition of the elements of π into pairs, and (n + 1)/2 is also even by the definition of π.

Theorem 5.4. For all n, the prefix transposition diameter of S n is at least ⌊3n/4⌋.

Proof. If n = 1 or 2, the result is easily verified. For n ≥ 3, we construct for each value of n (mod 4) a suitable permutation. Figure 2 shows an example for each case of the proof.

1. if n ≡ 3 (mod 4), then any 2-permutation π in S n is a valid candidate: indeed, π contains in this case exactly (n + 1)/2 cycles of length 2, and Theorem 5.2 yields

ptd(π) ≥ n + 1 + n+1 2 2 -1 = 3n + 3 -4 4 = 3n -1 4 .
2. if n ≡ 0 (mod 4), we build a permutation σ in S n by inserting a new first element as a fixed point in π, where π is the permutation in S n-1 constructed in the previous case. σ contains n/2 cycles of length 2 and one cycle of length 1 that corresponds to the fact that σ 1 = 1. Theorem 5.2 then yields

ptd(σ) ≥ n + 1 + n 2 + 1 2 -1 = 2n + 2 + n + 2 -4 4 = 3n 4 .
3. if n ≡ 1 (mod 4), we build a permutation ξ in S n by inserting a fixed point anywhere in σ, where σ is the permutation in S n-1 built in the previous case. ξ contains (n + 1 -2)/2 cycles of length 2 and two cycles of length 1, and ξ 1 = 1. Theorem 5.2 then yields

ptd(ξ) ≥ n + 1 + n+1-2 2 + 2 2 -2 = 2n + 2 + n + 1 -2 + 4 -8 4 = 3n -3 4 .
4. if n ≡ 2 (mod 4), we build a permutation τ in S n by appending a 3cycle to any permutation π such that π is a 2-permutation in S n-3 . τ contains (n + 1 -3)/2 cycles of length 2 and one cycle of length 3, and Theorem 5.2 yields We can actually show that the lower bound on the prefix transposition distance of 2-permutations is tight. In order to do that, we will need the following result. We use the following relation to order black arcs: (π i , π i-1 ) ≺ (π j , π j-1 ) if j ≥ i. This result can be interpreted in a more visual way in the case of a 2permutation π by saying that in G(π), every 2-cycle intersects with another 2-cycle. We are now ready to prove the following result. Proof. The lower bound has already been observed in Theorem 5.4. To show that it is also an upper bound, we give an algorithm that sorts π in exactly that number of steps. By Lemma 5.5, every 2-cycle intersects with another 2-cycle, and as observed by Bafna and Pevzner [START_REF] Bafna | Sorting by transpositions[END_REF], a sequence of two transpositions on any two crossing 2-cycles will transform them into four adjacencies:

ptd(τ ) ≥ n + 1 + n+1-3 2 + 1 2 -1 = 2n + 2 + n + 1 -3 + 2 -4 4 = 3n -2 4 .
0 π 1 • • • π i-1 π i • • • π j-1 π j • • • π k-1 π k • • • becomes 0 π i • • • π j-1 π j • • • π k-1 π 1 • • • π i-1 π k • • • which becomes 0 π j • • • π k-1 π i • • • π j-1 π 1 • • • π i-1 π k • • •
We transform the leftmost 2-cycle and any 2-cycle it crosses into four adjacencies using two prefix transpositions, which transforms π into a permutation σ that contains n+1 2 -2 cycles of length 2 and fixes the first element. Then, we carry out again this process until σ is sorted, but we need three prefix transpositions at each step, since one move must be wasted to move the fixed points in σ's prefix out of the way, for instance as follows:

0 1 2 • • • π j-2 π j-1 π j • • • π k-1 π k • • • becomes 0 π j • • • π k-1 1 2 • • • π j-2 π j-1 π k • • •
The algorithm is guaranteed to terminate, since after applying each sequence of three transpositions of the form described above, we obtain either ι, or a permutation on which we can repeat the same process by Lemma 5.5. The proof follows from the fact that the number of prefix transpositions used by this algorithm is

2 + 3 2 n + 1 2 -2 = 8 + 3n -9 4 = 3n -1 4 .

Experimental results

We generated all permutations in S n , for 1 ≤ n ≤ 12, along with their prefix transposition distance, and compared lower bounds (3), ( 4) and ( 5) to the actual distance. We also examined how large the gap between our lower bound and the actual prefix transposition distance can get. Table 2 counts permutations whose prefix transposition distance equals our lower bound plus ∆. We note that, for n ≤ 9, all permutations have a prefix transposition distance that is at most our lower bound plus 2 (plus 3 for n ≤ 12). 

n n! ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 3 1 1 1 0 0 0 2 2

Further observations on π

Now that we have an alternate representation of the cycle graph of a permutation as another permutation, we would like to examine whether or not other results can be obtained that could be helpful in getting insight on problems related to length-constrained factorisations of permutations. We investigate in this section a few relations between π and π, starting with relations between the cycle structures of both permutations when subjected to particular operations.

Cycle structures

A natural question is whether conjugacy classes are preserved by f (•), i.e. whether π and π σ are in the same conjugacy class for any choice of π and σ in S n . The answer is negative in general, as the following counter-example shows: π = (1, 3)(2) and τ = (1, 2)(3) are conjugate, but π = (0, 1, 2, 3) • (0, 1, 2, 3) = (0, 2)(1, 3) and τ = (0, 1, 2, 3) • (0, 3, 1, 2) = (0)(3, 2, 1) are not. However, the relation we are interested in holds for two particular cases, whose significance we explain below.

The following result is similar in spirit to Tannier and Sagot's characterisation of "inverse breakpoint graphs" of signed permutations [START_REF] Tannier | Sorting by reversals in subquadratic time[END_REF], and shows that the cycle graphs of a permutation and of its inverse have exactly the same cycle structure.

Lemma 7.1. For any π in S n , we have π -1 = (π -1 ) (π -1 ) .

Proof. Straightforward:

π -1 = (0, 1, 2, . . . , n) • (0, π -1 n , π -1 n-1 , . . . , π -1 1 ) = π -1 • π • (0, 1, 2, . . . , n) • π -1 • (0, n, n -1, . . . , 1) • π = π -1 • (0, π 1 , π 2 , . . . , π n ) • (0, n, n -1, . . . , 1) • π = π -1 • π -1 • π = (π -1 ) (π -1 ) .
Tannier and Sagot's idea of examining how the cycle graph of π -1 evolves when applying a signed reversal to a permutation π -which reverses and flips the signs of the elements of an interval of π -was a key point in their successful attempt at designing an algorithm with an improved running time for sorting permutations by signed reversals. The above relation allows us to derive a simple description of the more general situation (albeit restricted to "traditional", unsigned permutations), i.e. how π -1 changes when an arbitrary rearrangement σ is applied to π.

Corollary 7.1. For all π, σ in S n , we have

(π • σ) -1 = (σ -1 • π -1 ) σ -1 . Proof. Lemma 3.1 yields (π • σ) -1 = σ -1 • π -1 = σ -1 • π -1 (σ -1 ) = σ -1 • σ -1 • σ • σ -1 • π -1 • σ (using Lemma 7.1) = (σ -1 • π -1 ) σ -1 .
A second particular case of conjugate permutations whose transformation by f (•) yields two conjugate permutations is presented below. Recall that χ is the reverse permutation, i.e. χ = n n -1 • • • 1 .

Observation 7.1. For any π in S n , we have π χ = ((π -1 ) χ ) (0,1,2,...,n) .

Proof. We have by definition:

π χ = (0, 1, 2, . . . , n) • (0, π χ n , π χ n-1 , . . . , π χ 1 ) = (0, 1, 2, . . . , n) • π χ • (0, n, n -1, . . . , 1) • (π χ ) -1 = (π χ • (0, n, n -1, . . . , 1) • (π χ ) -1 • (0, 1, 2, . . . , n)) (0,1,2,...,n) = (χ • π • (0, 1, 2, . . . , n) • π -1 • χ • (0, 1, 2, . . . , n)) (0,1,2,...,n) = (χ • π • (0, 1, 2, . . . , n) • π -1 • (0, n, n -1, . . . , 1) • χ) (0,1,2,...,n) = (χ • π -1 • χ) (0,1,2,...,n) .
Conjugating π by χ corresponds to computing its reverse complement: indeed, π

•χ = π n π n-1 • • • π 1 , and χ•(π•χ) = n + 1 -π n n + 1 -π n-1 • • • n + 1 -π 1 .
By definition, π and π χ have the same cycle structure, and by the above result, so do their images by f (•). The reverse complement operation is interesting because most (but not all, prefix distances being notable exceptions [START_REF] Labarre | Combinatorial aspects of genome rearrangements and haplotype networks[END_REF]) genome rearrangement distances are, in addition to being leftinvariant, also "reverse complement-invariant": for all π and σ in S n , we have d(π, σ) = d(π χ , σ χ ). As a consequence, bounds obtained on the distance between π and ι with respect to a certain set of operations can sometimes be improved by examining π -1 or π χ .

Eriksson et al. [START_REF] Eriksson | Sorting a bridge hand[END_REF] introduced another important equivalence relation on permutations that does not preserve their cycle structure in the classical sense but that does preserve the cycle structure of their cycle graphs. This equivalence relation, whose equivalence classes are called toric permutations, proved useful in improving bounds on the transposition distance [START_REF] Eriksson | Sorting a bridge hand[END_REF][START_REF] Labarre | New bounds and tractable instances for the transposition distance[END_REF]. We will see below that π provides a simple way of navigating through all cycle graphs of the permutations in the same equivalence class. The equivalence relation uses the following notion.

Definition 7.1. The circular permutation obtained from a permutation π in S n is π

• = 0 π 1 π 2 • • • π n , with indices taken modulo n + 1 so that 0 = π • 0 = π • n+1 .
This circular permutation can be read starting from any position, and the original "linear" permutation is reconstructed by taking the element following 0 as π 1 and removing 0. For x in {0, 1, 2, . . . , n}, let x m = (x+m) (mod n+1), and define the following operation on circular permutations:

m + π • = 0 m π 1 m π 2 m • • • π n m .
Definition 7.2. For any π in S n , the toric permutation π • • is the set of permutations in S n reconstructed from all circular permutations m + π • with 0 ≤ m ≤ n. In other words, if π ≡ • • σ, then π and σ are conjugate. We show below how one can iterate over the cycle graphs of all elements in π •

• .

Lemma 7.3. For all π, σ in S n : if σ

• = m + π • , then σ = π (0,1,2,...,n) m .
Proof. By Equation 1, we have:

σ = (0, 1, 2, . . . , n) • (σ 0 , σ n , σ n-1 , . . . , σ 1 ) = (0, 1, 2, . . . , n) • (m + π 0 , m + π n , m + π n-1 , . . . , m + π 1 ), since by hypothesis σ • = m + π • .
On the other hand, the mapping (π 0 , π n , π n-1 , . . . , π 1 ) → (m + π 0 , m + π n , m + π n-1 , . . . , m + π 1 ) consists in replacing each element of the cycle with its value plus m (mod n+1), which is by definition equivalent to conjugating (π 0 , π n , π n-1 , . . . , π 1 ) by (0, 1, 2, . . . , n) m . Corollary 7.2. For all π in S n , we have {σ

| σ ∈ π • • } = {π (0,1,2,...,n) m | 0 ≤ m ≤ n}.
Other relations between the cycle structure of π and that of π can easily be derived from previous work. The following relation allows us to bound the number of odd cycles of π. Similarly, the following result is an immediate corollary of Theorem 4.1 and of the characterisation of exchanges as restricted block-interchanges.

Corollary 7.4. For all π in S n , we have 2c(Γ(π)) ≤ n -1 + c(Γ(π)).

Descents of π and cycles of π

Aside from relations between cycle structures, we can also establish relations between pairs of elements of π and cycles of π. An example of such a relation is the fact that the number of adjacencies in 0 π 1 π 2 • • • π n n + 1 equals c 1 (Γ(π)). We will prove that a less obvious relation connects the descents of π (defined below) and the cycles of π.

Definition 7.4. A descent in a permutation π is a pair (π i-1 , π i ) such that π i < π i-1 .
For instance, the permutation 4 ↓ 1 6 ↓ 2 5 7 ↓ 3 has three descents, indicated by vertical arrows.

Definition 7.5. A cycle C in G(π) contains a descent (π i-1 , π i ) if (π i , π i-1 ) is a black arc of C.
We now derive bounds on the number of descents contained by cycles in G(π).

Lemma 7.4. For all π in S n , every cycle of length ℓ ≥ 2 in G(π) contains at most ℓ -1 descents and at least one descent of π.

Proof. For clarity, let us write the vertices of C in the order in which C visits them, starting with the element whose position in π is maximal: we get C = (π i 1 , π j 1 , π i 2 , π j 2 , . . . , π i k , π j k ), where i 1 (resp. j k ) is the largest (resp. smallest) position of an element of π appearing in C. We identify here π 0 and π n+1 ≡ π 0 (mod n + 1). Recall that (π ix , π jx ) for 1 ≤ x ≤ k is a black arc of C, and that by Definition 2.10, the following relation holds:

π ix = π j x-1 + 1 for all 1 ≤ x ≤ k, and π i 1 = π j k + 1. (6) 
1. for the upper bound: assume on the contrary that C contains ℓ descents; then every black edge of C corresponds to a descent, and we have:

π jx > π ix for 1 ≤ x ≤ k. (7) 
By alternating between the conditions specified by Equations 7 and 6, we obtain:

π j k > π i k = π j k-1 + 1 > π i k-1 + 1 = π j k-2 + 2 > • • • = π j 1 + k -1 > π i 1 + k -1 = π j k + k,
which is clearly a contradiction.

2. for the lower bound: assume on the contrary that C contains no descent; we have:

π jx < π ix for 1 ≤ x ≤ k. ( 8 
)
By alternating between the conditions specified by Equations 8 and 6, we obtain:

π i 1 -1 = π j k < π i k = π j k-1 + 1 < π i k-1 + 1 = π j k-2 + 2 < • • • = π j 1 + k -1 < π i 1 + k -1.
For the above relations to hold, elements from the set A = {π i k , π i k-1 + 1, . . . , π i 2 + k -2} can only be assigned values from the set B = {π i 1 + 1, π i 1 + 2, . . . , π i 1 + k -2}. However, we have k -1 = |A| > |B| = k -2, which clearly makes it impossible to obtain a permutation.

Finally, note that π and π can be regarded as equivalent as far as descents are concerned, since ( π 0 , π 1 ) and ( π n , π n+1 ) cannot be descents.

The following result is a direct corollary of the above. Proof. By definition, π contains exactly (n + 1)/2 cycles of length 2, and by Lemma 7.4, each of these cycles contains exactly one descent of π.

Conclusions

We presented a new framework for reformulating any edit distance problem on permutations as a minimum-length factorisation problem on a related even permutation, under the implicit assumption that the edit operations are revertible. This approach is based on a new representation of a structure known as the cycle graph, which pervades the field of genome rearrangements in several different forms; it previously allowed us to enumerate permutations whose cycle graph decomposes into a given number of alternating cycles [START_REF] Doignon | On Hultman numbers[END_REF], and allowed us in this work to recover two previously known results in a simple and unified way. Moreover, we used our approach to derive a new lower bound on the prefix transposition distance that, as we showed both theoretically and experimentally, is a significant improvement over previous results. From that result, we deduced an improved lower bound on the prefix transposition diameter of the symmetric group, whose exact value is still unknown. Finally, we investigated other relations between permutations and their cycle graphs that we hope will prove useful in obtaining new results. Several interesting questions and leads for future work arise. First, our method provides an automated way of obtaining lower bounds on distances between permutations; is there an analogous way of obtaining upper bounds instead? Second, we initiated the study of relations between statistics on a permutation and statistics on the permutation that corresponds to its cycle graph. Can other relations be deduced and used to prove other results, including tighter bounds on the distances of interest? Third, permutations are but one structure for which the cycle graph has been defined. Other structures, such as signed permutations, give rise to a more general structure known as the breakpoint graph. Are there analogs, or generalisations of f (•) that can yield similar results on signed permutations as well? Finally, another question is whether Cayley graphs obtained from genome rearrangement operations can yield good interconnection networks. For instance, (signed) reversals generalise the operations that generate the (burnt) pancake network, exchanges generalise the operations that generate the star network, and prefix transpositions generalise the operations that generate the bi-rotator graphs (see Lakshmivarahan et al. [START_REF] Lakshmivarahan | Symmetry in interconnection networks based on Cayley graphs of permutation groups: A survey[END_REF] for definitions). It seems likely that collaborations between researchers in both fields could be fruitful in investigating this topic.
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 1 Figure 1: (a) The cycle graph of 4 1 6 2 5 7 3 ; (b), (c) its decomposition into two alternating cycles.
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 2 Figure 2: Cycle graphs of permutations π in S n with ptd(π) ≥ ⌊3n/4⌋, for all values of n mod 4.
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 55 [START_REF] Bafna | Sorting by transpositions[END_REF] For any π in S n , let C 1 be a cycle of length 2 in G(π) with black arcs a, b; then there exists another cycle C 2 in G(π) containing two black arcs c and d such that a ≺ c ≺ b ≺ d or c ≺ a ≺ d ≺ b.
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 71 For any 2-permutation π in S n , we have des(π) = (n + 1)/2.
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 1 Table1shows the results. It can be observed that many more permutations are tight with respect to our lower bound (column 5) than with respect to Dias and Meidanis' (column 3) or Chitturi and Sudborough's (column 4). Comparison of all known lower bounds on the prefix transposition distance. Column 3 lists the number of cases where Dias and Meidanis's lower bound is tight [13, page 48], column 4 lists the number of cases where Chitturi and Sudborough's lower bound is tight, and column 5 lists the number of cases where our lower bound is tight.

	n	n! tight w.r.t. (3) tight w.r.t. (4) tight w.r.t. (5)
	1	1	1	1	1
	2	2	2	2	2
	3	6	4	4	6
	4	24	13	15	22
	5	120	41	48	106
	6	720	196	255	574
	7	5 040	862	1 144	3 782
	8	40 320	5 489	7 737	27 471
	9	362 880	31 033	44 187	229 167
	10	3 628 800	247 006	369 979	2 103 510
	11 39 916 800	1 706 816	2 575 693	21 280 564
	12 479 001 600	16 302 397	25 791 862	236 651 919

Table 2 :

 2 Number of cases where our lower bound underestimates ptd(π) by ∆.

			2	0	0	0
	3	6	6	0	0	0
	4	24	22	2	0	0
	5	120	106	14	0	0
	6	720	574	143	3	0
	7	5 040	3 782	1 234	24	0
	8	40 320	27 471	12 310	539	0
	9	362 880	229 167	128 576	5 137	0
	10	3 628 800	2 103 510	1 427 966	97 321	3
	11 39 916 800 21 280 564 17 532 948 1 103 254	34
	12 479 001 600 236 651 919 221 680 237 20 667 140	2 304

This is actually the definition we used in the conference version of this paper[START_REF] Labarre | Edit distances and factorisations of even permutations[END_REF].
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