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Abstract

Given two comparative maps, that is two sequences of markers each representing a genome,
the Maximal Strip Recovery problem (MSR) asks to extract a largest sequence of markers from
each map such that the two extracted sequences are decomposable into non-intersecting strips (or
synteny blocks). This aims at defining a robust set of synteny blocks between different species,
which is a key to understand the evolution process since their last common ancestor. In this
paper, we add a fundamental constraint to the initial problem, which expresses the biologically
sustained need to bound the number of intermediate (non-selected) markers between two consec-
utive markers in a strip. We therefore introduce the problem δ-gap-MSR, where δ is a (usually
small) non-negative integer that upper bounds the number of non-selected markers between two
consecutive markers in a strip. We show that, if we restrict ourselves to comparative maps with-
out duplicates, the problem is polynomial for δ = 0, NP-complete for δ = 1, and APX-hard for
δ ≥ 2. For comparative maps with duplicates, the problem is APX-hard for all δ ≥ 0.

Keywords: algorithmic complexity, approximation algorithms, comparative maps, genome
comparison, synteny blocks

1. Introduction

In comparative genomics, finding synteny blocks (that is, regions with similar content and
gene order) of two genomes is a crucial task, as the decomposition of genomes into synteny
blocks allows to estimate the nature of genome rearrangement events that took place during the
evolution process since the last common ancestor of the genomes.

In addition to the difficulty to define a synteny block precisely, another difficulty is intro-
duced by the quality of genome annotation. Zheng et al. [31] make a list of possible errors and
ambiguities introduced by the mapping technology, which is used to obtain a representation of
a genome as a sequence of markers, called a genomic map. Each marker represents a small,
specific element which has been identified on the genome, at a specific position which is the
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marker’s position. Comparing two genomes is then possible using their genomic maps, assum-
ing that the pairs of identical markers on the two genomes are known (the maps are then called
comparative maps). Comparative maps are less precise than genome sequences (either as DNA
sequences or as sequences of genes), but still allow the identification of synteny blocks.

The problem that needs to be solved when no error occurs is the following: Given two com-
parative maps, decompose them into non-intersecting synteny blocks. In case of errors or am-
biguities, Zheng et al. [31] propose to switch to the following problem: Given two comparative
maps, find a longest (possibly non-contiguous) subsequence of markers in each comparative
map, such that the subsequences are decomposable into non-intersecting synteny blocks. The
idea behind this maximization problem is that true synteny is possibly interrupted by erroneous
or ambiguous markers, which should be discarded before searching for synteny blocks.

The problem, called MAXIMAL STRIP RECOVERY (MSR), is obtained from this maximiza-
tion problem using comparative maps with signed, but not duplicated, markers, and a specific
definition of synteny blocks. Synteny blocks of two sequences are defined as strips, which are
contiguous sequences of at least two markers that occur on each sequence either in the same
order, or in reverse order and with a reversed sign.

Zheng et al. [31] and Choi et al. [13] propose two heuristics to solve the MSR problem.
Chen et al. [10, 11] devise a 4-approximation algorithm for it, and propose several extensions of
MSR, namely MSR-d, which compares an arbitrary number d ≥ 2 of genomes, MSR-DU, which
allows markers to be duplicated in the input maps, MSR-WT, where one takes into account the
biological importance of the markers by giving a weight to each of them, and finally MSR-NB,
which uses the number of non-breaking points (or adjacencies), instead of the length, as score
function. NP-completeness results are obtained in [10] for a number of those extensions, and by
Wang et al. [29] for MSR. A more precise hardness result is given by Jiang [19], who proves the
APX-completeness of MSR. A more general review on related problems can be found in [28].

The MSR problem takes into account the need to keep as much of the data as possible from
the initial comparative maps and the need to have conflict-free synteny blocks. However, it is too
permissive as it allows two consecutive elements from one strip to be separated by an arbitrary
long gap (in terms of intermediate markers) on the initial comparative maps, and possibly to be
very close on one map and very far from each other on the other. As the discarded elements
are supposed to be errors and ambiguities (which are rather the exception than the rule), and
the elements kept in the subsequences are supposed to be the safe information (which is the
major part of the comparative information), it follows that a safe synteny block should not allow
arbitrarily long gaps.

We therefore introduce and study in this paper the δ-gap-MSR problem, a restriction of the
MSR problem where the allowed gaps along the comparative maps between two consecutive
elements in a strip are upper bounded by parameter δ, where δ is a given (usually small) non-
negative integer. We investigate the algorithmic complexity of δ-gap-MSR depending on the
allowed multiplicity for a marker and prove the results given in Table 1 (corresponding section
numbers are given in brackets). For the NP-complete or APX-hard cases, we provide three
approximation algorithms, whose approximation ratios are also given in Table 1.

The organization of the paper is as follows. In Section 2, we introduce some notations, and
we formally define MSR, MSR-DU, δ-gap-MSR and δ-gap-MSR-DU. We prove in Section 3
the hardness results: after a preliminary result in Section 3.1, we prove the NP-completeness of
1-gap-MSR in Section 3.2; the APX-completeness of δ-gap-MSR, δ ≥ 2, in Section 3.3; and
the APX-completeness of δ-gap-MSR-DU, δ ≥ 0, in Section 3.4. We then give polynomial-time
algorithms in Section 4: an exact algorithm for 0-gap-MSR and a general 4-approximation in
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Table 1: Hardness and approximability of variants of MSR.

Problem Complexity Approximation
ratio

0-gap-MSR P (4.1) -
1-gap-MSR NP-hard (3.2) 1.8 (4.2)
δ-gap-MSR (δ ≥ 2) APX-hard [21],(3.3) 4 (4.1)
MSR APX-hard [21] 4 [11]
0-gap-MSR-DU APX-hard (3.4) 2.25 (4.3)
δ-gap-MSR-DU (δ ≥ 1) APX-hard (3.4) 4 (4.1)
MSR-DU APX-hard [21] 4 [11]

Section 4.1; a 1.8-approximation for 1-gap-MSR in Section 4.2; and a 2.25-approximation for
0-gap-MSR-DU in Section 4.3.

2. Notations and Definitions

A comparative map M is a sequence of signed integers, where the absolute value of each
integer represents a specific marker, and the sign represents the orientation of the marker on the
chromosome, see for example Figure 1a. A marker may appear several times in a comparative
map, possibly with different orientations: in this case, we say that the comparative map M
contains duplicates (the presence of duplicates is useful if the markers represent genes possibly
having paralogs in the comparative map). Note that a comparative map is suited to represent
uni-chromosomal genomes. However, the algorithms we present can easily be adapted to handle
multi-chromosomal instances. A sequenceM is denotedM=〈m1,m2, . . . , ml〉, and its ith element
mi is (also) denotedM[i].

A subsequence σ of M is a sequence 〈σ1, . . . , σh〉 of markers from M with h ≥ 2 and
positions i1 < i2 < . . . < ih respectively onM. The vector (i1, . . . , ih) is denoted idx(σ,M). The
gap of σ inM is max{ik+1 − ik − 1 | 1 ≤ k < h}. The length |σ| of σ is h. Two subsequences σ
and τ are non-overlapping inM if one appears strictly before the other, that is, if the last element
of idx(σ,M) (resp. of idx(τ,M)) is strictly smaller than the first element of idx(τ,M) (resp. of
idx(σ,M)). The reversed opposite of 〈σ1, . . . , σh〉 is 〈−σh,−σh−1, . . . ,−σ1〉.

Given two comparative maps M1 and M2, a prestrip is a subsequence σ of M1 of length
at least 2, such that either σ or its reversed opposite is a subsequence ofM2, and such that the
markers in σ are pairwise distinct. A sub-prestrip σ′ of a prestrip σ is a prestrip such that σ′

is a subsequence of σ. The gap of a prestrip is the maximum of the gaps of the two corre-
sponding subsequences inM1 andM2. Two prestrips are non-overlapping if the corresponding
subsequences are non-overlapping, both inM1 andM2. A strip is a prestrip with gap 0. Strips
represent synteny blocks between two comparative maps. A prestrip can also be seen as a syn-
teny bock, but only if we consider that there is noise in the comparative maps (false markers
appear between two consecutive markers of the “true” synteny block). A set of prestrips S is
said to be feasible if it contains pairwise non-overlapping prestrips, and we write ||S|| for its total
size: ||S|| = ∑

σ∈S |σ|. We call peg marker, and we write ×, a marker appearing in only one map
(a peg marker never belongs to any prestrip, but it affects the gap of prestrips). A sequence of h
consecutive peg markers is written ×h.
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M1 = 〈

M2 = 〈

〉

〉12 4 1 5 2 3 10 11 6 -9 7 -8-7 1 -6 2 12 3 4 10 5 11 8 9
(a) Two sequences M1, M2 without duplicates, and a feasible set of gap-1 prestrips of
total length 8 {〈1, 2〉, 〈12, 4〉, 〈10, 11〉, 〈8, 9〉}.

M1
′
= 〈

M2
′
= 〈

〉

〉12 4 1 2 10 11 -9 -81 2 12 4 10 11 8 9
(b) Two subsequencesM1

′ andM2
′ ofM1 andM2 obtained by delet-

ing markers 3, 5, 6, 7, and partitioned into a set of strips.

Figure 1

Finally, we define some notions of graph theory: a graph G = (V, E) is cubic if every vertex
u ∈ V has degree exactly 3. A set X ⊂ V is said to be independent if for every edge (u, v) ∈ E,
u < X or v < X. The cardinality of a maximum independent set of G is written α(G).

The problems MSR (for MAXIMAL STRIP RECOVERY, see [31]) and MSR-DU [11] are
defined, in their decision formulation, as follows:

Problem: MSR
Input: Two comparative mapsM1 andM2 without duplicates, ` ∈ N.
Question: Is there a feasible set S of prestrips ofM1 andM2 such that ||S|| ≥ ` ?

Problem: MSR-DU
Input: Two comparative mapsM1 andM2 (possibly with duplicates), ` ∈ N.
Question: Is there a feasible set S of prestrips ofM1 andM2 such that ||S|| ≥ ` ?

The idea behind both those problems is that, if we find a feasible set of prestrips with max-
imum total size, the elements appearing in no prestrip are considered as noise: we can remove
them to “clean” the data. Indeed, once those elements are removed, the resulting comparative
maps can be partitioned into common strips, i.e. the resulting genomes are decomposed into
synteny blocks with the same set of blocks in both genomes, see Figure 1b. Heuristics for the
first problem have been given in [31]. They have been improved in [11] into a 4-approximation
algorithm. Finally, MSR (and thus MSR-DU) has been independently proved NP-hard in [32]
and APX-hard in [19, 21]. The complementary problem, called CMSR, is the equivalent problem
where one aims at minimizing the number k of deleted markers instead of maximizing the num-
ber ` of selected markers. Problem CMSR is also APX-hard [20, 21], and several approximation
algorithms are known for it (with ratio 3 [33, 17], 3.5 [7] and 7/3 [22, 23]). Fixed parameter
tractable algorithms have also been sought for CMSR, [29, 30, 33, 18, 17, 7] with in particular
an FPT algorithm having a complexity of O(2.36kpoly(n)) [7].

The variant we introduce, δ-gap-MSR, takes into account the fact that it is unlikely for long
sequences of markers to appear only from noise and errors. If a large number of elements is
inserted between two consecutive elements of a prestrip (thus, if it has a large gap), then they
are probably not errors, and the prestrip should not be considered a synteny block of the original
genomes. We thus consider the restriction of the problem where the gap is bounded; the relevance
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of applying this constraint on experimental data has been verified in [31]. The corresponding
formal problems are defined as follows, where δ is any non-negative integer:

Problem: δ-gap-MSR
Input: Two comparative mapsM1 andM2 without duplicates, ` ∈ N.
Question: Is there a feasible set S of prestrips ofM1 andM2 such that every σ ∈ S has gap at
most δ, and ||S|| ≥ ` ?

Problem: δ-gap-MSR-DU
Input: Two comparative mapsM1 andM2 (possibly with duplicates), ` ∈ N.
Question: Is there a feasible set S of prestrips ofM1 andM2 such that every σ ∈ S has gap at
most δ, and ||S|| ≥ ` ?

With the gap constraint, only prestrips which are nearly contiguous are kept, while some
noise in the input data is tolerated. There is no direct reduction from MSR to δ-gap-MSR or vice
versa. However, the APX-hardness proof [21] can be extended to δ-gap-MSR with δ ≥ 2, and
the FPT and approximation algorithms in [7] for CMSR also apply to δ-gap-CMSR. This paper
focuses on the δ-gap-MSR and δ-gap-MSR-DU problems, especially for small values of δ.

3. Hardness Results

In this section we study the complexity of problems δ-gap-MSR and δ-gap-MSR-DU. We
first observe in Section 3.1 that these problems become more difficult to solve when δ grows.
Then in Section 3.2 we focus on 1-gap-MSR and prove that this problem is NP-hard. Finally, in
Sections 3.3 and 3.4, we prove the APX-hardness of respectively δ-gap-MSR (for all δ ≥ 2) and
δ-gap-MSR-DU (for all δ ≥ 0).

The APX-hardness results rely on the notion of L-reduction [26], defined below.
Given P an optimization problem, x an instance of P and y a feasible solution of x, we write

cP(x, y) the cost of y. optP(x) denotes the optimal value of cP(x, y) over all solutions y of x. Let
P and Q be two optimization problems. An L-reduction from P to Q is a pair of polynomial time
computable functions f and g such that:

• if x is an instance of P, then f (x) is an instance of Q,

• if y is a solution of f (x) for some x, then g(y) is a solution of x,

• there exists a positive constant α such that

optQ( f (x)) ≤ α optP(x),

• there exists a positive constant β such that

|optP(x) − cP(x, g(y))| ≤ β |optQ( f (x)) − cP( f (x), y)|.

Given such an L-reduction from P to Q, if P is NP-hard to approximate within 1 + δ, then Q is
NP-hard to approximate within 1 + δ/(αβ).
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3.1. Hardness increases with the gap

In this section, we show that the problems δ-gap-MSR and δ-gap-MSR-DU become more and
more difficult as δ increases. However, this result does not allow us to compare those problems
to MSR and MSR-DU, for which the hardness results are quite independent (see [19] for the
APX-hardness of those problems).

Theorem 1. Let 0 ≤ δ < δ′. Then there exists an L-reduction from δ-gap-MSR to δ′-gap-MSR,
and from δ-gap-MSR-DU to δ′-gap-MSR-DU.

Note that the L-reduction [26] refers to the optimization versions of problems δ-gap-MSR and
δ-gap-MSR-DU, which are easy to deduce from the decision versions presented in Section 2.

Proof. Let (M1,M2) be an instance of δ-gap-MSR (resp. δ-gap-MSR-DU). For i ∈ {1, 2} and
any k ≥ 0, we write Kδi (k) the sequence 〈Mi[δk + 1],Mi[δk + 2], . . . ,Mi[δk + δ]〉. We construct
a pair of comparative maps (M1

′,M2
′) in the following way:

M1
′ = 〈Kδ1(0),×δ′−δ,Kδ1(1),×δ′−δ, . . .〉

M2
′ = 〈Kδ2(0),×δ′−δ,Kδ2(1),×δ′−δ, . . .〉

Consider that (M1
′,M2

′) is an instance of δ′-gap-MSR (resp. δ′-gap-MSR-DU).
We show that there is a one-to-one correspondence between prestrips of (M1,M2) with gap

at most δ and prestrips of (M1
′,M2

′) with gap at most δ′. Let σ be a prestrip of (M1,M2) with
gap at most δ, then it is also a prestrip of (M1

′,M2
′). Moreover, let a and b be two consecutive

markers of σ, such that a appears in Kδ1(k) for some k, then b is in Kδ1(k), Kδ1(k − 1) or Kδ1(k + 1).
In the first case the gap between a and b is the same inM1

′ as inM1, and otherwise the gap is
increased by exactly δ′− δ. Hence, since the gap between a and b is at most δ inM1, it is at most
δ′ inM1

′. We have the same property withM2
′, thus σ has gap at most δ′ in (M1

′,M2
′).

Conversely, a prestrip σ′ of gap δ′ in (M1
′,M2

′) corresponds to a prestrip in (M1,M2), and
if a, b are two consecutive elements in σ′ with a gap strictly greater than δ in (M1

′,M2
′), then

they cannot appear in the same Kδi (k), and thus the gap between a and b is reduced by at least
δ′ − δ. Hence σ′ has gap at most δ in (M1,M2).

This one-to-one correspondence is enough to prove the fact that we have an L-reduction,
since it preserves the prestrip lengths and the overlapping relation.

3.2. NP-hardness of 1-gap-MSR

In this section, we prove the following theorem.

Theorem 2. 1-gap-MSR is NP-hard.

The proof uses a reduction from a variant of MAXIMUM INDEPENDENT SET, 3-colored-
MIS, which is defined below. A 3-edge-coloring (also known as Tait Coloring) of a cubic graph
G = (V, E) is a partition of its edges in three classes E = EA ∪ EB ∪ EC such that if two edges
e1, e2 ∈ E are incident to a common vertex, they belong to different classes. Note that if a cubic
graph with n vertices admits a 3-edge-coloring, then each class contains n/2 edges.
Problem: 3-colored-MIS
Input: A cubic graph G = (V, E), provided with a 3-edge-coloring (EA, EB, EC) of G, an integer
k.
Question: Is α(G) ≥ k ?
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Lemma 3. 3-colored-MIS is NP-hard, even when restricted to cubic planar 2-connected graphs.

Proof. To prove this lemma, we consider the class of cubic, planar, and 2-connected graphs:
we present a reduction from the variant of the VERTEX COVER problem on this class of graphs
(which is known to be NP-hard [5]) to 3-colored-MIS. This reduction uses a well-known equiv-
alence between the 4-coloring of a planar graph and the 3-edge-coloring of a cubic graph [6].

Let G = (V, E) be a cubic, planar, and 2-connected graph. The Four Color Theorem [3]
ensures that its region graph admits a 4-coloring, and compute such a coloring, with colors taken
in the set {0, 1, 2, 3}, using e.g. the quadratic time algorithm from Robertson et al. [27].

For every edge e ∈ E, we write φ(e) the pair of colors associated to its two adjacent faces
(since the graph is 2-connected, e is adjacent to two different faces, which are colored with
different values). We deduce a 3-edge-coloring of G with the following formulae:

• If φ(e) = {0, 1} or φ(e) = {2, 3}, give to e the color A.

• If φ(e) = {0, 2} or φ(e) = {1, 3}, give to e the color B.

• If φ(e) = {0, 3} or φ(e) = {1, 2}, give to e the color C.

If two edges e1 and e2 are incident to the same vertex, then, since this vertex has degree 3,
there are 3 faces f0, f1, f2 (with 3 different colors) such that e1 is adjacent to f0 and f1, and e2 is
adjacent to f0 and f2. So φ(e1) ∩ φ(e2) has size 1, and e1 and e2 have different colors. We have
a 3-edge-coloring of G, which is an instance of 3-colored-MIS, and an optimal solution to 3-
colored-MIS(G) of cardinality k gives an optimal solution to VERTEX COVER(G) of cardinality
|V | − k: the reduction is complete and Lemma 3 is proved.

Starting from any instance of 3-colored-MIS, we construct two comparative maps as follows.
First, we assign a list of 4 distinct positive integers (or 4 “markers”) to each vertex u ∈ V: they
are denoted yA1

u , yA2
u , yB1

u and yB2
u . We also assign a list of 10 distinct integers x1

uv, . . . , x
10
uv to each

edge (u, v) ∈ EC, in such a way that no integer appears in two different lists.
We construct the comparative maps with the following iterative procedure. Suppose we have

arbitrarily ordered the vertices in V . In that case:

1. For all (u, v) ∈ EA such that u < v, add 〈yA1
u , y

A1
v , y

A2
u , y

A2
v ,×,×〉 toM1.

2. For all (u, v) ∈ EB such that u < v, add 〈yB1
u , y

B1
v , y

B2
u , y

B2
v ,×,×〉 toM2.

3. For all (u, v) ∈ EC such that u < v, add Γ1(u, v) toM1, Γ2(u, v) toM2, where Γ1 and Γ2 are
defined as:

Γ1(u, v) = 〈x1
uv, x

5
uv, x

2
uv, x

6
uv, x

3
uv, x

7
uv, x

4
uv,×,×,

yB1
u , x

8
uv, y

B2
u , x

9
uv, y

B1
v , x

10
uv , y

B2
v ,×,×〉

Γ2(u, v) = 〈x1
uv, x

8
uv, x

2
uv, x

9
uv, x

3
uv, x

10
uv , x

4
uv,×,×,

yA1
u , x

5
uv, y

A2
u , x

6
uv, y

A1
v , x

7
uv, y

A2
v ,×,×

〉
.

Property 4. Let G = (V, E) be an n-vertex cubic graph with a 3-edge-coloring, and letM1 and
M2 be the two comparative maps obtained by the construction defined above. Then the optimal
value of 1-gap-MSR over (M1,M2) equals 4n + 2α(G).
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Y A
u

〈5, 6〉 〈6, 7〉
Y A

v

〈5, 6, 7〉

〈1, 2〉 〈1, 2, 3〉 〈2, 3, 4〉 〈3, 4〉

〈8, 9, 10〉

Y B
u 〈8, 9〉 〈9, 10〉

Y B
v

(a) All length-2 and length-3 prestrips of γuv and their links to prestrips of
Y A 〈5, 6〉 〈6, 7〉 Y A

v

〈1, 2〉 〈3, 4〉B 〈8, 9〉 〈9, 10〉 Y B
v

(b) Induced subgraph with prestrips of γ01
uv , γ10

uv and γ00
uv

Figure 2: Overlapping prestrips of γuv for an arc (u, v) ∈ EC, with notation xi
uv = i for all

1 ≤ i ≤ 10

Proof. In the proof of this property, we use the following notations: for u ∈ V , YA
u = 〈yA1

u , y
A2
u 〉

and YB
u = 〈yB1

u , y
B2
u 〉. We say that σ1 is a sub-prestrip of σ2 if σ1 and σ2 are prestrips of (M1,M2),

and σ1 is a subsequence of σ2. We write Y = {YA
u | u ∈ V} ∪ {YB

u | u ∈ V}, and Ω the set of
all prestrips of (M1,M2) with gap at most 1. We also write `1(M1,M2) the optimal value of
1-gap-MSR(M1,M2).

We first enumerate the possible prestrips of (M1,M2) appearing in Ω:

- For all (u, v) ∈ EA, both YA
u and YA

v belong to Ω. Moreover, YA
u and YA

v overlap inM1 (see
step 1 of the construction).

- For all (u, v) ∈ EB, both YB
u and YB

v belong to Ω. Moreover, YB
u and YB

v overlap inM2 (see
step 2 of the construction).

- For all (u, v) ∈ EC, 〈x1
uv, x

2
uv, x

3
uv, x

4
uv〉, 〈x5

uv, x
6
uv, x

7
uv〉 and 〈x8

uv, x
9
uv, x

10
uv〉 belong toΩ. We write

γuv the set containing those three prestrips and all their sub-prestrips (see Figure 2a).

Because of the gap condition, which prevents prestrips from overlapping the peg markers, there
are no other prestrips in Ω.

For an edge (u, v) ∈ EC, we give names to different feasible subsets of γuv (see Figure 2b):

γ01
uv =

{
〈x1

uv, x
2
uv〉, 〈x6

uv, x
7
uv〉, 〈x9

uv, x
10
uv〉

}
,

γ10
uv =

{
〈x3

uv, x
4
uv〉, 〈x5

uv, x
6
uv〉, 〈x8

uv, x
9
uv〉

}
,

γ00
uv =

{
〈x1

uv, x
2
uv〉, 〈x3

uv, x
4
uv〉

}
.
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The first inequality we need to prove is the following:

`1(M1,M2) ≥ 4n + 2α(G).

Consider X a maximal independent set of G (|X| = α(G)). Construct a set of prestrips S in
the following way:

1 For all (u, v) ∈ EA, if u < X, then add YA
u to S. Else, v < X: add YA

v to S.

2 For all (u, v) ∈ EB, if u < X, then add YB
u to S. Else, v < X: add YB

v to S.

3 For all (u, v) ∈ EC, there are three possible cases:

– If u < X and v < X, add γ00
uv to S.

– If u ∈ X and v < X, add γ10
uv to S.

– If u < X and v ∈ X, add γ01
uv to S.

Before considering the overlaps in S, we compute its total size: ||S|| is increased by 2 for
each edge in EA and in EB (steps 1 and 2), and it is increased by either 6 or 4 for each edge in EC,
depending on whether this edge is incident to a vertex of X. As each vertex is incident to exactly
one edge in EC, we have the following formula:

||S|| = 2|EA| + 2|EB| + 4|EC| + 2|X|.

Since each class EA, EB and EC contains exactly n/2 edges, and |X| = α(G), we have

||S|| = 4n + 2α(G).

We now prove that S is a feasible set of prestrips. First note that prestrips of S ∩ Y are
pairwise non-overlapping, sinceS never contains both YA

u and YA
v (resp. YB

u and YB
v ) for (u, v) ∈ EA

(resp. (u, v) ∈ EB).
If σ1, σ2 ∈ S − Y, then there exist (u, v) and (u′, v′) such that σ1 ∈ γi, j

uv and σ2 ∈ γi′, j′

u′v′ are
prestrips of S (where (i, j) and (i′, j′) are in {(0, 0), (0, 1), (1, 0)}). They also are non-overlapping:
if (u, v) , (u′, v′) then they appear in different sequences Γ1 and Γ2, and thus they cannot overlap.
Otherwise, that is if (u, v) = (u′, v′), then they appear in the same set γi, j

uv which is, by construction,
a set of non-overlapping prestrips.

Now suppose σ1 = S ∩ Y (e.g. σ1 = YA
w for some vertex w, the case σ1 = YB

w is similar) and
σ2 ∈ γi, j

uv are overlapping prestrips of S. Then they can only overlap in Γ2(u, v), and w = u or
w = v. In the case w = u, (resp. w = v), σ2 necessarily contains the element x5

uv (resp. x7
uv), and

thus γ10
uv (resp. γ01

uv ) has been selected. It implies that u ∈ X (resp. v ∈ X): in both cases, w ∈ X,
which is a contradiction since YA

w can only be selected if w < X.
We conclude that prestrips in S are non-overlapping: consequently, S is a feasible set and

we have
`1(M1,M2) ≥ ||S|| = 4n + 2α(G).

To prove the other inequality of Property 4, that is

α(G) ≥ `1(M1,M2) − 4n
2

,

9



we consider S, a maximal feasible set of prestrips of M1 and M2 with gap at most 1. Then
||S|| = `1(M1,M2).

We first enumerate and name the feasible subsets of γuv with total size at least 5, for some
(u, v) ∈ EC. They are:

Name Subset Overlaps with
γ10

uv

{
〈x3

uv, x
4
uv〉, 〈x5

uv, x
6
uv〉, 〈x8

uv, x
9
uv〉

}
YA

u , YB
u

γ1a
uv

{
〈x5

uv, x
6
uv, x

7
uv〉, 〈x8

uv, x
9
uv〉

}
YA

u , YB
u , YA

v

γ1b
uv

{
〈x5

uv, x
6
uv〉, 〈x8

uv, x
9
uv, x

10
uv〉

}
YA

u , YB
u , YB

v

γ01
uv

{
〈x1

uv, x
2
uv〉, 〈x6

uv, x
7
uv〉, 〈x9

uv, x
10
uv〉

}
YA

v , YB
v

γa1
uv

{
〈x5

uv, x
6
uv, x

7
uv〉, 〈x9

uv, x
10
uv〉

}
YA

u , YA
v , YB

v

γb1
uv

{
〈x6

uv, x
7
uv〉, 〈x8

uv, x
9
uv, x

10
uv〉

}
YB

u , YA
v , YB

v

γ11
uv

{
〈x5

uv, x
6
uv, x

7
uv〉, 〈x8

uv, x
9
uv, x

10
uv〉

}
YA

u , YB
u , YA

v , YB
v

There is no feasible subset of γuv with total size 7 or more.
We construct a feasible set of prestrips S′ in the following way. Add all prestrips of S ∩ Y

to S′. Then, for all (u, v) ∈ EC, three cases are possible:
If ||S ∩ γuv|| ≤ 4, add γ00

uv to S′ (case 1).
Else, if S ∩ γuv is γ01

uv , γa1
uv , γb1

uv or γ11
uv , add γ01

uv to S′ (case 2).
Else, S ∩ γuv is either γ10

uv , γ1a
uv or γ1b

uv . Add γ10
uv to S′ (case 3).

Note that it is impossible to have overlapping prestrips in S′ after these steps: in case 1,
because γ00

uv = 〈x1
uv, x

2
uv, x

3
uv, x

4
uv〉 does not overlap with any prestrip except in γuv. In case 2, the

prestrips in γ01
uv overlap with YA

v and YB
v , but it is also the case of the sets γa1

uv , γb1
uv and γ11

uv : neither
YA

v nor YB
v belongs to S (and they do not belong to S′). And in case 3, the prestrips in γ10

uv overlap
with YA

u and YB
u , but it is also the case for the sets γ1a

uv and γ1b
uv : neither YA

u nor YB
u belongs to S

(nor S′).
At this point, we have a set S′ which is feasible and that satisfies ||S′|| ≥ ||S||: indeed, each

time we do not directly include a subset of S, we include a set of prestrips with greater or equal
total size. Hence, ||S′|| = `1(M1,M2).

We now create a first set of vertices X1 ⊆ V from S′ with the following construction proce-
dure. Start with X1 = ∅, and for all (u, v) ∈ EC:

- If S′ ∩ γuv = γ
00
uv , do nothing.

- If S′ ∩ γuv = γ
10
uv , add u to X1.

- If S′ ∩ γuv = γ
01
uv , add v to X1.

Two interesting remarks can be made about X1. The first one is about its cardinality: since
||γ00

uv || = 4 and ||γ01
uv || = ||γ10

uv || = 6, then

|X1| =
∑

(u,v)∈EC

||S′ ∩ γuv|| − 4
2

.

The other remark is that, if u ∈ X1, then YA
u ,Y

B
u < S′: indeed, let v be the vertex such that

(u, v) ∈ EC (the case (v, u) ∈ EC is similar). Since u ∈ X1, γ10
uv ⊆ S′: the prestrips in γ10

uv overlap
YA

u and YB
u , so none of them is in S′.

10



Note that X1 is not necessarily independent (we only know that for every edge (u, v) ∈ EC, u
and v cannot both be in X1). If an edge (u, v) ∈ EA ∪ EB is such that u, v ∈ X1, we call it a bad
edge. We call nb the number of bad edges, and for each bad edge we arbitrarity remove one of
its end vertices from X1. The result is an independent set X with cardinality

|X| = |X1| − nb .

By the previous remark about X1, we know that if (u, v) ∈ EA is a bad edge, then neither
YA

u nor YA
v belongs to S′. In any other case, at most one of YA

u and YA
v belongs to S′, since they

overlap in M1. And it can be seen that the same occurs with edges of EB, thus the number of
prestrips in S′ ∩ Y is at most |EA| + |EB| − nb.

We have:

||S′|| = ||S′ ∩ Y|| +
∑

(u,v)∈EC

||S′ ∩ γuv||

= 2|S′ ∩ Y| +
∑

(u,v)∈EC

||S′ ∩ γuv||

≤ 2(|EA| + |EB| − nb) +
∑

(u,v)∈EC

||S′ ∩ γuv||

Hence, ∑
(u,v)∈EC

||S′ ∩ γuv|| ≥ ||S′|| − 2(n − nb)

Finally,

α(G) ≥ |X|

=

( ∑
(u,v)∈EC

||S′ ∩ γuv|| − 4
2

)
− nb

≥ ||S
′|| − 2(n − nb) − 4|EC|

2
− nb

=
||S′|| − 4n

2

=
`1(M1,M2) − 4n

2

This last inequality achieves the proof of Property 4.

Proof (of Theorem 2). The above property directly implies that our construction (which can
clearly be achieved in polynomial time) leads to a reduction from 3-colored-MIS to 1-gap-MSR,
which proves Theorem 2.

3.3. δ-gap-MSR is APX-hard for δ ≥ 2
The δ-gap-MSR problem is known to be APX-hard, by extending the APX-hardness proof

for MSR [21], which uses a reduction from a variant of SAT. We present here an alternative
proof, using a reduction based on a graph approach, which leads to a larger inapproximability
lower bound: 1.0106382 instead of 1.000625.
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Theorem 5. δ-gap-MSR is APX-hard for any δ ≥ 2. More precisely, it is NP-hard to approxi-
mate within 95/94 ' 1.0106382.

To prove this theorem, we present an L-reduction to 2-gap-MSR from the variant of MAXI-
MUM INDEPENDENT SET restricted to cubic graphs, that we call 3-MIS here. Using Theorem 1,
we extend the APX-hardness to δ-gap-MSR for any δ ≥ 2.
Problem: 3-MIS
Input: A cubic graph G = (V, E), an integer k.
Question: Is α(G) ≥ k ?

The 3-MIS problem is APX-hard [2], and NP-hard to approximate within 95/94 [12]. Given
a cubic graph G = (V, E), our reduction consists in constructing two comparative mapsM1 and
M2, having properties P1, P2 and P3 described below, where Ω denotes the set of all prestrips of
M1 andM2 having gap at most δ:

P1. There exists a bijection Φ between V and Ω

P2. Every prestrip in Ω has length 2

P3. Two prestrips σ1 and σ2 of Ω are overlapping iff
(
Φ−1(σ1),Φ−1(σ2)

)
∈ E

Let Pk denote the path graph with k vertices.

Lemma 6. Given a cubic graph G = (V, E), one can compute in polynomial time a partition of
E into two classes EB and EW (for “Black” and “White” edges), such that (1) each connected
component of (V, EB) (called “black component”) is isomorphic to a path Pk , and (2) each
connected component of (V, EW) (called “white component”) is isomorphic to a path Pk′ , with
k′ ≤ 4.

Proof. Given a cubic graph G = (V, E), we can compute in polynomial time a bipartition of the
edges E = EB ∪ EW such that both (V, EB) and (V, EW) are linear forests (i.e. acyclic graphs of
maximum degree 2, see [1]). At this point every black and white component is isomorphic to a
path.

Suppose there exist 5 vertices a, b, c, d, e such that edges (a, b), (b, c), (c, d), (d, e) are white.
We deduce that b, c and d cannot belong to the same black component (they are three different
degree-1 vertices of (V, EB), and a path graph has only 2 vertices of degree 1). Then either b and
c, or c and d, are in different black components. In the first case, we can switch the color of (b, c)
from white to black, and we can switch (c, d) in the second case. The result is that (V, EB) and
(V, EW) are still linear forests, and we have strictly reduced the size of a white component. We
can apply this process until no white component is longer than P4: Lemma 6 is proved.

The first step of the reduction from 3-MIS to 2-gap-MSR is to compute a partition of E into
two classes EB and EW according to Lemma 6. We then construct two comparative maps M1
and M2, satisfying properties P1, P2 and P3. Moreover, incompatibilities in M1 (resp. M2)
will correspond to black (resp. white) edges. We begin by assigning a different pair of integers
(xa, x′a) to every vertex a ∈ V(G); we write Φ(a) = 〈xa, x′a〉.

Then, for every black component Bi of order k, let V(Bi) = {ah | 1 ≤ h ≤ k} and let
(ah, ah+1) ∈ EB for 1 ≤ h < k; we construct the following sequence (see Figure 3):

Ii = 〈xa1 ,×, xa2 , x
′
a1
, . . . , xah , x

′
ah−1
, xah+1 , x

′
ah
, . . . , xak , x

′
ak−1
,×, x′ak

〉
12



a2

a3

a4

a5

a6

Φ(a2) Φ(a3) Φ(a4) Φ(a5) Φ(a6)

, x
′

a1
, xa3

, x
′

a2
, xa4

, x
′

a3
, xa5

, x
′

a4
, xa6

, x
′

a5
,×, x

′

a6
〉

Figure 3: Transformation of a black component Bi (top) into the sequence Ii (bottom)

The full comparative mapM1 is given byM1 = 〈I1,×3, I2,×3, . . .〉.
For M2, we use a similar construction, but we need to take the reversed opposite of some

subsequences to avoid creating undesired prestrips. For a white component W j having 4 vertices,
say a, b, c and d with (a, b), (b, c), (c, d) ∈ EW, we create the following sequence:

J j = 〈xa,×, xb, x′a,−x′c, x
′
b,−x′d,−xc,×,−xd〉.

If W j is of order three (resp. two), we remove the extra elements from J j, i.e. we obtain J j =

〈xa,×, xb, x′a,−x′c, x
′
b,×,−xc〉 (resp. J j = 〈xa,×, xb, x′a,×, x′b〉). Finally,M2 is created in the same

way asM1: M2 = 〈J1,×3, J2,×3, . . .〉.

Lemma 7. The set Ω of the prestrips ofM1 andM2 with gap at most 2 is exactly {Φ(a) | a ∈ V}.
Moreover, Φ(a) and Φ(b) overlap in M1 iff (a, b) ∈ EB, and Φ(a) and Φ(b) overlap in M2 iff
(a, b) ∈ EW.

Proof. Suppose, by contradiction, that a prestrip of Ω contains markers corresponding to two
different vertices u and v: then there exists σ ∈ Ω such that σ = 〈σ1, σ2〉, with σ1 ∈ {xu, x′u} and
σ2 ∈ {xv, x′v}.

First note that σ1 and σ2 appear with the same orientation, since every element of M1 is
positive. Because of the gap condition, both elements must appear in the same Ii inM1, and in
the same J j in M2. In J j, the markers with a positive orientation come from the two prestrips
associated to vertices (called a and b in the construction) linked by a white edge. Similarly, the
negative markers come from two vertices c and d with (c, d) ∈ EW. So, whatever the orientation
of σ inM2, there must be an edge (u, v) ∈ EW, and consequently this edge does not belong to EB.

We look at the subsequences in Ii with gap at most 2 which do not contain any peg marker.
Using the notations of the construction, they are of one of the following kinds:

1.
〈
xah , x

′
ah−1

〉
2.

〈
xah , xah+1

〉
3.

〈
xah , x

′
ah

〉
4.

〈
x′ah
, xah+2

〉
5.

〈
x′ah
, x′ah+1

〉
6.

〈
x′ah
, xah+3

〉
If we write u = ah, then v can be none of ah−1, ah or ah+1, since u , v and (u, v) < EB. Only
possibilities 4. and 6. remain, that is a prestrip of the form σ = 〈x′u, xv〉. However this kind of
prestrip does not appear in J j, thus we have proved that each prestrip ofM1 andM2 with gap
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at most 2 is either of the kind 〈xu, x′u〉 or 〈x′u, xu〉. Moreover, for any u ∈ V , 〈x′u, xu〉 is not a
subsequence ofM1 norM2, thus each prestrip of Ω can be written 〈xu, x′u〉 = Φ(u) with u ∈ V .

Conversely, for every a ∈ V , 〈xa, x′a〉 is a subsequence ofM1 with gap 2, and either 〈xa, x′a〉
or 〈−x′a,−xa〉 is a subsequence ofM2 with gap 2. So Φ(a) is a prestrip ofM1 andM2 with gap
2: it belongs to Ω.

Finally, the second part of Lemma 7 is deduced from the construction of the sequencesM1
andM2.

The consequence of Lemma 7 is thatM1 andM2 satisfy the three properties P1, P2 and P3
defined above. The reduction we have described is an L-reduction from 3-MIS to 2-gap-MSR:
indeed, Φ transforms an independent set of cardinality k into a feasible set of prestrips with gap
2 of total size ` = 2k, and Φ−1 does the reverse operation. We conclude that 2-gap-MSR and, by
Theorem 1, δ-gap-MSR for δ ≥ 2 is APX-hard. More precisely, these problems are, like 3-MIS,
NP-hard to approximate within 95/94. Thus Theorem 5 is proved.

3.4. δ-gap-MSR-DU is APX-hard, for all δ

In this section, we focus on the variant of MSR allowing duplicates in the input sequences.
The problem becomes much harder, even with a 0-gap constraint. The 0-gap-MSR-DU shares
similarities with a well-known string comparison problem: Minimum Common String Partition
(MCSP), see e.g. [15]. Both problems deal with two sequences with duplicates, and aim at
matching markers in order to reconstruct common strips. However, they differ both in the input
sequences and in the optimization function. Indeed, each marker in an MCSP instance should
have the same number of occurrences in both sequences, which is not necessary in MSR-DU.
Moreover, in MCSP, one wants to create a minimum number of strips, using length-1 strips if
necessary (and all elements are covered), while in MSR-DU the number of elements covered by
the strips (each strip having length at least 2) has to be maximized.

Theorem 8. δ-gap-MSR-DU is APX-hard for any δ ≥ 0. More precisely, it is NP-hard to
approximate within 8649/8648 ' 1.000115 for δ = 0, 1, and within 95/94 ' 1.0106382 for
δ ≥ 2.

We note that we need to consider only 0-gap-MSR-DU since APX-hardness of δ-gap-MSR-
DU directly follows from APX-hardness of 0-gap-MSR-DU (see Theorem 1). Moreover, the
inapproximability bound for δ ≥ 2 is directly deduced from Theorem 5.

As in the previous section, we use an L-reduction from 3-MIS, the variant of MAXIMUM
INDEPENDENT SET restricted to cubic graphs.

This L-reduction is done in two steps. First, we transform the input graph such that it admits
a partition of its edges and a labelling of its vertices with good properties (see below for the
corresponding definitions). Then, using these partitions and labellings, we can create an instance
of 0-gap-MSR-DU which simulates the behaviour of 3-MIS. Finally, Lemma 15 gives the whole
L-reduction from the APX-hard problem 3-MIS [2] to 0-gap-MSR-DU, which achieves the proof
of Theorem 8.

The first transformation of the reduction defines an oriented graph, for which we use the
following definitions. If G = (V, A) is a loopless oriented graph, a = (u, v) ∈ A corresponds to an
arc from u to v, of which u is the source, and v the target. The degree of a vertex u ∈ V is the
number of arcs a ∈ A of which u is the source or the target. A subset X of V is independent if for
all (u, v) ∈ A, X does not contain both u and v.
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Definition 1. Let G = (V, A) be a loopless directed graph. We say that A = A1 ∪ A2 is a good
partition of A if (i) A1 ∩ A2 = ∅, (ii) for any p ∈ {1, 2} and a, b ∈ Ap, a and b neither have the
same source nor the same target, and (iii) (V, A2) contains no cycle.

Note that if A = A1 ∪ A2 is a good partition of G = (V, A), then every u ∈ V has degree at
most two in (V, A1) and in (V, A2) (using condition ii). Moreover, with condition iii, if C ⊆ V
is a connected component in the underlying undirected graph of (V, A2), then we can write C =
{u0, u1, . . . , uk}, such that the vertices u0, u1, . . . , uk form a directed path: (ui, u j) ∈ A2 ⇔ j = i+1.

Definition 2. Let G = (V, A) be a loopless directed graph, Σ a set of labels, and φ : V → Σ × Σ,
where we write φ(u) = (u1, u2) the image of a vertex u.

Then φ is said to be a good labelling of G if

1. u1 , u2 for all u ∈ V,

2. (v1, v2) , φ(u) and (v2, v1) , φ(u) for any u, v ∈ V such that u , v,

3. u2 = v1 for (u, v) ∈ A.

Lemma 9. Let G = (V, E) be an undirected graph with maximum degree 3. Then we can compute
in polynomial time the following entities:

• a directed graph G′ = (V ′, A′),

• a good partition A′ = A′1 ∪ A′2 of G′,

• a good labelling φ of G′,

with the following properties:

• |V ′| = |V | + 2|E|, |A′| = 3|E|,

• the maximum degree of G′ is 3

• α(G′) ≥ α(G) + |E|.

• If X′ is an independent set of G′, we can deduce an independent set X of G such that
|X′| ≤ |X| + |E|.

Proof. We first use Vizing’s theorem (see [25]) to obtain a 4-coloring of the edges of (V, E), that
is a partition E = E1∪E2∪E3∪E4, such that two edges appearing in the same Ei are not incident.

To create φ, we need a numbering of the vertices y : V → {0, . . . , |V | − 1} and a numbering of
the edges x : E → {0, . . . , |E| − 1}. For each u ∈ V , we choose φ(u) = (2y(u), 2y(u) + 1).

For each e = {u, v} ∈ E, we create two vertices ue and ve, and three arcs ae, be, ce such that
(see Figure 4a, and an example in Figure 4b):

• If e ∈ E1 ∪ E2, then ae = (u, ue), be = (v, ve), ce = (ue, ve). Moreover, φ(ue) = (u2, v2) and
φ(ve) = (v2, 2|V | + x(e)).

• If e ∈ E3 ∪ E4, then ae = (ue, u), be = (ve, v), ce = (ve, ue). Moreover, φ(ue) = (v1, u1), and
φ(ve) = (2|V | + x(e), v1).

We add each arc ae, be and ce to either A′1 or A′2, according to the following rules:
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• If e ∈ E1 ∪ E3, then ae, be ∈ A′1 and ce ∈ A′2.

• If e ∈ E2 ∪ E4, then ae, be ∈ A′2 and ce ∈ A′1.

Thus we have created a graph G′ = (V ′, A′) with the set of vertices V ′ = V ∪ {ue, ve | e ∈ E}
and the set of arcs A′ = A′1 ∪ A′2. We now prove that this graph has the required properties:

• The cardinality conditions on V ′ and A′ are satisfied by construction.

• The degree of u ∈ V in (V ′, A′) is the same as in (V, E), thus it is at most 3. And the degree
of ue ∈ V ′ − V in (V ′, A′) is 2.

• The independence number of the graph is increased by at least 1 each time we split an edge
e into 3 arcs ae, be, ce (we can add either ue or ve to any independent set).

• Let X′ be an independent set of G′. We create X in the following way: start with X = X′.
Then, consider each edge e = (u, v) of G. Several cases are possible: if X′ contains both u
and v, then it contains neither ue nor ve, and we remove u from X. Otherwise, X′ contains
at most one element among {ue, ve}, and we remove this element. We obtain a set X which
is a subset of V (it does not contain any vertex ue or ve) and is independent in G (it cannot
contain both u and v for (u, v) ∈ E). Finally, we have removed at most one vertex per edge
e ∈ E, so |X| ≥ |X′| − E.

• A′ = A′1 ∪ A′2 is a good partition of G′. (i) A′1 ∩ A′2 = ∅ by construction. (ii) Each vertex
ue ∈ V ′ − V is adjacent to exactly one arc of A′1 and one arc of A′2. Each vertex u ∈ V is
adjacent in G to at most one edge in E1 (resp. E2), thus it is the source in G′ of at most one
arc in A′1 (resp. A′2). And it is also adjacent in G to at most one edge in E3 (resp. E4), so it
is the target in G′ of at most one arc in A′1 (resp. A′2). (iii) There are no cycles in (V ′, A′2),
since each connected component of this graph contains at most two arcs.

• φ is a good labelling of G′: first remark that for u, v ∈ V , {u1, u2} ∩ {v1, v2} = ∅. It implies
that condition 1. is true for all u ∈ V ′, and that condition 2. is true for all u ∈ V ′ and
v ∈ V . For ue ∈ V ′ − V and u′e′ ∈ V ′ − V , with e = {u, v} and e′ = {u′, v′} , e, we have
u′ < {u, v} or v′ < {u, v}. It implies that one element of φ(u′e′ ) does not appear in φ(ue).
Finally, condition 3. is verified by construction.

Let G = (V, A) be a directed graph, with A = A1 ∪ A2 a good partition of A (such that (V, A2)
is a degree-2 acyclic graph) and φ : V → Σ × Σ a good labelling of G. We give an arbitrary
order over each set A1, A2 and V , and we construct two gene mapsM1,M2 with the following
procedure (see for example the directed graph in Figure 5a and the resulting maps in Figure 5b):
M1 = 〈〉;
For each u ∈ V
M1 = 〈M1,×, u2, u1〉;

For each (u, v) ∈ A1
M1 = 〈M1,×, u1, u2, v2〉;

For each u ∈ V s.t. u has no incoming arc in A1
M1 = 〈M1,×, u1, u2〉;

For each u ∈ V s.t. u has no outgoing arc in A1
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u : 01

ue : 13

ve : 34

v : 23

e ∈ E1

u : 01

ue : 13

ve : 34

v : 23

e ∈ E2

u : 01

ue : 20

ve : 42

v : 23

e ∈ E3

u : 01

ue : 20

ve : 42

v : 23

e ∈ E4

ae

ce

be

ae

ce

be

ae

ce

be

ae

ce

be

(a) Construction of vertices ue, ve, arcs ae, be, ce, and labelling for an edge
e = {u, v}, and for each case e ∈ E1, E2, E3 or E4. We assume y(u) = 0, y(v) = 1
and x(e) = 0.

u

v w

u :01

ue :13

ve :36

v :23 w :45wf :57vf :35

wg :04

ug :80

e ∈ E1

f ∈ E2

g ∈ E3

(b) Example on the triangle graph, with y(u) = 0, y(v) = 1, y(w) = 2 and x(e) = 0,
x( f ) = 1, x(g) = 2.

Figure 4: Construction of a good partition and a good labelling φ for an undirected graph of
maximum degree 3. We write u : u1u2 for φ(u) = (u1, u2); arcs of A′1 are solid, those of A′2 are
dashed.

M1 = 〈M1,×, u1, u2〉;
M2 = 〈〉;
For each connected component {u0, u1, . . . , uk} in (V, A2)

//such that u0, u1, . . . , uk is a path in (V, A2), with k ≥ 0
M2 = 〈M2,×, u1

0〉;
For i = 0 to k
M2 = 〈M2, u2

i , u
1
i , u

2
i 〉;

The resulting maps have the property that, for all u ∈ V:

• there is exactly one occurrence of 〈u2, u1〉 inM1, and exactly two occurrences of 〈u1, u2〉
in M1 (recall that, for (u, v) ∈ A1, u2 = v1). Moreover, these three subsequences are
non-overlapping;

• there is exactly one occurrence of 〈u1, u2, u1, u2〉 inM2, and no other occurrence of 〈u1, u2〉
or 〈u2, u1〉.

Moreover, the strip 〈u2, u1〉 does not intersect any occurrence of 〈v1, v2〉 or 〈v2, v1〉 for v , u.
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1223 34 45 5135
(a) Directed graph G = (V, A) with a good par-
tition of A and a good labelling of the vertices

M1 : × 2 1 × 3 2 × 4 3 × 5 4 × 1 5 × 5 3
× 1 2 3 × 2 3 4 × 3 4 5 × 4 5 1
× 1 2 × 3 5 × 3 5 × 5 1

M2 :
× 3 4 3 4 × 4 5 4 5× 2 3 2 3 5 3 5 1 5 1 2 1 2

(b) Maps created for the reduction

1223 34 45 5135
(c) Maximum Independent Set corresponding
to a solution of 0-gap-MSR-DU(M1,M2)

Figure 5: Reduction from MIS to 0-gap-MSR-DU

Definition 3. Let M1 and M2 be the maps constructed by the above procedure from a graph
G = (V, A), and let O be a solution of 0-gap-MSR-DU(M1,M2). We say that u ∈ V is selected
in O if both occurrences of 〈u1, u2〉 appear in O, we say it is unselected if only the strip 〈u2, u1〉
appears in O.

Lemma 10. All strips in a feasible solution have length 2. Moreover, each of the strips is of one
of the following kinds: 〈u1, u2〉 or 〈u2, u1〉 for u ∈ V.

Proof. Since the peg markers × cannot be selected in mapM1, and a strip cannot overlap them
(the gap constraint is δ = 0), all strips are either length-2 strips of the kind 〈u1, u2〉 or 〈u2, u1〉,
or length-3 strips of the kind 〈u1, u2, v2〉, with (u, v) ∈ A1. We show that strips of this last kind
are in fact impossible. Indeed, we have v2 , u1, and three different non-peg markers are never
consecutive in mapM2, except for the sequences 〈u1

i , u
2
i , u

2
i+1〉, where (ui, ui+1) is an arc of A2.

Hence if we have such a length-3 strip, u1 = u1
i , u2 = u2

i = v1 = u1
i+1, and v2 = u2

i+1. So u = ui

and v = ui+1, which implies that the arc (u, v) appears both in A1 and in A2, a contradiction.

Lemma 11. Given a feasible solution S of 0-gap-MSR-DU(M1,M2) of total size `, we can
create a feasible solution S′ of total size at least ` where each vertex u ∈ V is either selected or
unselected.

Proof. We start with S′ = S. Remember that for all u, the strip 〈u2, u1〉 only intersects the occur-
rences of 〈u1, u2〉, which already implies that a vertex u cannot be both selected and unselected.
If S′ uses at most one strip amongst 〈u2, u1〉 and the occurrences of 〈u1, u2〉, then we can replace
it by 〈u2, u1〉 without creating conflicts, and the vertex u becomes unselected. Otherwise, S′
uses two independent strips amongst 〈u2, u1〉 and the occurrences of 〈u1, u2〉, hence it cannot use
〈u2, u1〉, and u is selected.

18



Lemma 12. If (u, v) ∈ A, then u and v cannot be both selected in a feasible solution.

Proof. Two cases are possible: (u, v) ∈ A1 and (u, v) ∈ A2. In the first case, one occurrence of
〈u1, u2〉 intersects an occurrence of 〈v1, v2〉 in map M1 (in the sequence 〈×, u1, u2, v2,×〉). So
both occurrences of 〈u1, u2〉 and both occurrences of 〈v1, v2〉 cannot be all selected in the same
solution. The situation is similar if (u, v) ∈ A2, since an occurrence of 〈u1, u2〉 intersects an
occurrence of 〈v1, v2〉 in the sequence 〈u1, u2, u1, u2, v2, v1, v2〉 of mapM2.

Lemma 13. If X ⊂ V is an independent set of G = (V, A), then the set of strips selecting every
vertex u ∈ X and unselecting every u ∈ V − X is a feasible solution of 0-gap-MSR-DU(M1,M2).

Proof. We first create the feasible solution which keeps all the vertices u ∈ V unselected (this
solution contains all strips 〈u2, u1〉, which are pairwise non-overlapping). For each u ∈ X, we
replace 〈u2, u1〉 by the two occurrences of 〈u1, u2〉: these two strips do not overlap any v2, v1 for
v ∈ V , nor any 〈v1, v2〉 for v ∈ X (this is because there is no arc linking u and v). Thus we end with
a feasible set of strips, and every u ∈ X is selected, while the other vertices are unselected.

Lemma 14. There exists an independent set X of G of cardinality k if, and only if, there exists
a feasible solution S of 0-gap-MSR-DU (M1,M2) of total size ` = 2(|V | + k). Moreover, given
such an S, the corresponding independent set X is computable in polynomial time.

Proof. This is the corollary of the four previous lemmas: the “only if” part follows directly
Lemma 13. For the “if” part, we start with S a feasible solution of 0-gap-MSR-DU(M1,M2) of
total size `. Using Lemma 11, we obtain a feasible solution S′ of total size at least `, such that,
if X1 is the set of selected vertices in S′ and X2 the set of unselected vertices, then X1 ∪ X2 is a
partition of V . Then ||S′|| = 4|X1| + 2|X2|, and X1 is an independent set (by Lemma 12). Thus
` ≤ 4|X1| + 2|X2| = 2(|V | + |X1|). Then we can remove vertices from X1 until we reach a set X
such that ` = 2(|V | + |X|).

Lemma 15. There exists an L-reduction from 3-MIS to 0-gap-MSR-DU.

Proof. We start with an instance G = (V, E) of 3-MIS (G is a cubic graph). Using Lemma 9,
we obtain a new directed graph G′ = (V ′, A′), a good partition A′ = A′1 ∪ A′2 of G′, and a good
labelling φ of G′. Moreover, |V ′| = |V | + 2|E|, and α(G′) = α(G) + |E|. Since G is a cubic graph,
we have |E| = 3|V |/2 and |V | ≤ 4α(G), thus |V ′| = 4|V | and α(G′) ≤ 7α(G). Next we create an
instance (M1,M2) of 0-gap-MSR-DU from G′ = (V ′, A′) with the procedure described above.
Let `0 be the optimal value of 0-gap-MSR-DU(M1,M2). Applying Lemma 14 on the optimal
solution we have,

`0 = 2(|V ′| + α(G′))
≤ 2(4|V | + 7α(G))
≤ 46α(G).

Hence we have the first inequality of the L-reduction. We now consider S a feasible solution of
0-gap-MSR-DU(M1,M2). Using Lemma 14 we can construct an independent set X′ of G′ such
that:

||S|| = 2(|V ′| + |X′|),
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and using Lemma 9, we can deduce from X′ an independent set X of G of cardinality |X| ≥
|X′| − |E|. Hence,

`0 − ||S|| = 2(|V ′| + α(G′) − |V ′| − |X′|)
= 2(α(G) + |E| − |X′|)
≥ 2(α(G) + |E| − |X| − |E|)
= 2(α(G) − |X|).

This proves the second inequality of the L-reduction from 3-MIS to 0-gap-MSR-DU. Moreover,
since 3-MIS is not approximable within 95/94 [12], 0-gap-MSR-DU is not approximable within
1 + 1/(94 × 46 × 2) = 8649/8648.

4. Approximation Algorithms

4.1. Reduction to MAXIMUM WEIGHT INDEPENDENT SET

In this section we consider the variants of MAXIMUM WEIGHT INDEPENDENT SET on two
classes of graphs: interval graphs and 2-interval graphs. An interval graph is a graph G = (V, E),
where every vertex in V is seen as an interval I of R, and such that (I, J) ∈ E iff (1) I and J are
distinct intervals from V , and (2) I ∩ J , ∅. A 2-interval graph is a graph G = (V, E), where
every vertex in V is seen as a pair of disjoint intervals (I1, I2) of R (also called a 2-interval), and
such that ((I1, I2), (J1, J2)) ∈ E iff (1) (I1, I2) and (J1, J2) are distinct 2-intervals from V , and (2)
(I1 ∪ I2) ∩ (J1 ∪ J2) , ∅.
Problem: Interval-MWIS
Input: An interval graph G = (V, E), a weight function w : V → R+, k ∈ R+
Question: Is there an independent set X of G such that

∑
x∈X w(x) ≥ k ?

Problem: 2-Interval-MWIS
Input: A 2-interval graph G = (V, E), a weight function w : V → R+, k ∈ R+
Question: Is there an independent set X of G such that

∑
x∈X w(x) ≥ k ?

The problem Interval-MWIS is known to be polynomial [16]. On the other hand, 2-Interval-
MWIS is APX-hard, and we know a 4-approximation for it [4].

The following construction follows the one used by Chen et al. [11] to design a 4-approximation
algorithm for MSR and MSR-DU. We use this construction in order to extend the 4-approximation
algorithm to the δ-gap variants of the problems (Theorem 17), and to design an exact polynomial-
time algorithm for 0-gap-MSR (Theorem 18).

Given a pair of comparative maps (M1,M2) and a gap δ, we construct a set of 2-intervals
in the following way. First, compute the set Ω of all prestrips of M1 and M2 having gap at
most δ. Then, to each prestrip σ ∈ Ω, assign the intervals I1

σ and I2
σ described below, the 2-

interval Iσ = (I1
σ, I

2
σ), and the weight w(Iσ) = |σ|. We write respectively min(idx(σ,M)) and

max(idx(σ,M)) the indices of the first and last element of σ inM, and l = |M1| + 1.

I1
σ =[min(idx(σ,M1)),max(idx(σ,M1))],

I2
σ =[min(idx(σ,M2)) + l,max(idx(σ,M2)) + l],

We denote Gδ(M1,M2) the weighted 2-interval graph with vertex set {Iσ : σ ∈ Ω} and
weight w. It has the following property:
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Property 16. Let S ⊆ Ω and X = {Iσ | σ ∈ S}. The set X is an independent set of Gδ(M1,M2)
with weight W iff S is feasible with total size W.

Proof. With the definitions of I1
σ and I2

σ, intervals I1
σ and I1

τ intersect iff σ and τ overlap inM1,
and I2

σ and I2
τ intersect iff σ and τ overlap inM2. Moreover, with the chosen value of l, I1

σ never
intersects with I2

τ , for all prestrips σ and τ. Thus we have proved the following equivalence:

Iσ and Iτ intersect ⇔ σ and τ overlap.

Hence, a set of 2-intervals X is independent iff S = {σ | Iσ ∈ X} is feasible.
For the weight conservation, we have:

w(X) =
∑
Iσ∈X

w(Iσ) =
∑
σ∈S
|σ| = ||S||

Theorem 17. There exists a factor-4 approximation algorithm for δ-gap-MSR for all δ ≥ 2, and
for δ-gap-MSR-DU for all δ ≥ 0.

Proof. We use the construction described above in the following algorithm.

1. Given two comparative maps (M1,M2), compute the weighted 2-interval graph Gδ(M1,M2).
2. Compute X, a 4-approximation to 2-Interval-MWIS(Gδ(M1,M2)).
3. Deduce a feasible set of prestrips S = {σ | Iσ ∈ X}.

Property 16 yields that the total size ofS is the weight of X, and that δ-gap-MSR-DU(M1,M2)
and 2-Interval-MWIS(Gδ(M1,M2)) have the same optimal values. Consequently, S is a 4-
approximation of the optimal solution of δ-gap-MSR-DU(M1,M2), and a 4-approximation of
δ-gap-MSR(M1,M2) when M1 and M2 do not contain duplicates. We have proved Theo-
rem 17.

Theorem 18. There exists an exact polynomial-time algorithm for 0-gap-MSR.

Proof. Let (M1,M2) be a pair of comparative maps without duplicates. The graph G0(M1,M2)
has the following property:

Iσ and Iτ intersect ⇔ I1
σ ∩ I1

τ , ∅.

Indeed, if two prestrips overlap inM2, since they have gap zero in this map, they must have a
common marker m appearing inM2. But since m can appear only once inM1, they also overlap
in M1. Thus I2

σ ∩ I2
τ , 0 implies I1

σ ∩ I1
τ , 0, which suffices to prove the claim. Using this

property, we can see that G0(M1,M2) is also an interval graph, with vertex set {I1
σ | σ ∈ Ω}.

Hence, we can adapt the previous algorithm to obtain an optimal solution, and complete the proof
of Theorem 18:

1. Given two comparative maps (M1,M2), compute the weighted interval graph G0(M1,M2).
2. Compute X, an optimal solution to Interval-MWIS(G0(M1,M2)).
3. Deduce a maximal feasible set of prestrips S = {σ | Iσ ∈ X}.
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We can see that this proof does not use all the hypothesis. We have in fact proven that the
following problem, which is more general than 0-gap-MSR, is also polynomial:
Input: Two comparative mapsM1 andM2, such thatM1 has no duplicates, ` ∈ N.
Question: Is there a feasible set S of prestrips of (M1,M2) such that the gap of each σ ∈ S is
at most δ inM1 and 0 inM2, and ||S|| ≥ ` ?

4.2. 1.8-approximation for 1-gap-MSR

In this section, we prove the following result.

Theorem 19. There exists a factor-1.8 approximation algorithm for 1-gap-MSR.

Proof. Our algorithm makes uses of an exact algorithm to solve MAXIMUM WEIGHT INDE-
PENDENT SET (MWIS) on claw-free graphs. A claw is the 4-vertex graph (V, E) with V =
{a, b, c, d} and E = {(a, b), (a, c), (a, d)}. A graph is said to be claw-free if none of its induced
subgraphs is isomorphic to a claw. The variant of MWIS on claw-free graphs, Claw-Free-MWIS
(for which we know a polynomial algorithm, [24]), is stated as follows:
Problem: Claw-Free-MWIS
Input: A claw-free graph G = (V, E), a weight function w : V → R+, k ∈ R+
Question: Is there an independent set X of G such that

∑
x∈X w(x) ≥ k ?

Our 1.8-approximation algorithm (given in Algorithm 1) works as follows. Given two com-
parative maps M1 and M2, compute the set Ω of all prestrips with length 2 or 3 (and gap at
most 1). Longer prestrips are ignored, since they can be split into smaller ones appearing in Ω.
Select a subset Vλ ⊆ Ω (according to some parameter λ: see the selection process described
below), and create Eλ, the set of all overlapping pairs of prestrips of Vλ. The pair (Vλ, Eλ) forms
a graph which is claw-free (see Lemma 20). An independent set for this graph (computable in
polynomial time) yields a feasible set of prestrips VλInd.

The selection of Vλ amongst Ω is done as follows: given a prestrip σ ofM1 andM2, take
the values of idx(σ,M2) − λ modulo 9. This is done by the arithmetic function π9, which takes
the values of a list modulo 9: for example, if σ has indices (30, 32, 33) inM2, and λ = 5, then
idx(σ,M2)−λ = (25, 27, 28), and π9(idx(σ,M2)−λ) = (7, 0, 1). If the result of π9(idx(σ,M2)−λ)
belongs to some list (the list T in Algorithm 1), add σ to Vλ. We only need to test the 9 different
values of λ to obtain 9 different feasible sets of prestrips.

Finally, Lemma 28 proves that there exists some λ for which the total size of the correspond-
ing VλInd is at least 5/9th of a maximum feasible set of prestrips ofM1 andM2. Thus, Algorithm 1
is a polynomial-time algorithm giving a 1.8-approximation to 1-gap-MSR, and Theorem 19 is
proved.

Lemma 20. For each λ, the graph (Vλ, Eλ) created by Algorithm 1 is claw-free.

Proof. Although it is not necessary for the algorithm, we assume here, without loss of generality,
thatM1 is the identity permutation:

M1 = 〈1, 2, . . . , |M1|〉 .

We use this to simplify somehow the notations: σ = idx(σ,M1).
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Algorithm 1 A factor-1.8 approximation algorithm for 1-gap-MSR

Input: Two comparative mapsM1,M2 without duplicates.
T ← {(0, 1, 2), (1, 2, 3), (2, 3, 4), (0, 2), (1, 2), (1, 3), (2, 3), (2, 4),

(5, 6), (5, 7), (6, 7), (6, 8), (7, 8)};
Ω← set of all prestrips ofM1 andM2 of length 2 or 3, with gap at most 1;
for λ← 1 to 9 do

Vλ ← {σ | σ ∈ Ω, π9(idx(σ,M2) − λ) ∈ T };
Eλ ← {(σ1, σ2) | σ1, σ2 overlapping prestrips of Vλ};
w(σ)← |σ| (for all σ ∈ Vλ);
VλInd ←MAXIMUM WEIGHT INDEPENDENT SET of (Vλ, Eλ) with weight w;

end for
return max{||VλInd || | 1 ≤ λ ≤ 9};

(Vλ, Eλ) is the graph created by the algorithm. In the following we consider only prestrips
contained in Vλ, and they are written σ and τ. We can see that all the elements of T have values
included either in {0, 1, 2, 3, 4} or in {5, 6, 7, 8}. This means, that for every σ, we have

π9(idx(σ,M2) − λ) ⊆ [0, 4]
or π9(idx(σ,M2) − λ) ⊆ [5, 8].

Thanks to the gap condition, there exists some integer k such that the indices of σ inM2 are
all in one of the following size-5 or size-4 intervals:

idx(σ,M2) ⊆ [0 + 9k + λ, 4 + 9k + λ]
or idx(σ,M2) ⊆ [5 + 9k + λ, 8 + 9k + λ].

We write Kλ(σ) the size-5 or size-4 interval ofM2 containing σ, such that:

Kλ(σ) = 〈M2[0 + 9k + λ], . . . ,M2[4 + 9k + λ]〉
or Kλ(σ) = 〈M2[5 + 9k + λ], . . . ,M2[8 + 9k + λ]〉.

The last notations we use are for edges of Eλ: if (σ, τ) ∈ Eλ, we write σ — τ. If σ and τ
have a common element, we say that they intersect, and we write σ ∩— τ. Otherwise, they must
overlap inM1 orM2 (possibly both): we write respectively σ M1— τ or σ M2— τ.

Before proving that (Vλ, Eλ) is claw-free, we first give a series of properties over this graph.

Property 21. If for some σ and τ, the sequences Kλ(σ) and Kλ(τ) share a common element (we
write Kλ(σ) ∩ Kλ(τ) , ∅), then Kλ(σ) = Kλ(τ).

Proof. This property is obvious by the definition of Kλ, since the intervals [0+9k+λ, 4+9k+λ]
and [5 + 9k + λ, 8 + 9k + λ] form a partition of the indices overM2, and this comparative map
does not contain duplicates.

Property 22. If σ and τ overlap inMi for some i ∈ {1, 2}, without intersecting each other, then
they both have gap 1 inMi.
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Proof. All the prestrips considered have gap at most 1. If one of them (say σ) has gap 0, then
it would contain two consecutive elements inMi which τ overlaps: consequently, τ would have
gap at least 2, a contradiction.

Property 23. If σ ∩— τ or σ M2— τ, then Kλ(σ) = Kλ(τ).

Proof. Both cases imply Kλ(σ) ∩ Kλ(τ) , ∅, hence Property 21 applies.

Property 24. For σ , τ, if Kλ(σ) = Kλ(τ)(= K) and |K| = 5, then σ ∩— τ or σ M2— τ.

Proof. In this proof we write K = 〈K[0],K[1],K[2],K[3],K[4]〉 (hence we have K[i] =M2[9k+
λ + i] for some integer k). This property is deduced from the list T of Algorithm 1: every
element in T which is included in [0, 4] either contains 2, or is (1, 3). If both σ and τ are
different from 〈K[1],K[3]〉, then they both contain K[2] and have a non-empty intersection:
σ ∩— τ. Otherwise, we can assume wlog that σ is the prestrip 〈K[1],K[3]〉, and that τ contains
the element K[2]. If σ and τ do not intersect, then τ = 〈K[0],K[2]〉 or τ = 〈K[2],K[4]〉, and thus
they overlap inM2. Consequently, σ ∩— τ or σ M2— τ.

Property 25. Let σ, τ1 and τ2 be pairwise distinct prestrips of Vλ. If σ M2— τ1 and either
σ M2— τ2 or σ ∩— τ2, then τ1

∩— τ2 or τ1
M2— τ2.

Proof. Let K = Kλ(σ). Using Property 23 both on (σ, τ1) and (σ, τ2), we have K = Kλ(τ1)
and K = Kλ(τ2). If σ, τ1 and τ2 do not intersect, they correspond to 3 disjoint subsets (each of
cardinality 2 or 3) of K (which is of cardinality 4 or 5): a contradiction. Since σ and τ2 do not
intersect, either τ1

∩— τ2, (in which case the property is proved), or σ ∩— τ2.
If K has size 5, since Kλ(τ1) = Kλ(τ2), we can directly use Property 24.
If K has size 4, then σ, τ1 and τ2 have length 2. Since σ and τ1 do not intersect, and

|K| = |σ| + |τ1|, every element of K appears either in σ or τ1. Now τ2 is a subsequence of K, and
there is at least one element of τ2 which does not appear in σ, so τ2 and τ1 intersect.

Property 26. Let |σ| = 2. Ifσ M1— τ then there exists x ∈ {1, . . . , |M1|−2} such thatσ = 〈x, x+2〉,
and τ contains as sub-prestrip 〈x − 1, x + 1〉 or 〈x + 1, x + 3〉.

Proof. By Property 22, σ has gap 1 inM1, so there exists x such that σ = 〈x, x + 2〉. The only
two prestrips overlapping 〈x, x + 2〉 without intersecting it are 〈x − 1, x + 1〉 and 〈x + 1, x + 3〉: τ
must contain one of those as sub-prestrip.

Property 27. If σ M1— τ1 and σ M1— τ2 then either τ1
∩— τ2, or there exists x such that σ =

〈x, x + 2, x + 4〉, one of {τ1, τ2} contains 〈x − 1, x + 1〉, and the other contains 〈x + 3, x + 5〉.

Proof. If |σ| = 2 we can use Property 26 twice: there exists x such that σ = 〈x, x + 2〉, and both
τ1 and τ2 contain x + 1: τ1

∩— τ2.
Suppose now that τ1 and τ2 do not intersect, which implies |σ| = 3. Since σ and τ1 are over-

lapping inM1, there exists an element x ∈ σ appearing between the first and the last elements of
τ1, that is, min τ1 ≤ x ≤ max τ1. With the same arguments as previously, τ1 contains 〈x−1, x+1〉.
There also exists x′ ∈ σ such that τ2 contains 〈x′ − 1, x′ + 1〉. We can assume wlog that x′ ≥ x.
Since the three prestrips do not intersect, x′ < {x, x + 1, x + 2}.
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Since x is not the last element in σ (because x′ > x) and x, x′ cannot be consecutive in σ
(otherwise the gap would be at least 2), there exists x′′ such that x < x′′ < x′ and σ = 〈x, x′′, x′〉.
Now with the gap condition,

x′′ ∈ {x + 1, x + 2} ∩ {x′ − 2, x′ − 1},

and with the non intersecting condition,

x′′ < {x − 1, x + 1}, x′′ < {x′ − 1, x′ + 1}.

Only one possibility remains:

x′′ = x + 2 = x′ − 2 and σ = 〈x, x + 2, x + 4〉.

This proves Property 27.

We are now ready to prove Lemma 20: assume there exist four prestrips σ, τ1, τ2, τ3 forming
a claw in (Vλ,Eλ), that is

σ — τ1, σ — τ2, σ — τ3,
(τ1, τ2) < Eλ, (τ2, τ3) < Eλ, (τ3, τ1) < Eλ.

Let nM1 be the number of prestrips in {τ1, τ2, τ3} overlapping σ inM1 without intersecting
it.

If nM1 = 0, then for all j ∈ {1, 2, 3}, either σ ∩— τ j or σ M2— τ j. Hence we can use Prop-
erty 23 to show that Kλ(σ) = Kλ(τ1) = Kλ(τ2) = Kλ(τ3). In that case, τ1, τ2 and τ3 are 3 prestrips
of length 2 or 3 included in a set of size 4 or 5, so two of them must intersect, a contradicton.

The other trivial case is nM1 = 3: we use Property 27 and show that σ = 〈x, x + 2, x + 4〉
and each one of τ1, τ2, τ3 contains either 〈x − 1, x + 1〉 or 〈x + 3, x + 5〉. Again two of them must
intersect, a contradiction.

Now we consider nM1 = 2: wlog, we can assume that σ M1— τ1, σ M1— τ2, and σ ∩— τ3 or
σ M2— τ3. By Property 27, σ can be written σ = 〈x, x+2, x+4〉, τ1 contains 〈x−1, x+1〉, and τ2
contains 〈x+3, x+5〉. Since σ has length 3, by definition of the vector T , see Algorithm 1, σ has
gap 0 inM2. Hence by Property 22, the case σ M2— τ3 is impossible, which implies σ ∩— τ3.
Moreover τ3 does not overlap with τ1 nor τ2, so it contains neither x nor x + 4. Necessarily, the
common element between σ and τ3 is x + 2. Since |τ3| ≥ 2 and since it has gap 0 or 1, it must
contain an element amongst {x, x+1, x+3, x+4} and thus overlap with τ1 or τ2: a contradiction.

Now, consider the last possible case, that is nM1 = 1 (wlog, assume that σ M1— τ1). Prop-
erty 25 applied to σ, τ2 and τ3, eliminates the cases where σ M2— τ2 or σ M2— τ3, since there can
be no edge between τ2 and τ3. Hence we have σ ∩— τ2 and σ ∩— τ3. With Property 23, there
exists a length-4 or lenght-5 sequence K such that K = Kλ(σ) = Kλ(τ2) = Kλ(τ3).

If |K| = 5, Property 24 applies with τ2 and τ3, and we conclude that τ2
∩— τ3 or τ2

M2— τ3,
a contradiction.

Otherwise, |K| = 4. Since Algorithm 1 considers only length-2 prestrips in size-4 intervals
[5+9k+λ, 8+9k+λ], we have |σ| = 2. With Property 26, there exists an x such that σ = 〈x, x+2〉,
and τ1 contains either 〈x − 1, x + 1〉 or 〈x + 1, x + 3〉 as sub-prestrip. We only consider the case
where τ1 contains 〈x − 1, x + 1〉, the other being similar. Let j ∈ {2, 3}, since τ j intersects σ
without overlapping with τ1, τ j contains x + 2. Hence τ2 and τ3 have a common element, x + 2,
a contradiction.
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Altogether, we have shown that the graph (Vλ, Eλ) cannot contain any claw, and Lemma 20
is proved.

Lemma 28. Let O be an optimal solution of 1-gap-MSR(M1,M2). Then Algorithm 1 provides
a solution of total size at least 5||O||/9.

Proof. This proof relies on the construction of nine feasible sets of prestrips, O1, . . . ,O9, such
that each prestrip in Oλ appears both in O (possibly as a sub-prestrip) and in Vλ. We also require
that

9∑
λ=1

||Oλ|| ≥ 5||O||.

First note that we can assume that each prestrip in O has length 2 or 3: a prestrip cannot be
shorter, and we can split longer ones. The approach is as follows: we start with nine empty sets
O1, . . . ,O9. Then, for each prestrip σ ∈ O, we enumerate the values of λ for which Vλ contains
σ (or a sub-prestrip of σ), we add σ to the corresponding sets Oλ, and we measure the increase
of the sum

∑9
λ=1 ||Oλ||. Examples are given in Figure 6.

For a prestrip σ of length 2, we can add σ to Oλ only if π9(idx(σ,M2) − λ) ∈ T . If
idx(σ,M2) = (x, x + 1), then π9(idx(σ,M2) − λ) takes the values (0,1), (1,2), . . ., (7,8), (8,0).
Five of those nine pairs appear in the vector T of Algorithm 1: (1,2), (2,3), (5,6), (6,7) and (7,8).
So we add σ to Oλ for 5 different values of λ: the total size

∑9
λ=1 ||Oλ|| is increased by 10 = 5|σ|.

The same goes for a prestrip of length 2 with indices (x, x+2): it appears in Vλ for 5 different
values of λ, with indices (0, 2), (1, 3), (2, 4), (5, 7), (6, 8). When added to the corresponding Oλ,
the total size is again increased by 10 = 5|σ|.

Now we consider a prestrip σ of length 3 with indices (x, x + 1, x + 2). There are three
values of λ for which π9(idx(σ,M2) − λ) ∈ T (because (0, 1, 2), (1, 2, 3), (2, 3, 4) are in T ): we
add σ to Oλ in those three cases. We now consider the two sub-prestrips of σ: σ1 with indices
(x, x + 1), and σ2 with indices (x + 1, x + 2). Amongst the 6 remaining values of λ for which
π9(idx(σ,M2) − λ) < T , there are 3 for which σ1 is selected (corresponding to pairs (5,6), (6,7)
and (7,8) in T ), and one more for which only σ2 is selected (corresponding to the pair (5,6) in
T ). The total size of

∑9
λ=1 ||Oλ|| is increased by 3×3+4×2 = 17, which is greater than 5|σ| = 15.

We use similar arguments for other prestrips of length 3. If idx(σ,M2) = (x, x+ 2, x+ 3), we
use pairs (0,2), (1,3), (2,4), (5,7) and (6,8) of T for σ1, and (0,2), (5,6), (6,7) for σ2. The quantity∑9
λ=1 ||Oλ|| is increased by 16.

If idx(σ,M2) = (x, x + 1, x + 3), we use pairs (1,2), (2,3), (5,6), (6,7) and (7,8) of T for σ1,
and (1,3), (2,4), (6,8) for σ2. Again

∑9
λ=1 ||Oλ|| is increased by 16.

Finally, if idx(σ,M2) = (x, x + 2, x + 4), we use pairs (0,2), (1,3), (2,4), (5,7) and (6,8) of T
for σ1, and (0,2),(1,3), (5,7), (6,8) for σ2. In that case,

∑9
λ=1 ||Oλ|| is increased by 18.

For each strip σ of O, we have succeeded in adding σ, or sub-prestrips of σ, in several Oλ
such that the total size is increased by at least 5|σ|: we have 9 feasible sets (since O is feasible)
satisfying the condition:

9∑
λ=1

||Oλ|| ≥ 5||O||.

For each λ ∈ {1, . . . , 9}, the prestrips of Oλ, being taken from a feasible set O, are pairwise
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(a) Vector T defined in Algorithm 1
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(b) Enumeration for idx(σ,M2) = (x, x + 1). We assume wlog that π9(x) = 0.
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(c) Enumeration for idx(σ,M2) = (x, x + 2, x + 3). We assume wlog that π9(x) = 0.

Figure 6: Enumeration of the prestrips of Vλ matching a prestrip σ ∈ O, for λ ∈ {1, . . . , 9}. Note
that Vλ contains all the possible prestrips whose indices taken modulo 9 are in T .
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non-overlapping and form an independent set of (Vλ, Eλ). Thus we have ||VλInd || ≥ ||Oλ||, and

max{||VλInd || | 1 ≤ λ ≤ 9} ≥ 1
9

9∑
λ=1

||VλInd ||

≥ 1
9

9∑
λ=1

||Oλ||

≥ 5
9
||O||.

Hence the solution returned by the algorithm is at least 5||O||/9.

4.3. 2.25-approximation for 0-gap-MSR-DU

In this section, we prove the following result.

Theorem 29. There exists a factor-2.25 approximation algorithm for 0-gap-MSR-DU.

Proof. Algorithm 2 follows the same lines as Algorithm 1 does for 1-gap-MSR, that is it com-
putes an exact maximum weight independent set of a subgraph (Vλ, Eλ) of the graph represent-
ing the possible strips and the overlapping relation. Due to the possibility of having duplicates
in the input genomes, the graph considered can be significantly more complex, and thus Algo-
rithm 2 uses a more selective contidition to create the set Vλ: the condition now bears on both
idx(σ,M1) and idx(σ,M2). Lemma 30 proves that the subgraph (Vλ, Eλ) is indeed claw-free,
which enables us to use a polynomial time algorithm to find a maximum weight independent set
of it, which corresponds to a feasible set of strips. The approximation ratio of 2.25 = 9/4 is
given by Lemma 31.

Algorithm 2 A factor-2.25 approximation algorithm for 0-gap-MSR-DU

Input: Two comparative mapsM1,M2 (possibly with duplicates).
T ← {(0, 1, 2), (0, 1), (1, 2)};
Ω← set of all strips ofM1 andM2 of length 2 or 3;
for λ1 ← 0 to 2 do

for λ2 ← 0 to 2 do
λ← 3λ1 + λ2;
Vλ ← {σ | σ ∈ Ω, π3(idx(σ,M1) − λ1) ∈ T and π3(idx(σ,M2) − λ2) ∈ T };
Eλ ← {(σ1, σ2) | σ1, σ2 intersecting strips of Vλ};
w(σ)← |σ| (for all σ ∈ Vλ);
VλInd ←MAXIMUM WEIGHT INDEPENDENT SET of (Vλ, Eλ) with weight w;

end for
end for
return max{||VλInd || | 0 ≤ λ ≤ 8};

Lemma 30. For each λ, the graph (Vλ, Eλ) created by Algorithm 2 is claw-free.
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Proof. Let λ = 3λ1 + λ2. For each σ ∈ Vλ, from the definiton of T , there exist two integers
k1 = k1(σ) and k2 = k2(σ) such that:

idx(σ,M1) ⊆ [3k1 + λ1, 3k1 + λ1 + 2]
idx(σ,M2) ⊆ [3k2 + λ2, 3k2 + λ2 + 2]

Moreover, σ contains the elementsM1[3k1 + λ1 + 1] andM2[3k2 + λ2 + 1].
If σ and τ are two intersecting strips of Vλ, then they can intersect in M1 and M2, which

leads respectively to k1(τ) = k1(σ) and k2(τ) = k2(σ). Hence if σ has at least three neighbours
in (Vλ, Eλ), then two of them, written τ1 and τ2, are such that k1(τ1) = k1(τ2) or k2(τ1) = k2(τ2).
So τ1 and τ2 share a common element, namely M1[3k1(τ1) + λ1 + 1] orM2[3k2(τ1) + λ2 + 1]
respectively, and there is an edge between them in (Vλ, Eλ).

Lemma 31. If O is an optimal solution of 0-gap-MSR-DU(M1,M2), Algorithm 2 provides a
solution of total size at least 4||O||/9.

Proof. We can assume, wlog, that all strips in O have length 2 or 3. We now create nine sets of
strips O0, . . . ,O8 such that each strip in Oλ appears both in Vλ and in O (possibly as a substrip),
and such that

8∑
λ=0

||Oλ|| ≥ 4||O||

Let σ be a strip ofO, and r1, r2 two integers in {0, 1, 2} such that σ starts at position r1 modulo
3 inM1 and r2 modulo 3 inM2.

First suppose σ has length 2. Then for λ1 ∈ {r1 − 1, r1} modulo 3 and for λ2 ∈ {r2 − 1, r2}
modulo 3, we have π3(idx(σ,M1) − λ1) ∈ T and π3(idx(σ,M2) − λ2) ∈ T , thus we have σ ∈ Vλ

for four different values of λ. We add σ to the corresponding sets Oλ, which increases the total
size

∑8
λ=0 ||Oλ|| by 8 = 4|σ|.

Now suppose that σ has length 3. For λ1 = r1 and λ2 = r2, π3(idx(σ,M1) − λ1) =
π3(idx(σ,M2)−λ1) = (0, 1, 2), which is in T , thus we have σ ∈ Vλ. Moreover for λ1 ∈ {r1−1, r1}
and λ2 ∈ {r2 − 1, r2}, the beginning of σ, 〈σ[1], σ[2]〉, forms a length-2 strip appearing in Vλ.
And for λ1 ∈ {r1, r1 + 1} and λ2 ∈ {r2, r2 + 1}, the end of σ, 〈σ[2], σ[3]〉, forms a length-2 strip
appearing in Vλ. Then for one value of λ (namely 3r1 + r2), we add the length-3 strip σ to Oλ
and for six other values of λ, we add one of the length-2 strips 〈σ[1], σ[2]〉 or 〈σ[2], σ[3]〉 to Oλ.
Thus the total size

∑8
λ=0 ||Oλ|| is increased by 3 + 6 × 2 = 15 > 4|σ|.

Thus we indeed have
8∑
λ=0

||Oλ|| ≥
∑
σ∈O

4|σ| = 4||O||

Hence there exists some λ such that ||Oλ|| ≥ 4
9 ||O||, and Oλ forms an independent set of

(Vλ, Eλ) since a set of strips or substrips of O is necessarily feasible. Thus the size of the corre-
sponding VλInd is at least ||Oλ|| and Algorithm 2 gives a solution of size at least 4

9 ||O||: it is indeed
a 9

4 = 2.25-approximation.

5. Conclusion

In this paper, we have introduced and studied δ-gap-MSR and δ-gap-MSR-DU, two variants
of the MAXIMAL STRIP RECOVERY problem. These problems take into account biologically
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sustained restrictions in the search for synteny blocks, namely the fact that two consecutive
markers of a synteny block cannot appear at arbitrarily large distance from one another in a
comparative map. We have proved that δ-gap-MSR and δ-gap-MSR-DU are APX-complete
problems, with two exceptions: 0-gap-MSR is polynomial, and 1-gap-MSR may “only” be NP-
complete. We also have given exact or approximation algorithms for all the variants: exact
for 0-gap-MSR, 1.8-approximation for 1-gap-MSR, 2.25-approximation for 0-gap-MSR-DU, 4-
approximation for other variants.
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