
HAL Id: hal-00826867
https://hal.science/hal-00826867v1

Submitted on 28 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sorting by Transpositions is Difficult
Laurent Bulteau, Guillaume Fertin, Irena Rusu

To cite this version:
Laurent Bulteau, Guillaume Fertin, Irena Rusu. Sorting by Transpositions is Difficult. SIAM Journal
on Discrete Mathematics, 2012, 26 (3), pp.1148-1180. �10.1137/110851390�. �hal-00826867�

https://hal.science/hal-00826867v1
https://hal.archives-ouvertes.fr

SORTING BY TRANSPOSITIONS IS DIFFICULT∗

LAURENT BULTEAU, GUILLAUME FERTIN, IRENA RUSU†

Abstract. In comparative genomics, a transposition is an operation that exchanges two con-
secutive sequences of genes in a genome. The transposition distance between two genomes, that is,
the minimum number of transpositions needed to transform a genome into another, is, according to
numerous studies, a relevant evolutionary distance. The problem of computing this distance when
genomes are represented by permutations is called the Sorting by Transpositions problem (SBT),
and has been introduced by Bafna and Pevzner [3] in 1995. It has naturally been the focus of a num-
ber of studies, see for instance [17], but the computational complexity of this problem has remained
undetermined for 15 years.

In this paper, we answer this long-standing open question by proving that the Sorting by
Transpositions problem is NP-hard. As a corollary of our result, we also prove that the following
problem, first described in [10], is NP-hard: given a permutation π, is it possible to sort π using
exactly db(π)/3 transpositions, where db(π) is the number of breakpoints of π?

Key words. Theoretical Aspects of Computational Biology, Comparative Genomics, Transpo-
sition Distance, Computational Complexity

AMS subject classifications. 05A05

Introduction. Along with reversals, transpositions are one of the most elemen-
tary large-scale operations that can affect a genome. A transposition consists in
swapping two consecutive sequences of genes or, equivalently, in moving a sequence of
genes from one place to another in the genome. The transposition distance between
two genomes is the minimum number of such operations that are needed to transform
one genome into the other. Computing this distance is a challenge in comparative
genomics, see for instance [23], since it gives a maximum parsimony evolution scenario
between the two studied genomes.

The Sorting by Transpositions problem is the problem of computing the
transposition distance between genomes represented by permutations: see [17] for a
detailed review on this problem and its variants. Since its introduction by Bafna and
Pevzner [3, 4], the complexity of this problem has never been established. Hence a
number of studies [4, 10, 18, 20, 14, 5, 16] aim at designing approximation algorithms
or heuristics, the best known fixed-ratio algorithm being a 1.375-approximation [14].
Other works [19, 10, 15, 21, 14, 5] aim at computing bounds on the transposition
distance of a permutation. Studies have also been devoted to variants of this problem,
by considering, for example, sorting by prefix transpositions [13, 22, 8] (in which
one of the transposed sequences has to be a prefix of the sequence), or sorting by
transpositions in strings [11, 12, 26, 25] (where multiple occurrences of each element
are allowed in the sequences), possibly using weighted or prefix transpositions [24, 6,
2, 8, 1]. Note also that sorting a permutation by block-interchanges (i.e., exchanges
of not necessarily consecutive sequences) is solvable in polynomial time [9].

In this paper, we address the long-standing issue of determining the complexity
class of the Sorting by Transpositions problem, by giving a polynomial-time re-
duction from SAT, thus proving the NP-hardness of this problem. Our reduction is

∗ A preliminary version of this paper appeared in the proceedings of the 38th International
Colloquium on Automata, Languages and Programming, ICALP 2011 [7].

† Laboratoire d’Informatique de Nantes-Atlantique (LINA), UMR CNRS 6241 – Univer-
sité de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France ({Laurent.Bulteau,
Guillaume.Fertin, Irena.Rusu}@univ-nantes.fr).

1

π = (π0π1 . . . πi−1πi . . . πj−1 πj . . . πk−1πk . . . πn)

π ◦ τi,j,k = (π0π1 . . . πi−1πj . . . πk−1 πi . . . πj−1πk . . . πn)

Fig. 1.1: Transposition τi,j,k, with 0 < i < j < k ≤ n.

based on the study of transpositions that remove three breakpoints. A corollary of
our result is the NP-hardness of the following problem, introduced in [10]: given a
permutation π, is it possible to sort π using exactly db(π)/3 transpositions, where
db(π) is the number of breakpoints of π? The first section provides some prelimi-
nary definitions and results about the transposition distance and its relationship with
breakpoints. In the second section, we introduce an intermediate structure used in our
reduction, the 3DT-instance, and provide results giving some equivalences between
3DT-instances and permutations. The third section is the core of the reduction; it is
devoted to the construction of “NP-hard” 3DT-instances, using an intricate assem-
bling of basic blocks. Finally, the fourth section concludes the reduction by porting the
previous construction to permutations, thus proving the NP-hardness of the Sorting
By Transpositions problem.

1. Preliminaries.

1.1. Transpositions and Breakpoints. In this paper, n denotes a positive
integer. Let Ja ; bK = {x ∈ N | a ≤ x ≤ b}, and Idn be the identity permutation over
J0 ; nK. We consider only permutations of J0 ; nK such that 0 and n are fixed-points.
Given a word u1 u2 . . . ul, a subword is a subsequence up1

up2
. . . upl′

, where
1 ≤ p1 < p2 < · · · < pl′ ≤ l. A factor is a subsequence of contiguous elements, i.e., a
subword with pk+1 = pk + 1 for every k ∈ J1 ; l′ − 1K.

A transposition is an operation that exchanges two consecutive factors of a se-
quence. As we only work with permutations, it is defined as a permutation τi,j,k,
which, once composed with a permutation π, realizes this operation (see Figure 1.1).
The transposition τi,j,k is formally defined as follows.

Definition 1.1 (Transposition). Given three integers i, j, k such that 0 < i <
j < k ≤ n, the transposition τi,j,k over J0 ; nK is the following permutation (we write
q(j) = k + i− j):

For any 0 ≤ x < i, τi,j,k(x) = x

For any i ≤ x < q(j), τi,j,k(x) = x+ j − i

For any q(j) ≤ x < k, τi,j,k(x) = x+ j − k

For any k ≤ x ≤ n, τi,j,k(x) = x

Note that the inverse function of τi,j,k is also a transposition. More precisely,
τ−1
i,j,k = τi,q(j),k.

The following two properties directly follow from the definition of a transposition:

Property 1.2. Let τ = τi,j,k be a transposition, q(j) = k+i−j, and u, v ∈ J0 ; nK
2

be two integers such that u < v. Then:

τ(u) > τ(v) ⇔ i ≤ u < q(j) ≤ v < k

τ−1(u) > τ−1(v) ⇔ i ≤ u < j ≤ v < k

Property 1.3. Let τ be the transposition τ = τi,j,k, and write q(j) = k + i− j.
For all x ∈ J1 ; nK, the values of τ(x− 1) and τ−1(x− 1) are the following:

∀x /∈ {i, q(j), k}, τ(x− 1) = τ(x)− 1
∀x /∈ {i, j, k}, τ−1(x− 1) = τ−1(x)− 1

τ(i− 1) = τ(q(j))− 1 τ−1(i− 1) = τ−1(j)− 1
τ(q(j)− 1) = τ(k)− 1 τ−1(j − 1) = τ−1(k)− 1
τ(k − 1) = τ(i)− 1 τ−1(k − 1) = τ−1(i)− 1

Definition 1.4 (Breakpoints). Let π be a permutation of J0 ; nK. If x ∈ J1 ; nK
is an integer such that π(x − 1) = π(x) − 1, then (x − 1, x) is an adjacency of π,
otherwise it is a breakpoint. We write db(π) for the number of breakpoints of π.

The following property yields that the number of breakpoints of a permutation
can be reduced by at most 3 when a transposition is applied:

Property 1.5. Let π be a permutation and τ = τi,j,k be a transposition (with
0 < i < j < k ≤ n). Then, for all x ∈ J1 ; nK − {i, j, k},

(x− 1, x) is an adjacency of π ⇔ (τ−1(x)− 1, τ−1(x)) is an adjacency of π ◦ τ.

Overall, we have db(π ◦ τ) ≥ db(π)− 3.
Proof. For all x ∈ J1 ; nK − {i, j, k}, we have:

(x− 1, x) is an adjacency of π ⇔ π(x− 1) = π(x)− 1

⇔ π(τ(τ−1(x− 1))) = π(τ(τ−1(x)))− 1

⇔ π ◦ τ(τ−1(x)− 1) = π ◦ τ(τ−1(x))− 1 by Prop. 1.3

⇔ (τ−1(x)− 1, τ−1(x)) is an adjacency of π ◦ τ.

1.2. Transposition Distance. The transposition distance of a permutation is
the minimum number of transpositions needed to transform it into the identity. A
formal definition is the following:

Definition 1.6 (Transposition distance). Let π be a permutation of J0 ; nK. The
transposition distance dt(π) from π to Idn is the minimum value k for which there
exist k transpositions τ1, τ2, . . . , τk, satisfying:

π ◦ τk ◦ . . . ◦ τ2 ◦ τ1 = Idn

The decision problem of computing the transposition distance is the following:

Sorting by Transpositions Problem [3]
Input: A permutation π, an integer k.
Question: Is dt(π) ≤ k?

The following property directly follows from Property 1.5, since for any n the
number of breakpoints of Idn is 0.

Property 1.7. Let π be a permutation, then dt(π) ≥ db(π)/3. Figure 1.2 gives
an example of the computation of the transposition distance.

3

π = 0 2 4 3 1 5
π ◦ τ1,3,5 = 0 3 1 2 4 5
π ◦ τ1,3,5 ◦ τ1,2,4 = 0 1 2 3 4 5

Fig. 1.2: The transposition distance from π = (0 2 4 3 1 5) to Id5 is 2: it is at most
2 since π ◦ τ1,3,5 ◦ τ1,2,4 = Id5, and it cannot be less than 2 since Property 1.7 applies
with db(π)/3 = 5/3 > 1.

2. 3-Deletion and Transposition Operations. In this section, we introduce
3DT-instances, which are the cornerstone of our reduction from SAT to the Sort-
ing by Transpositions problem, since they are used as an intermediate between
instances of the two problems. We first define 3DT-instances and the possible oper-
ations that can be applied to them, then we focus on the equivalence between these
instances and permutations. Section 2.4 stands out of the flow of the reduction, and
gives a way to match 3DT-instances with the cycle graphs of 3-permutations. It should
help the readers who are already familiar with the notion of cycle graphs following
the definitions introduced here.

2.1. 3DT-instances. We introduce 3DT-instances as stand-alone mathematical
objects, and give a set of tools to handle them. The two main objectives are (1)
to accurately reflect the behavior of the breakpoints in a permutation π such that
dt(π) = db(π)/3 (this aspect will be formalized in the following sections) and (2) to
make 3DT-instances easy to construct (they can be defined as a word whose letters
can be partitioned into triples).

Definition 2.1 (3DT-instance). A 3DT-instance I = 〈Σ, T, ψ〉 of span n is
composed of the following elements:

• Σ: an alphabet;
• T = {(ai, bi, ci) | 1 ≤ i ≤ |T |}: a set of (ordered) triples of elements of Σ,

partitioning Σ (i.e., all elements are pairwise distinct, and
⋃|T |

i=1{ai, bi, ci} =
Σ);

• ψ : Σ → J1 ; nK, an injection.
The domain of I is the image of ψ, that is the set L = {ψ(σ) | σ ∈ Σ}.
The word representation of I is the n-letter word u1 u2 . . . un over Σ∪{�} (where

� /∈ Σ), such that for all i ∈ L, ψ(ui) = i, and for i ∈ J1 ; nK − L, ui = �.
Two examples of 3DT-instances are given in Example 2.1. Note that such in-

stances can be defined by their word representation and by their set of triples T . The
word representation of the empty 3DT-instance (in which Σ = ∅) is a sequence of n
dot. We may also denote this instance by ε.

Example 2.1. In this example, we define two 3DT-instances of span 6, I =
〈Σ, T, ψ〉 and I ′ = 〈Σ′, T ′, ψ′〉:

I = a1 c2 b1 b2 c1 a2 with T = {(a1, b1, c1), (a2, b2, c2)}
I ′ = � b2 � c2 � a2 with T ′ = {(a2, b2, c2)}

Here, I has an alphabet of size 6, Σ = {a1, b1, c1, a2, b2, c2}, hence ψ is a bijection
(ψ(a1) = 1, ψ(c2) = 2, ψ(b1) = 3, etc). The second instance, I ′, has an alphabet of
size 3, Σ′ = {a2, b2, c2}, with ψ

′(b2) = 2, ψ′(c2) = 4, ψ′(a2) = 6.

4

Property 2.2. Let I = 〈Σ, T, ψ〉 be a 3DT-instance of span n with domain L.
Then

|Σ| = |L| = 3 |T | ≤ n.

Proof. We have |Σ| = |L| since ψ is an injection with image L. The triples of T
partition Σ so |Σ| = 3|T |, and finally L ⊆ J1 ; nK so |L| ≤ n.

Definition 2.3. Let I = 〈Σ, T, ψ〉 be a 3DT-instance. The injection ψ gives a
total order over Σ, written ≺I (or ≺, if there is no ambiguity), defined by

∀σ1, σ2 ∈ Σ, σ1 ≺I σ2 ⇔ ψ(σ1) < ψ(σ2) (2.1)

Two elements σ1 and σ2 of Σ are called consecutive if there exists no element
x ∈ Σ such that σ1 ≺I x ≺I σ2. In this case, we write σ1 ⊳I σ2 (or simply σ1 ⊳ σ2).

An equivalent definition is that σ1 ≺ σ2 if σ1 σ2 is a subword of the word repre-
sentation of I. Also, σ1 ⊳ σ2 if the word representation of I contains a factor of the
kind σ1 �

∗ σ2 (where �

∗ represents any sequence of l ≥ 0 dots).
Using the triples in T , we define a successor function over the domain L:
Definition 2.4. Let I = 〈Σ, T, ψ〉 be a 3DT-instance with domain L. The

function succI : L→ L is defined by:

∀(a, b, c) ∈ T, ψ(a) 7→ ψ(b)

ψ(b) 7→ ψ(c)

ψ(c) 7→ ψ(a)

Function succI is a bijection, with no fixed-points, and such that succI ◦ succI ◦
succI is the identity over L. In Example 2.1, we have:

succI =

(

1 2 3 4 5 6
3 6 5 2 1 4

)

and succI′ =

(

2 4 6
4 6 2

)

.

2.2. 3DT-steps. We define 3DT-steps on 3DT-instances in order to reflect
transpositions removing three breakpoints on permutations. In both points of view,
we apply a transposition for which the bounds need to verify certain conditions (being
a well-ordered triple for 3DT-instances, or satisfying a correct pattern of values for
permutations).

Definition 2.5. Let I = 〈Σ, T, ψ〉 be a 3DT-instance, and (a, b, c) be a triple
of T . Write i = min{ψ(a), ψ(b), ψ(c)}, j = succI(i), and k = succI(j). The triple
(a, b, c) ∈ T is well-ordered if we have i < j < k. In such a case, we write τ [a, b, c, ψ]
for the transposition τi,j,k.

An equivalent definition is that (a, b, c) is well-ordered iff one of abc, bca, cab is a
subword of the word representation of I. In Example 2.1, (a1, b1, c1) is well-ordered
in I: indeed, we have i = ψ(a1), j = ψ(b1), k = ψ(c1), and i < j < k. The triple
(a2, b2, c2) is also well-ordered in I ′ (i = ψ′(b2) < j = ψ′(c2) < k = ψ′(a2)), but not in
I: i = ψ(c2) < k = ψ(b2) < j = ψ(a2). In this example, we have τ [a1, b1, c1, ψ] = τ1,3,5
and τ [a2, b2, c2, ψ

′] = τ2,4,6.
Definition 2.6 (3DT-step). Let I = 〈Σ, T, ψ〉 be a 3DT-instance with (a, b, c) ∈

T a well-ordered triple. The 3DT-step of parameter (a, b, c) is the operation written
(a, b, c)
−−−−−→, transforming I into the 3DT-instance I ′ = 〈Σ′, T ′, ψ′〉 such that:

5

W a X b Y c Z

W � Y � X � Z

(a, b, c)

Fig. 2.1: The 3DT-step
(a, b, c)
−−−−−→ has two effects, here represented on the word rep-

resentation of a 3DT-instance: the triple (a, b, c) is deleted (and replaced by dots in
this word representation), and the factors X and Y are swapped.

• Σ′ = Σ− {a, b, c}
• T ′ = T − {(a, b, c)}

• ψ′ :
Σ′ → J1 ; nK
σ 7→ τ−1(ψ(σ))

(with τ = τ [a, b, c, ψ]).

A 3DT-step has two effects on a 3DT-instance, as represented in Figure 2.1. The
first is to remove a necessarily well-ordered triple from T (hence from Σ). The second
is, by applying a transposition to ψ, to shift the position of some of the remaining
elements. Note that a triple that is not well-ordered in I can become well-ordered in I ′,

or vice-versa. In Example 2.1, I ′ can be obtained from I via a 3DT-step: I (a1, b1, c1)
−−−−−−−−→I ′.

Moreover, I ′ (a2, b2, c2)
−−−−−−−−→ε. A more complex example is given in Figure 2.2.

Note that a 3DT-step transforms the function succI into succI′ = τ−1 ◦ succI ◦ τ ,
restricted to L′, the domain of the new instance I ′. Indeed, for all (a, b, c) ∈ T ′, we
have

succI′(ψ′(a)) = ψ′(b)

= τ−1(ψ(b))

= τ−1(succI(ψ(a)))

= τ−1(succI(τ(ψ
′(a))))

= (τ−1 ◦ succI ◦ τ)(ψ
′(a))

The computation is similar for ψ′(b) and ψ′(c).

Definition 2.7 (3DT-collapsibility). A 3DT-instance I = 〈Σ, T, ψ〉 is 3DT-
collapsible if there exists a sequence of 3DT-instances Ik, Ik−1, . . . , I0 such that

Ik = I

∀i ∈ J1 ; kK , ∃(a, b, c) ∈ T, Ii
(a, b, c)
−−−−−→Ii−1

I0 = ε

In Example 2.1, I and I ′ are 3DT-collapsible, since I (a1, b1, c1)
−−−−−−−−→I ′

(a2, b2, c2)
−−−−−−−−→ε. An-

other example is the 3DT-instance defined in Figure 2.2. Note that in the example of
Figure 2.2, there are in fact two distinct paths leading to the empty instance.

2.3. Equivalence with the Transposition Distance. Definition 2.8. Let
I = 〈Σ, T, ψ〉 be a 3DT-instance of span n with domain L, and π be a permutation of

6

a1 e a2 b1 d b2 c1 f c2

� d b2 � e a2 � f c2 a1 e � c1 f � b1 d �

� � a2 � � b2 � � c2 a1 � � b1 � � c1 � �

��� ��� ���

(a1, b1, c1) (a2, b2, c2)

(d, e, f) (d, e, f)

(a2, b2, c2) (a1, b1, c1)

Fig. 2.2: Possible 3DT-steps from the instance I defined by the word
a1 e a2 b1 d b2 c1 f c2 and the set of triples T = {(a1, b1, c1), (a2, b2, c2), (d, e, f)}.
We can see that there is a path from I to ε, hence I is 3DT-collapsible. Note that
both (a1, b1, c1) and (a2, b2, c2) are well-ordered in the initial instance, each one loses
this property after applying the 3DT-step associated to the other, and becomes well-
ordered again after applying the 3DT-step associated to (d, e, f).

succI :

u : · · · i−1 i · · · j−1 j · · · k−1 k · · ·

π(u) : · · · π(j)−1 π(i) · · · π(k)−1 π(j) · · · π(i)−1 π(k) · · ·

Fig. 2.3: Illustration of the equivalence I ∼ π on three integers (i, j, k) such that
j = succI(i) and k = succI(j). It can be checked that π(v) = π(u − 1) + 1 for any
(u, v) ∈ {(i, j), (j, k), (k, i)}.

J0 ; nK. We say that I and π are equivalent, and we write I ∼ π, if:

π(0) = 0,
∀v ∈ J1 ; nK − L, π(v) = π(v − 1) + 1,
∀v ∈ L, π(v) = π(succ−1

I (v)− 1) + 1.

With such an equivalence I ∼ π, the two following properties hold:
• The breakpoints of π correspond to the elements of L (see Property 2.9).
• The triples of breakpoints that may be resolved immediately by a single
transposition correspond to the well-ordered triples of T (see Figure 2.3 and
Lemma 2.11).

7

I : a1 a2 a3 b2 c3 b1 b3 c1 c2 T = {(ai, bi, ci) | 1 ≤ i ≤ 3}

(a1, b1, c1) π : 0 6 4 8 7 2 1 5 3 9
τ I ′ : � b3 � a2 a3 b2 c3 � c2 T ′ = {(ai, bi, ci) | 2 ≤ i ≤ 3}

π′ : 0 1 5 6 4 8 7 2 3 9
Fig. 2.4: Illustration of Lemma 2.10: since I ∼ π and I

(a1, b1, c1)
−−−−−−−−→I ′, then I ′ ∼ π′ =

π ◦ τ , where τ = τ [a1, b1, c1, ψ].

Property 2.9. Let I = 〈Σ, T, ψ〉 be a 3DT-instance of span n with domain L,
and π be a permutation of J0 ; nK, such that I ∼ π. Then the number of breakpoints
of π is db(π) = |L| = 3|T |.

Proof. Let v ∈ J1 ; nK. By Definition 2.8, we have:
If v /∈ L, then π(v) = π(v − 1) + 1, so (v − 1, v) is an adjacency of π.
If v ∈ L, we write u = succ−1

I (v), so π(v) = π(u−1)+1. Since succI has no fixed-
point, we have u 6= v, which implies π(u− 1) 6= π(v− 1). Hence, π(v) 6= π(v− 1) + 1,
and (v − 1, v) is a breakpoint of π.

Consequently the number of breakpoints of π is exactly |L|, and |L| = 3|T | by
Property 2.2.

With the following lemma, we show that the equivalence between a 3DT-instance
and a permutation is preserved after a 3DT-step, see Figure 2.4.

Lemma 2.10. Let I = 〈Σ, T, ψ〉 be a 3DT-instance of span n, and π be a per-

mutation of J0 ; nK, such that I ∼ π. If there exists a 3DT-step I
(a, b, c)
−−−−−→I ′ for some

well-ordered triple (a, b, c) ∈ T , then I ′ and π′ = π ◦ τ , where τ = τ [a, b, c, ψ], are
equivalent.

Proof. We write (i, j, k) for the indices such that τ = τi,j,k (by definition, i =
min{ψ(a), ψ(b), ψ(c)}, j = succI(i), k = succI(j)). Since (a, b, c) is well-ordered, we
have i < j < k.

We have I ′ = 〈Σ′, T ′, ψ′〉, with Σ′ = Σ − {a, b, c}, T ′ = T − {(a, b, c)}, and
ψ′ : σ 7→ τ−1(ψ(σ)). We write respectively L and L′ for the domains of I and I ′. For
all v′ ∈ J1 ; nK, we have

v′ ∈ L′ ⇔ ∃σ ∈ Σ− {a, b, c}, v′ = τ−1(ψ(σ))

⇔ τ(v′) ∈ L− {i, j, k}

We prove the 3 required properties (see Definition 2.8) sequentially:
• π′(0) = π(τ(0)) = π(0) = 0,
• ∀v′ ∈ J1 ; nK − L′, let v = τ(v′). Since v′ /∈ L′, we have either v ∈ {i, j, k},
or v /∈ L. In the first case, we write u = succ−1

I (v) (then u ∈ {i, j, k}).
By Property 1.3, τ−1(u − 1) is equal to τ−1(succI(u)) − 1, so τ−1(u − 1) =
τ−1(v)− 1. Hence,

π′(v′ − 1) + 1 = π(τ(τ−1(v)− 1)) + 1

= π(u− 1) + 1

= π(v) by Def. 2.8, since v ∈ L and v = succI(u)

= π′(v′)

8

In the second case, v /∈ L, we have

π′(v′ − 1) + 1 = π(τ(τ−1(v)− 1)) + 1

= π(τ(τ−1(v − 1))) + 1 by Prop. 1.3, since v /∈ {i, j, k}

= π(v − 1) + 1

= π(v) by Def. 2.8, since v /∈ L

= π′(v′)

In both cases, we indeed have π′(v′ − 1) + 1 = π′(v′).
• Let v′ be an element of L′. We write v = τ(v′), u = succ−1

I (v), and u′ =
τ−1(u). Then v′ = τ−1(succI(τ(u

′))) = succI′(u′). Moreover, v /∈ {i, j, k},
hence u /∈ {i, j, k}.

π′(u′ − 1) + 1 = π(τ(τ−1(u)− 1)) + 1

= π(τ(τ−1(u− 1))) + 1 by Prop. 1.3, since u /∈ {i, j, k}

= π(u− 1) + 1

= π(v) by Def. 2.8, since v ∈ L and u = succ−1
I (v)

= π(τ(τ−1(v)))

= π′(v′)

Lemma 2.11. Let I = 〈Σ, T, ψ〉 be a 3DT-instance of span n, and π a permutation
of J0 ; nK, such that I ∼ π. If there exists a transposition τ = τi,j,k such that db(π◦τ) =
db(π)− 3, then T contains a well-ordered triple (a, b, c) such that τ = τ [a, b, c, ψ].

Proof. We write i′ = τ−1(i), j′ = τ−1(j), and k′ = τ−1(k). Note also that
i < j < k.

Let π′ = π ◦ τ . For all x ∈ J1 ; nK − {i, j, k}, we have, by Property 1.5, that
(x − 1, x) is an adjacency of π iff (τ−1(x) − 1, τ−1(x)) is an adjacency of π′. Hence,
since db(π

′) = db(π) − 3, we necessarily have that (i − 1, i), (j − 1, j) and (k − 1, k)
are breakpoints of π, and (i′ − 1, i′), (j′ − 1, j′) and (k′ − 1, k′) are adjacencies of π′.
We have

π(i) = π(τ(i′))

= π′(i′)

= π′(i′ − 1) + 1 since (i′ − 1, i′) is an adjacency of π′

= π′(τ−1(i)− 1) + 1

= π′(τ−1(k − 1)) + 1 by Prop. 1.3

= π(k − 1) + 1

Since I ∼ π and i 6= k, by Definition 2.8, we necessarily have i ∈ L (where L is the
domain of I), and i = succI(k).

Using the same method with (j′ − 1, j′) and (k′ − 1, k′), we obtain j, k ∈ L,
j = succI(i) and k = succI(j). Hence, T contains one of the following three triples:
(ψ−1(i), ψ−1(j), ψ−1(k)), (ψ−1(j), ψ−1(k), ψ−1(i)), or (ψ−1(k), ψ−1(i), ψ−1(j)). Writ-
ing (a, b, c) this triple, we indeed have τi,j,k = τ [a, b, c, ψ] since i < j < k.

9

Theorem 2.12. Let I = 〈Σ, T, ψ〉 be a 3DT-instance of span n with domain L,
and π be a permutation of J0 ; nK, such that I ∼ π. Then I is 3DT-collapsible if and
only if dt(π) = |T | = db(π)/3.

Proof. We prove the theorem by induction on k = |T |. For k = 0, necessarily
I = ε and L = T = ∅, and by Definition 2.8, π = Idn (π(0) = 0, and for all v > 0,
π(v) = π(v − 1) + 1). In this case, I is trivially 3DT-collapsible, and dt(π) = 0 =
|T | = db(π)/3.

Suppose now k = k′ + 1, with k′ ≥ 0, and the theorem is true for k′. By
Property 2.9, we have db(π) = 3k, and by Property 1.7, dt(π) ≥ 3k/3 = k.

Assume first that I is 3DT-collapsible. Then there exist both a triple (a, b, c) ∈ T

and a 3DT-instance I ′ = 〈Σ′, T ′, ψ′〉 such that I (a, b, c)
−−−−−→I ′ and I ′ is 3DT-collapsible.

Since T ′ = T − {(a, b, c)}, the size of T ′ is k − 1 = k′. By Lemma 2.10, we have
I ′ ∼ π′ = π ◦ τ , with τ = τ [a, b, c, ψ]. Using the induction hypothesis, we know that
dt(π

′) = k′. So the transposition distance from π = π′ ◦τ−1 to the identity is at most,
hence exactly, k′ + 1 = k.

Assume now that dt(π) = k. We can decompose π into π = π′ ◦ τ−1, where
τ is a transposition and π′ a permutation such that dt(π

′) = k − 1 = k′. Since π
has 3k breakpoints (Property 2.9), and π′ = π ◦ τ has at most 3k − 3 breakpoints
(Property 1.7), τ necessarily removes 3 breakpoints, and we can use Lemma 2.11:

there exists a 3DT-step I (a, b, c)
−−−−−→I ′, where (a, b, c) ∈ T is a well-ordered triple and

τ = τ [a, b, c, ψ]. We can now use Lemma 2.10, which yields I ′ ∼ π′ = π ◦ τ . Using
the induction hypothesis, we obtain that I ′ is 3DT-collapsible, hence I is also 3DT-
collapsible. This concludes the proof of the theorem.

The previous theorem gives a way to reduce the problem of deciding if a 3DT-
instance is collapsible to the Sorting by Transpositions problem. However, it
must be used carefully, since there exist 3DT-instances to which no permutation is
equivalent (for example, I = a1 a2 b1 b2 c1 c2 admits no permutation π of J0 ; 6K such
that I ∼ π).

2.4. Parallel with the Cycle Graph. This section gives another point of view
for the definition of 3DT-instances, in such a way that they (almost) match cycle
graphs, as defined in [4]. It is given as a side remark and will not be used in the rest
of the reduction, hence it is not described with an over-formal vocabulary, and we
assume that the reader is already familiar with cycle graphs. This correspondence is
summarized in Figure 2.5.

A 3DT-instance behaves similarly to a cycle graph containing only 1- and 3-cycles,
that is, the cycle-graph of a so-called 3-permutation. Each σ ∈ Σ corresponds to a
reality arc in a 3-cycle (a triple corresponds to a 3-cycle), and each other position
i ∈ J1 ; nK such that ui = � corresponds to the reality arc of a 1-cycle. The succI
function corresponds to taking the next reality arc in a cycle. A triple is well-ordered
if the corresponding cycle is oriented in the graph, and, for such triples, following
a 3DT-step corresponds to breaking the 3-cycle into three 1-cycles (which may also
change the orientation of some other cycles).

Given such a correspondence between a 3DT-instance I and the cycle graph G of
a permutation π, we obtain that I is equivalent to π, and that I is 3DT-collapsible
iff there exists a sequence of transpositions each breaking a 3-cycle of G (i.e., iff
dt(π) = db(π)/3).

However, 3DT-instances are more general than cycle graphs: cycle graphs are
defined from the permutations they represent while on the other hand 3DT-instances
can be constructed without referring to a permutation, hence there is no cycle graph

10

0 2 4 65 1 3 c2a2b2 b1 c1a1

(a1, b1, c1) τ0,2,4

0 1 4 5 2 3 6c2a2 b2� ��

Fig. 2.5: The 3DT-instance a1 b2 b1 a2 c1 c2 seen on the corresponding cycle graph,
i.e., the cycle graph of permutation (0, 5, 2, 1, 4, 3, 6). The ordered triple (a1, b1, c1)
corresponds to the over-lined oriented 3-cycle, and following the 3DT-step removing
this triple corresponds to breaking the cycle into 1-cycles.

corresponding to certain 3DT-instances (e.g., I = a1 a2 b1 b2 c1 c2). Consequently,
we can focus exclusively on the way triples are ordered and how they overlap – this
task alone is the most complex one, see Section 3. The main drawback is that we
need to verify, afterward, that there indeed exist permutations which are equivalent
to the 3DT-instances we build (Section 4).

3. 3DT-collapsibility Is NP-Hard to Decide. In this section, we define, for
any boolean formula φ, a corresponding 3DT-instance Iφ. We also prove that Iφ is
3DT-collapsible if and only if φ is satisfiable.

3.1. Block Structure. The construction of the 3DT-instance Iφ uses a decom-
position into blocks, defined below. Some triples will be included in a block, in order
to define its behavior, while others will be shared between two blocks, in order to pass
information. The former are unconstrained, so that we can design blocks with the
behavior we need (for example, blocks mimicking usual boolean functions), while the
latter need to follow several rules, so that the blocks can conveniently be arranged
together.

Definition 3.1 (l-block decomposition). An l-block decomposition B of a 3DT-
instance I of span n is an l-tuple (s1, . . . , sl) such that s1 = 0, for all h ∈ J1 ; l − 1K,
sh < sh+1 and sl < n. We write th = sh+1 for h ∈ J1 ; l − 1K, and tl = n.

Let I = 〈Σ, T, ψ〉. For h ∈ J1 ; lK, the factor ush+1 ush+2 . . . uth of the word

representation u1 u2 . . . un of I is called the full block B�h (it is a word over Σ∪{�}).

The subword of B�h where every occurrence of � is deleted is called the block Bh.
For σ ∈ Σ, we write blockI,B(σ) = h if ψ(σ) ∈ Jsh + 1 ; thK (equivalently, if σ

appears in the word Bh). A triple (a, b, c) ∈ T is said to be internal if blockI,B(a) =
blockI,B(b) = blockI,B(c), external otherwise.

If τ is a transposition such that for all h ∈ J1 ; lK, τ(sh) < τ(th), we write τ [B]
for the l-block decomposition (τ(s1), . . . , τ(sl)).

In the rest of this section, we mostly work with blocks instead of full blocks, since

11

we are only interested in the relative order of the elements, rather than their actual
position. Full blocks are only used in definitions, where we want to control the dots
in the word representation of the 3DT-instances we define. Note that, for σ1, σ2 ∈ Σ
such that blockI,B(σ1) = blockI,B(σ2) = h, the relation σ1 ⊳ σ2 is equivalent to σ1 σ2
is a factor of Bh.

Property 3.2. Let B = (s1, . . . , sl) be an l-block decomposition of a 3DT-
instance of span n, and i, j, k ∈ J1 ; nK be three integers such that (a) i < j < k and
(b) ∃h0 such that sh0

< i < j ≤ th0
or sh0

< j < k ≤ th0
(or both). Then for all

h ∈ J1 ; lK, τ−1
i,j,k(sh) < τ−1

i,j,k(th), and the l-block decomposition τ−1
i,j,k[B] is defined.

Proof. For any h ∈ J1 ; lK, we show that we cannot have i ≤ sh < j ≤ th < k.
Indeed, sh < j implies h ≤ h0 (since sh < j ≤ th0

= sh0+1), and j ≤ th implies
h ≥ h0 (since th0−1 = sh0

< j ≤ th). Hence sh < j ≤ th implies h = h0, but
i ≤ sh, th < k contradicts both conditions sh0

< i and k ≤ th0
: hence the relation

i ≤ sh < j ≤ th < k is impossible.
By Property 1.2, since sh < th for all h ∈ J1 ; lK, and i ≤ sh < j ≤ th < k does

not hold, we have τ−1
i,j,k(sh) < τ−1

i,j,k(th), which is sufficient to define τ−1
i,j,k[B].

The above property yields that, if (a, b, c) is a well-ordered triple of a 3DT-
instance I = 〈Σ, T, ψ〉 (τ = τ [a, b, c, ψ]), and B is an l-block decomposition of I,
then τ−1[B] is defined if (a, b, c) is an internal triple, or an external triple such that
one of the following equalities is satisfied: blockI,B(a) = blockI,B(b), blockI,B(b) =

blockI,B(c) or blockI,B(c) = blockI,B(a). In this case, the 3DT-step I (a, b, c)
−−−−−→I ′ is writ-

ten (I,B) (a, b, c)
−−−−−→(I ′,B′), where B′ = τ−1[B] is an l-block decomposition of I ′.

Definition 3.3 (Variable). A variable A of a 3DT-instance I = 〈Σ, T, ψ〉 is a
pair of triples A = [(a, b, c), (x, y, z)] of T . It is valid in an l-block decomposition B if

(i) ∃h0 ∈ J1 ; lK such that blockI,B(b) = blockI,B(x) = blockI,B(y) = h0
(ii) ∃h1 ∈ J1 ; lK, h1 6= h0, such that blockI,B(a) = blockI,B(c) = blockI,B(z) = h1
(iii) if x ≺ y, then we have x ⊳ b ⊳ y
(iv) a ≺ z ≺ c
For such a valid variable A, the block Bh0

containing {b, x, y} is called the source
of A (we write source(A) = h0), and the block Bh1

containing {a, c, z} is called the
target of A (we write target(A) = h1). For h ∈ J1 ; lK, the variables of which Bh is the
source (resp. the target) are called the output (resp. the input) of Bh. The 3DT-step

I
(x, y, z)
−−−−−−→I ′ is called the activation of A (it requires that (x, y, z) is well-ordered).

Note that since a valid variable A = [(a, b, c), (x, y, z)] satisfies blockI,B(x) =

blockI,B(y), its activation can be written (I,B) (x, y, z)
−−−−−−→(I ′,B′).

Example 3.1. Consider the 3DT-instance I with the 2-block decomposition B
such that:

I = d y e x b f d′ a f ′ z e′ c

with triples (a, b, c), (d, e, f), (d′, e′, f ′), (x, y, z)

B = (0, 6)

This decomposition yields two blocks B1 = d y e x b f and B2 = d′ a f ′ z e′ c, which
contain two internal triples (d, e, f) and (d′, e′, f ′) and two external triples forming a
variable A = [(a, b, c), (x, y, z)]. We give below a sequence of 3DT-steps leading to the
empty instance (for each step, the three deleted elements are in bold font, the elements
that are swapped by the corresponding transposition are underlined, vertical bars give
the limits of the blocks in the 2-block decomposition, and dot symbols are omitted).
Note that in this example, variable A is valid, and remains valid until its activation.

12

I = |d y ex bf | d′ a f ′ z e′ c |

↓ (d, e, f) Internal triple of B1

I3 = |x by | d′ a f ′ z e′ c |

↓ (x, y, z) Activation of A

I2 = | ε | d′ a f ′ b e′ c |

↓ (a, b, c) Internal triple of B2

I1 = | ε |d′ e′ f ′ |

↓ (d′, e′, f ′) Internal triple of B2

I0 = | ε | ε | = ε

Property 3.4. Let (I,B) be a 3DT-instance with an l-block decomposition, and
A be a variable of I that is valid in B. Write A = [(a, b, c), (x, y, z)]. Then (x, y, z) is
well-ordered iff x ≺ y; and (a, b, c) is not well-ordered.

Proof. Note that for all σ, σ′ ∈ Σ, blockI,B(σ) < blockI,B(σ
′) ⇒ σ ≺ σ′. Write

I = 〈Σ, T, ψ〉, h0 = source(A) and h1 = target(A): we have h0 6= h1 by condition (ii)
of Definition 3.3.

If h0 < h1, then, with condition (iv) of Definition 3.3, b ≺ a ≺ c, and either
x ≺ y ≺ z or y ≺ x ≺ z. Hence, (a, b, c) is not well-ordered, and (x, y, z) is well-
ordered iff x ≺ y.

Likewise, if h1 < h0, we have a ≺ c ≺ b, and z ≺ x ≺ y or z ≺ y ≺ x. Again,
(a, b, c) is not well-ordered, and (x, y, z) is well-ordered iff x ≺ y.

Property 3.5. Let (I,B) be a 3DT-instance with an l-block decomposition,
such that the external triples of I = 〈Σ, T, ψ〉 can be partitioned into a set of valid
variables A. Let (d, e, f) be a well-ordered triple of I, such that there exists a 3DT-

step (I,B)
(d, e, f)
−−−−−−→(I ′,B′), with I ′ = 〈Σ′, T ′, ψ′〉. Then one of the following two cases

is true:

• (d, e, f) is an internal triple. We write h0 = blockI,B(d) = blockI,B(e) =
blockI,B(f). Then for all σ ∈ Σ′, blockI′,B′(σ) = blockI,B(σ). Moreover if
σ1, σ2 ∈ Σ′ with blockI′,B′(σ1) = blockI′,B′(σ2) 6= h0 and σ1 ≺I σ2, then
σ1 ≺I′ σ2.

• There exists a variable A = [(a, b, c), (x, y, z)] ∈ A, such that (d, e, f) =
(x, y, z). Then blockI′,B′(b) = target(A) and for all other σ ∈ Σ′ − {b},
blockI′,B′(σ) = blockI,B(σ). Moreover if σ1, σ2 ∈ Σ′−{b}, such that σ1 ≺I σ2,
then σ1 ≺I′ σ2.

Proof. We write τ for the transposition and i, j, k for the three integers such
that τ = τi,j,k = τ [d, e, f, ψ] (necessarily, 0 < i < j < k ≤ n). We also write
B = (s0, s1, . . . , sl). The triple (d, e, f) is either internal or external in B.

If (d, e, f) is internal, with h0 = blockI,B(d) = blockI,B(e) = blockI,B(f), we have
(see Figure 3.1a):

sh0
< i < j < k ≤ th0

.

Hence for all h ∈ J1 ; lK, either sh < i or k ≤ sh, and τ−1(sh) = sh by Defini-

13

tion 1.1. Moreover, for all σ ∈ Σ, we have

i ≤ ψ(σ) < k ⇒ ψ(σ) ∈ Jsh0
+ 1 ; th0

K
and τ−1(sh0

) < i ≤ τ−1(ψ(σ)) < k ≤ τ−1(th0
)

⇒ blockI,B(σ) = h0 = blockI′,B′(σ)

ψ(σ) < i or k ≤ ψ(σ) ⇒ τ−1(ψ(σ)) = ψ(σ)

⇒ blockI′,B′(σ) = blockI,B(σ)

Finally, if σ1, σ2 ∈ Σ′ with blockI′,B′(σ1) = blockI′,B′(σ2) 6= h0, then we have both
τ−1(ψ(σ1)) = ψ(σ1) and τ

−1(ψ(σ2)) = ψ(σ2). Hence σ1 ≺I σ2 ⇔ σ1 ≺I′ σ2.
If (d, e, f) is external, then, since the set of external triples can be partitioned

into variables, there exists a variable A = [(a, b, c), (x, y, z)] ∈ A, such that (d, e, f) =
(a, b, c) or (d, e, f) = (x, y, z). Since (d, e, f) is well-ordered in I, we have, by Prop-
erty 3.4, (d, e, f) = (x, y, z) and x ≺I y, see Figure 3.1b. And since A is valid, by con-
dition (iv) of Definition 3.3, x⊳I b⊳I y. We write h0 = source(A) and h1 = target(A),
and we assume that h0 < h1, which implies x ≺I y ≺I z (the case h1 < h0 with
z ≺I x ≺I y is similar): thus, we have

i = ψ(x), j = ψ(y), k = ψ(z), and sh0
< i < j ≤ th0

≤ sh1
< k ≤ th1

.

We define a set of indices U by

U = {sh | h ∈ J1 ; lK} ∪ {n} ∪ {ψ(σ) | σ ∈ Σ′ − {b}}.

We now show that for all u ∈ U , we have u < i or j ≤ u. Indeed, if u = sh for
some h ∈ J1 ; lK, then either h ≤ h0 and u ≤ sh0

< i, or h0 < h and j ≤ th0
≤ u.

Also, if u = n, then j ≤ u. Finally, assume u = ψ(σ), with σ ∈ Σ′ − {b}. We then
have x ≺I σ ≺I y ⇔ σ = b, since x ⊳I b ⊳I y. Hence either σ ≺I x and u < ψ(x) = i,
or y ≺I σ and ψ(y) = j < u.

By Property 1.2, if u, v ∈ U are such that u < v, then τ−1(u) < τ−1(v). This
implies that elements of Σ′−{b} = Σ−{b, x, y, z} do not change blocks after applying
τ−1 on ψ, and that the relative order of any two elements is preserved. Finally, for b,
we have x ≺I b ≺I y, hence

i ≤ ψ(b) < j ≤ sh1
< k ≤ th1

.

Thus, by Property 1.2, τ−1(sh1
) < τ−1(ψ(b)) < τ−1(th1

), and blockI′,B′(b) = h1 =
target(A). This completes the proof.

Definition 3.6 (Valid context). A 3DT-instance with an l-block decomposition
(I,B) is a valid context if the set of external triples of I can be partitioned into valid
variables.

With the following property, we ensure that a valid context remains almost valid
after applying a 3DT-step: the partition of the external triples into variables is kept
through this 3DT-step, but conditions (iii) and (iv) of Definition 3.3 are not necessarily
satisfied for all variables.

Property 3.7. Let (I,B) be a valid context and (I,B)
(d, e, f)
−−−−−−→(I ′,B′) be a 3DT-

step. Then the external triples of (I ′,B′) can be partitioned into a set of variables,
each satisfying conditions (i) and (ii) of Definition 3.3.

Proof. Let I = 〈Σ, T, ψ〉, I ′ = 〈Σ′, T ′, ψ′〉, A be the set of variables of I, and E
(resp. E′) be the set of external triples of I (resp. I ′). From Property 3.5, two cases
are possible.

14

First case: (d, e, f) /∈ E. Then for all σ ∈ Σ′, blockI′,B′(σ) = blockI,B(σ). Hence
E′ = E, and (I ′,B′) has the same set of variables as (I,B), that is A. The source
and target blocks of every variable remain unchanged, hence conditions (i) and (ii) of
Definition 3.3 are still satisfied for each A ∈ A in B′.

Second case: (d, e, f) ∈ E, and there exists a variable A = [(a, b, c), (x, y, z)] in
A such that (d, e, f) = (x, y, z), by Property 3.5. Then blockI′,B′(b) = target(A) and
for all σ ∈ Σ′ − {b}, blockI′,B′(σ) = blockI,B(σ). Hence blockI′,B′(b) = blockI′,B′(a) =
blockI′,B′(c), and E′ = E − {(x, y, z), (a, b, c)}: indeed, (x, y, z) is deleted in T ′ so
(x, y, z) /∈ E′, (a, b, c) is internal in I ′, and every other triple is untouched. Finally,
for every A′ = [(a′, b′, c′), (x′, y′, z′)] ∈ A − {A}, we have blockI′,B′(σ) = blockI,B(σ)
for σ ∈ {a′, b′, c′, x′, y′, z′}, hence A′ satisfies conditions (i) and (ii) of Definition 3.3
in B′.

Consider a block B in a valid context (I,B) (there exists h ∈ J1 ; lK such that

B = Bh), and (d, e, f) a triple of I such that (I,B) (d, e, f)
−−−−−−→(I ′,B′) (we write B′ = B′

h).
Then, following Property 3.5, four cases are possible:

• h /∈ {blockI,B(d), blockI,B(e), blockI,B(f)}, hence B′ = B, since, by Prop-
erty 3.5, the relative order of the elements of B remains unchanged after the

3DT-step (d, e, f)
−−−−−−→.

• (d, e, f) is an internal triple of B. We write. B

. . B′

.
(d, e, f)

• ∃A = [(a, b, c), (x, y, z)] such that h = source(A) and (d, e, f) = (x, y, z) (A
is an output of B), see Figure 3.2 (left). We write. B

. . B′

.
A

• ∃A = [(a, b, c), (x, y, z)] such that h = target(A) and (d, e, f) = (x, y, z) (A is
an input of B), see Figure 3.2 (right). We write. B

. . B′

.
A

The graph obtained from a block B by following exhaustively the possible arcs as
defined above (always assuming this block is in a valid context) is called the behavior
graph of B.

3.2. Basic Blocks. We now define four basic blocks: copy, and, or, and var.
They are studied independently in this section, before being assembled in Section 3.3.
Each of these blocks is defined by a word and a set of triples. We distinguish internal
triples, for which all three elements appear in a single block, from external triples,
which are part of an input/output variable, and for which only one or two elements
appear in the block. Note that each external triple is part of an input (resp. output)
variable, which itself must be an output (resp. input) of another block, the other
block containing the remaining elements of the triple.

We then draw the behavior graph of each of these blocks (Figures 3.3 to 3.6):
in each case, we assume that the block is in a valid context, and follow exhaustively
the 3DT-steps that can be applied to it. We then give another graph (Figures 3.7a
to 3.7d), obtained from the behavior graph by contracting all arcs corresponding
to 3DT-steps using internal triples, i.e., we assimilate every pair of nodes linked by
such an arc. Hence, only the arcs corresponding to the activation of an input/output
variable remain. From this second figure, we derive a property describing the behavior
of the block, in terms of activating input and output variables (always provided this

15

↓
sh0

↓
th0

↓
i

d

↓
j

e

↓
k

f

B�h0

� � �

B′�
h0

(d, e, f)

(a)

↓
sh0

↓
th0

↓
sh1

↓
th1

↓
i

x b

↓
j

y a

↓
k

z c

B�h0
B�h1

� a � b � c

B′�
h0

B′�
h1

(x, y, z)

(b)

Fig. 3.1: Effects of a 3DT-step (d, e, f)
−−−−−−→ on an l-block decomposition if (a) (d, e, f)

is an internal triple, or (b) there exists a variable A = [(a, b, c), (x, y, z)] such that
(d, e, f) = (x, y, z). Both figures are in fact derived from Figure 2.1 in the context of
an l-block decomposition.

block is in a valid context). It must be kept in mind that for any variable, it is the
state of the source block which determines whether it can be activated, whereas the
activation itself affects mostly the target block.

3.2.1. The Block copy. This block aims at duplicating a variable: any of the
two output variables can only be activated after the input variable has been activated.
Input variable: A = [(a, b, c), (x, y, z)].
Output variables: A1 = [(a1, b1, c1), (x1, y1, z1)] and A2 = [(a2, b2, c2), (x2, y2, z2)].
Internal triple: (d, e, f).
Definition:

[A1, A2] = copy(A) = a y1 e z d y2 x1 b1 c x2 b2 f

16

· · ·

· · ·

· · ·

source(A). R x b y S

.
. R S

.
. R S

.
· · ·

· · ·

· · ·

target(A). T a U z V c W

.
. T a U b V c W

.
. T V U W

.
· · ·

· · ·

· · ·

AA

(a, b, c)

(x, y, z)

(a, b, c)

Fig. 3.2: The activation of a variable A = [(a, b, c), (x, y, z)] is written with a double
arc in the behavior graph of the source block of A and with a thick arc in the behavior

graph of its target block. It can be followed by the 3DT-step
(a, b, c)
−−−−−→, impacting only

the target block of A. Dot symbols (�) are omitted. We denote by R,S, T, U, V,W
some factors of the source and target blocks of A: the consequence of activating A is
to allow U and V to be swapped in target(A).

Property 3.8. In a block [A1, A2] = copy(A) in a valid context, the possible
orders in which A, A1 and A2 can be activated are (A,A1, A2) and (A,A2, A1).

Proof. See Figures 3.3 and 3.7a.

3.2.2. The Block and. This block aims at simulating a conjunction: the output
variable can only be activated after both input variables have been activated.
Input variables: A1 = [(a1, b1, c1), (x1, y1, z1)] and A2 = [(a2, b2, c2), (x2, y2, z2)].
Output variable: A = [(a, b, c), (x, y, z)].
Internal triple: (d, e, f).
Definition:

A = and(A1, A2) = a1 e z1 a2 c1 z2 d y c2 x b f

Property 3.9. In a block A = and(A1, A2) in a valid context, the possible orders
in which A, A1 and A2 can be activated are (A1, A2, A) and (A2, A1, A).

Proof. See Figures 3.4 and 3.7b.

3.2.3. The Block or. This block aims at simulating a disjunction: the output
variable can be activated as soon as any of the two input variables is activated.
Input variables: A1 = [(a1, b1, c1), (x1, y1, z1)] and A2 = [(a2, b2, c2), (x2, y2, z2)].
Output variable: A = [(a, b, c), (x, y, z)].
Internal triples: (a′, b′, c′) and (d, e, f).
Definition:

A = or(A1, A2) = a1 b
′ z1 a2 d y a

′ x b f z2 c1 e c
′ c2

Property 3.10. In a block A = or(A1, A2) in a valid context, the possible orders
in which A, A1 and A2 can be activated are (A1, A,A2), (A2, A,A1), (A1, A2, A) and
(A2, A1, A).

Proof. See Figures 3.5 and 3.7c.

17

. a y1 e z d y2 x1 b1 c x2 b2 f

.
. a y1 e b d y2 x1 b1 c x2 b2 f

.
. d y2 x1 b1 y1 e x2 b2 f

.
. x2 b2 y2 x1 b1 y1

.. d y2 e x2 b2 f

.
. x1 b1 y1

.. x2 b2 y2

.
. ε

.

A

(a, b, c)

(d, e, f)

A1

A2A1

(d, e, f)

A1A2

Fig. 3.3: Behavior graph of the block [A1, A2] = copy(A). A thick (resp. dou-

ble) arc corresponds to the 3DT-step (x, y, z)
−−−−−−→ for an input (resp. output) variable

[(a, b, c), (x, y, z)].

3.2.4. The Block var. This block aims at simulating a boolean variable: in a
first stage, only one of the two output variables can be activated. The other needs
the activation of the input variable to be activated.

Input variable: A = [(a, b, c), (x, y, z)].

Output variables: A1 = [(a1, b1, c1), (x1, y1, z1)], A2 = [(a2, b2, c2), (x2, y2, z2)].

Internal triples: (d1, e1, f1), (d2, e2, f2), and (a′, b′, c′).

18

. a1 e z1 a2 c1 z2 d y c2 x b f
.

. a1 e b1 a2 c1 z2 d y c2 x b f
.. a1 e z1 a2 c1 b2 d y c2 x b f

.
. a2 e z2 d y c2 x b f . . a1 e z1 d y c1 x b f .. a1 e b1 a2 c1 b2 d y c2 x b f

.
. a2 e b2 d y c2 x b f

. . a1 e b1 d y c1 x b f
.

. d y e x b f
.

. x b y
.

. ε
.

A1

A1

A1

A2

A2

A2

(a1, b1, c1)

(a1, b1, c1)

(a1, b1, c1)

(a2, b2, c2)

(a2, b2, c2)

(a2, b2, c2)

(d, e, f)

A

Fig. 3.4: Behavior graph of the block A = and(A1, A2).

Definition:

[A1, A2] = var(A) = d1 y1 a d2 y2 e1 a
′ e2 x1 b1 f1 c

′ z b′ c x2 b2 f2

Property 3.11. In a block [A1, A2] = var(A) in a valid context, the possible
orders in which A, A1 and A2 can be activated are (A1, A,A2), (A2, A,A1), (A,A1, A2)
and (A,A2, A1).

Proof. See Figures 3.6 and 3.7d. With such a block, if A is not activated
first, one needs to make a choice between activating A1 or A2. Once A is activated,
however, all the remaining output variables are activable.

3.2.5. Assembling the Blocks copy, and, or, var.. Definition 3.12 (As-
sembling of basic blocks). An assembling of basic blocks (I,B) is composed of a
3DT-instance I and an l-block decomposition B obtained by the following process:

19

. a1 b
′ z1 a2 d y a

′ x b f z2 c1 e c
′ c2

.
. a1 b

′ b1 a2 d y a
′ x b f z2 c1 e c

′ c2

.. a1 b
′ z1 a2 d y a

′ x b f b2 c1 e c
′ c2

.
. a1 b

′ b1 a2 d y a
′ x b f b2 c1 e c

′ c2

.. a2 d y a′ x b f z2 b′ e c′ c2 . . a1 b′ z1 c1 e c′ d y a′ x b f .
. a2 d y a

′ x b f b2 b
′ e c′ c2

.. a1 b
′ b1 c1 e c

′ d y a′ x b f

.
. b′ e c′ d y a′ x b f

.. a2 d y e x b f z2 c2 . . a1 d y z1 c1 e x b f .
. a2 d y e x b f b2 c2

. . a1 d y b1 c1 e x b f

.
. d y e x b f

.. a2 x b y z2 c2 . . a1 x b y z1 c1 .
. a2 x b y b2 c2

. . a1 x b y b1 c1

.
. x b y

.. a2 z2 c2

. . a1 z1 c1

.
. a2 b2 c2

. . a1 b1 c1

.
. ε

.

A1 A2

A1A2
(a1, b1, c1) (a2, b2, c2)

(a1, b1, c1) (a2, b2, c2)
A1

(a1, b1, c1)

A2

(a2, b2, c2)

A1

(a1, b1, c1)

A2

(a2, b2, c2)

A1

(a1, b1, c1)

A2

(a2, b2, c2)

A1

(a1, b1, c1)

A2

(a2, b2, c2)

(a′, b′, c′) (a′, b′, c′)

(a′, b′, c′)

(a′, b′, c′) (a′, b′, c′)

(d, e, f) (d, e, f)

(d, e, f)

(d, e, f) (d, e, f)

A A

A

A A

Fig. 3.5: Behavior graph of the block A = or(A1, A2).

20

. d1 y1 a d2 y2 e1 a
′ e2 x1 b1 f1 c

′ z b′ c x2 b2 f2

.
. a′ e2 x1 b1 y1 a d2 y2 c′ z b′ c x2 b2 f2 . . d1 y1 a x1 b1 f1 c′ z b′ c x2 b2 y2 e1 a′ .

. a′ e2 a d2 y2 c′ z b′ c x2 b2 f2 . . d1 y1 a x1 b1 f1 c′ z b′ c e1 a′ .. d1 y1 a d2 y2 e1 a
′ e2 x1 b1 f1 c

′ b b′ c x2 b2 f2

.
. a′ e2 x1 b1 y1 a d2 y2 c′ b b′ c x2 b2 f2 . . d1 y1 a x1 b1 f1 c′ b b′ c x2 b2 y2 e1 a′ .

. a′ e2 a d2 y2 c′ b b′ c x2 b2 f2 . . d1 y1 a x1 b1 f1 c′ b b′ c e1 a′ .. d1 y1 b
′ d2 y2 e1 a

′ e2 x1 b1 f1 c
′ x2 b2 f2

.
. a′ e2 x1 b1 y1 b

′ d2 y2 c
′ x2 b2 f2

. . d1 y1 b
′ x1 b1 f1 c

′ x2 b2 y2 e1 a
′

.
. a′ e2 b′ d2 y2 c′ x2 b2 f2 . . d1 y1 b′ x1 b1 f1 c′ e1 a′ .. d2 y2 e2 x1 b1 y1 x2 b2 f2

. . d1 y1 x2 b2 y2 e1 x1 b1 f1

.
. d2 y2 e2 x2 b2 f2

. . d1 y1 e1 x1 b1 f1

.. x1 b1 y1 x2 b2 y2

.
. x2 b2 y2

. . x1 b1 y1

.
. ε

.

(d1, e1, f1) (d2, e2, f2)

A1 A2

A

A A

A A
(d1, e1, f1) (d2, e2, f2)

A1 A2

(a, b, c)

(a, b, c) (a, b, c)

(a, b, c) (a, b, c)(d1, e1, f1) (d2, e2, f2)

A1 A2

(a′, b′, c′) (a′, b′, c′)

(a′, b′, c′) (a′, b′, c′)

A1 A2(d1, e1, f1)(d2, e2, f2)

(d1, e1, f1)(d2, e2, f2) A1 A2

A1A2

Fig. 3.6: Behavior graph of the block [A1, A2] = var(A).

• Create a set of variables A.
• Define I = 〈Σ, T, ψ〉 by its word representation, as a concatenation of l factors

B�1 B�2 . . . B�l and a set of triples T , where each B�h is one of the blocks
[A1, A2] = copy(A), A = and(A1, A2), A = or(A1, A2) or [A1, A2] = var(A),
with A1, A2, A ∈ A (such that each X ∈ A appears in the input of exactly
one block, and in the output of exactly one other block); and where T is the
union of the set of internal triples needed in each block, and the set of external
triples defined by the variables of A.

Example 3.2. We create a 3DT-instance I with a 2-block decomposition B such

21

. .. [A1, A2] = copy(A)

.

. ε .(a)
A

A1 A2

A2 A1

. .. A = and(A1, A2)

.

. ε .(b)

A1 A2

A2 A1

A

. .. A = or(A1, A2)

.

. ε .()

A1 A2

A2 A1

A A

A

A2 A1

. .. [A1, A2] = var(A)

.

. ε .(d)

A1 A2

A

A A

A1 A2

A2 A1

Fig. 3.7: Abstract representations of the blocks copy, and, or, and var, obtained from
each behavior graph (Figures 3.3, 3.4, 3.5, and 3.6) by contracting arcs corresponding
to internal triples, and keeping only the arcs corresponding to variables. We see, for
each block, which output variables are activable, depending on which variables have
been activated.

22

that (I,B) is an assembling of basic blocks, defined as follows:
• I uses three variables, A = {X1, X2, Y }
• the word representation of I is the concatenation of [X1, X2] = var(Y) and
Y = or(X1, X2)

With variables X1 = [(a1, b1, c1), (x1, y1, z1)], X2 = [(a2, b2, c2), (x2, y2, z2)], Y =
[(a, b, c), (x, y, z)], and the internal triples (d1, e1, f1), (d2, e2, f2), (a

′, b′, c′) for the block
var, and (a′′, b′′, c′′), (d, e, f) for the block or, the word representation of I is the follow-
ing (note that its 2-block decomposition, emphasized with the vertical bars, is (0, 18)):

I=|d1 y1 a d2 y2 e1 a
′ e2 x1 b1 f1 c

′ z b′ c x2 b2 f2|a1 b
′′ z1 a2 d y a

′′ x b f z2 c1 e c
′′ c2|

A possible sequence of 3DT-steps leading from I to ε is given in Figure 3.8, hence I
is 3DT-collapsible.

Lemma 3.13. Let I ′ be a 3DT-instance with an l-block decomposition B′, such
that (I ′,B′) is obtained from an assembling of basic blocks (I,B) after any num-
ber of 3DT-steps, i.e., there exist k ≥ 0 triples (di, ei, fi), i ∈ J1 ; kK, such that

(I,B)
(d1, e1, f1)
−−−−−−−−→ · · ·

(dk, ek, fk)
−−−−−−−−→(I ′,B′).

Then (I ′,B′) is a valid context. Moreover, if the set of variables of (I ′,B′) is
empty, then I ′ is 3DT-collapsible.

Proof. Write A the set of variables used to define (I,B). We write I = 〈Σ, T, ψ〉
and I ′ = 〈Σ′, T ′, ψ′〉. We prove that (I ′,B′) is a valid context by induction on k
(the number of 3DT-steps between (I,B) and (I ′,B′)). We also prove that for each
h ∈ J1 ; lK, B′

h appears as a node in the behavior graph of Bh.
Suppose first that k = 0. We show that the set of external triples of (I,B) =

(I ′,B′) can be partitioned into valid variables, namely into A. Indeed, from the
definition of each block, for each σ ∈ Σ, σ is either part of an internal triple, or
appears in a variable A ∈ A. Conversely, for each A = [(a, b, c), (x, y, z)] ∈ A, b, x
and y appear in the block having A for output, and a, c and z appear in the block
having A for input. Hence (a, b, c) and (x, y, z) are indeed two external triples of (I,B).
Hence each variable satisfies conditions (i) and (ii) of Definition 3.3. Conditions (iii)
and (iv) can be checked in the definition of each block: we have, for each output
variable, y ≺ x, and for each input variable, a ≺ z ≺ c. Finally, each Bh appears in
its own behavior graph.

Suppose now that (I ′,B′) is obtained from (I,B) after k 3DT-steps, k > 0. Then
there exists a 3DT-instance with an l-block decomposition (I ′′,B′′) such that:

(I,B) (d1, e1, f1)
−−−−−−−−→ · · · (dk−1, ek−1, fk−1)

−−−−−−−−−−−−−−→(I ′′,B′′) (dk, ek, fk)
−−−−−−−−→(I ′,B′).

Consider h ∈ J1 ; lK. By induction hypothesis, since B′′
h is in a valid context (I ′′,B′′),

then, depending on (dk, ek, fk), either B
′
h = B′′

h, or there is an arc from B′′
h to B′

h in the
behavior graph. Hence B′

h is indeed a node in this graph. By Property 3.7, we know
that the set of external triples of (I ′,B′) can be partitioned into variables satisfying
conditions (i) and (ii) of Definition 3.3. Hence we need to prove that each variable
satisfies conditions (iii) and (iv): by inspecting each node of the behavior graph, we
verify that x ≺ y ⇒ x ⊳ b ⊳ y (resp. a ≺ z ≺ c) for each output (resp. input) variable
A = [(a, b, c), (x, y, z)] of the block. This concludes the induction proof.

We finally need to consider the case where the set of variables of (I ′,B′) is empty.
Then for each h ∈ J1 ; lK we either have B′

h = ε, or B′
h = ah bh ch for some internal

triple (ah, bh, ch) (in the case where Bh is a block or). Then (I ′,B′) is indeed 3DT-

collapsible: simply follow in any order the 3DT-step
(ah, bh, ch)
−−−−−−−−−→ for each remaining

triple (ah, bh, ch).

23

I = |d1 y1 a d2 y2 e1 a
′ e2 x1 b1 f1 c

′ z b′ c x2 b2 f2 | a1 b
′′ z1 a2 d y a

′′ x b f z2 c1 e c
′′ c2 |

↓ (d1, e1, f1) Internal triple of B1

I10 = | a′ e2 x1 b1 y1 a d2 y2 c
′ z b′ c x2 b2 f2 | a1 b

′′ z1 a2 d y a
′′ x b f z2 c1 e c

′′ c2 |

↓ (x1, y1, z1) Activation of X1

I9 = | a′ e2 a d2 y2 c
′ z b′ c x2 b2 f2 |a1 b

′′ b1 a2 d y a
′′ x b f z2 c1 e c

′′ c2 |

↓ (a1, b1, c1) Internal triple of B2

I8 = | a′ e2 a d2 y2 c
′ z b′ c x2 b2 f2 | a2 d y a

′′ x b f z2 b
′′ e c′′ c2 |

↓ (a′′, b′′, c′′) Internal triple of B2

I7 = | a′ e2 a d2 y2 c
′ z b′ c x2 b2 f2 | a2 d y ex bf z2 c2 |

↓ (d, e, f) Internal triple of B2

I6 = | a′ e2 a d2 y2 c
′ z b′ c x2 b2 f2 | a2 x by z2 c2 |

↓ (x, y, z) Activation of Y

I5 = | a′ e2 a d2 y2 c
′ b b′ cx2 b2 f2 | a2 z2 c2 |

↓ (a, b, c) Internal triple of B1

I4 = |a′ e2 b
′ d2 y2 c′ x2 b2 f2 | a2 z2 c2 |

↓ (a′, b′, c′) Internal triple of B1

I3 = |d2 y2 e2 x2 b2 f2 | a2 z2 c2 |

↓ (d2, e2, f2) Internal triple of B1

I2 = |x2 b2 y2 | a2 z2 c2 |

↓ (x2, y2, z2) Activation of X2

I1 = | ε |a2 b2 c2 |

↓ (a2, b2, c2) Internal triple of B2

I0 = | ε | ε | = ε

Fig. 3.8: 3DT-collapsibility of the assembling of basic blocks [X1, X2] = var(Y) and
Y = or(X1, X2) from Example 3.2. We use the same notations as in Example 3.1.

3.3. Construction. Let φ be a boolean formula over the boolean variables
x1, . . . , xm, given in conjunctive normal form: φ = C1 ∧C2 ∧ . . .∧Cγ . Each clause Cc

(c ∈ J1 ; γK) is the disjunction of a number of literals, xi or ¬xi, i ∈ J1 ; mK. We write
qi (resp. q̄i) for the number of occurrences of the literal xi (resp. ¬xi) in φ, i ∈ J1 ; mK.
We also write k(Cc) the number of literals appearing in the clause Cc, c ∈ J1 ; γK.
We can assume that γ ≥ 2, that for each c ∈ J1 ; γK, we have k(Cc) ≥ 2, and that
for each i ∈ J1 ; mK, qi ≥ 2 and q̄i ≥ 2. (Otherwise, we can always add clauses of
the form (xi ∨ ¬xi) to φ, or duplicate the literals appearing in the clauses Cc such
that k(Cc) = 1.) In order to distinguish variables of an l-block decomposition from

24

x1, . . . , xm, we always use the term boolean variable for the latter.
The 3DT-instance Iφ is defined as an assembling of basic blocks: we first define a

set of variables, then we list the blocks of which the word representation of Iφ is the
concatenation. It is necessary that each variable is part of the input (resp. the output)
of exactly one block. Note that the relative order of the blocks is of no importance.
We simply try, for readability reasons, to ensure that the source of a variable appears
before its target, whenever possible. We say that a variable represents a term, i.e.,
a literal, clause or formula, if it can be activated if and only if this term is true (for
some fixed assignment of the boolean variables), or if φ is satisfied by this assignment.
We also say that a block defines a variable if it is the source block of this variable.

The construction of Iφ is done as follows (see Figure 3.9 for an example):
• Create a set of variables:

– For each i ∈ J1 ; mK, create qi + 1 variables representing xi: Xi and X
j
i ,

j ∈ J1 ; qiK, and q̄i+1 variables representing ¬xi: X̄i and X̄
j
i , j ∈ J1 ; q̄iK.

– For each c ∈ J1 ; γK, create a variable Γc representing the clause Cc.
– Create m+1 variables, Aφ and Ai

φ, i ∈ J1 ; mK, representing the formula
φ. We will show that Aφ has a key role in the construction: it can
be activated only if φ is satisfiable, and, once activated, it allows every
remaining variable to be activated.

– We also use a number of intermediate variables, with names U j
i , Ū

j
i , V

i
c ,

Wc, and Yi.
• Start with an empty 3DT-instance ε, and add blocks successively:

– For each i ∈ J1 ; mK, add the following qi + q̄i − 1 blocks defining the
variables Xi, X

j
i (j ∈ J1 ; qiK), and X̄i, X̄

j
i (j ∈ J1 ; q̄iK):

[Xi, X̄i] = var(Ai
φ)

[X1
i , U

2
i] = copy(Xi) [X̄1

i , Ū
2
i] = copy(X̄i)

[X2
i , U

3
i] = copy(U2

i) [X̄2
i , Ū

3
i] = copy(Ū2

i)

...
... (∗)

[Xqi−2
i , Uqi−1

i] = copy(Uqi−2
i)

...

[Xqi−1
i , Xqi

i] = copy(Uqi−1
i) [X̄ q̄i−2

i , Ū q̄i−1
i] = copy(Ū q̄i−2

i)

[X̄ q̄i−1
i , X̄ q̄i

i] = copy(Ū q̄i−1
i)

– For each c ∈ J1 ; γK, let Cc = λ1∨λ2∨ . . .∨λk, with k = k(Cc). Consider
p ∈ J1 ; kK. There exist integers i, j such that λp is the j-th occurrence

of a literal xi or ¬xi, we respectively write Lp = Xj
i or Lp = X̄j

i . We
add the following k − 1 blocks defining Γc:

V 2
c = or(L1, L2)

V 3
c = or(V 2

c , L3)

... (∗∗)

V k−1
c = or(V k−2

c , Lk−1)

Γc = or(V k−1
c , Lk)

– Since φ = C1 ∧ C2 ∧ . . . ∧ Cγ , the formula variable Aφ is defined by the

25

following γ − 1 blocks:

W2 = and(Γ1,Γ2)

W3 = and(W2,Γ3)

... (∗∗∗)

Wγ−1 = and(Wγ−2,Γγ−1)

Aφ = and(Wγ−1,Γγ)

– The m copies A1
φ, . . . , A

m
φ of Aφ are defined with the following m − 1

blocks:

[A1
φ, Y2] = copy(Aφ)

[A2
φ, Y3] = copy(Y2)

... (∗∗∗∗)

[Am−2
φ , Ym−1] = copy(Ym−2)

[Am−1
φ , Am

φ] = copy(Ym−1)

3.4. The Main Result. Theorem 3.14. Let φ be a boolean formula, and Iφ
the 3DT-instance defined in Section 3.3. The construction of Iφ is polynomial in the
size of φ, and φ is satisfiable iff Iφ is 3DT-collapsible.

Proof. The polynomial time complexity of the construction of Iφ is trivial. We
use the same notations as in the construction, with B the block decomposition of Iφ.
One can easily check that each variable in (∗), (∗∗), (∗∗∗), and (∗∗∗∗) has exactly one
source block and one target block. Then, by Lemma 3.13, we know that (Iφ,B) is a
valid context, and remains so after any number of 3DT-steps, hence Properties 3.8,
3.9, 3.10, and 3.11 are satisfied by respectively each block copy, and, or and var, of Iφ.

⇒ Assume first that φ is satisfiable. Consider a truth assignment satisfying φ:
let P be the set of indices i ∈ J1 ; mK such that xi is assigned to true. Starting from
Iφ, we can follow a path of 3DT-steps that activates all the variables of Iφ in the
following order:

• For i ∈ J1 ; mK, if i ∈ P , activate Xi in the corresponding block var in (∗).
Then, with the blocks copy, activate successively all intermediate variables
U j
i for j = 2 to qi − 1, and variables Xj

i for j ∈ J1 ; qiK.
Otherwise, if i /∈ P , activate X̄i, all intermediate variables Ū j

i for j = 2 to

q̄i − 1, and the variables X̄j
i for j ∈ J1 ; q̄iK

• For each c ∈ J1 ; γK, let Cc = λ1 ∨ λ2 ∨ . . . ∨ λk, with k = k(Cc). Since Cc is
true with the selected truth assignment, at least one literal λp0

, p0 ∈ J1 ; kK, is
true. If λp0

is the j-th occurrence of a literal xi or ¬xi, then the corresponding

variable Lp0
(Lp0

= Xj
i or Lp0

= X̄j
i) has been activated previously. Using

the blocks or in (∗∗), we activate successively each intermediate variable V p
c

for p = p0, . . . , k − 1, and finally we activate the variable Γc.
• Since all variables Γc, c ∈ J1 ; γK, have been activated, using the blocks and

in (∗∗∗), we activate each intermediate variable Wc for c = 2 to c = γ − 1,
and the formula variable Aφ.

26

varopyX1

X1

1
X2

1

opyX̄1

X̄1
1 X̄2

1

varopyX2

X1
2 X2

2

opyX̄2

X̄1

2
X̄2

2

varopyX3

X1

3
X2

3

opyX̄3

X̄1
3 X̄2

3

varopyX4

X1
4 X2

4

opyX̄4

X̄1

4
X̄2

4

or orV 2

1 or or orV 2
3

or orV 2

4 or or orV 2

6

andΓ1 Γ2 andW2

Γ3 andW3

Γ4 andW4

Γ5 andW5

Γ6

opy AφopyY2 opyY3

A1
φ

A2
φ

A3
φ

A4
φ

Fig. 3.9: Schematic diagram of the blocks defining Iφ for φ = (x1 ∨ x2 ∨ ¬x3) ∧
(x1 ∨ ¬x2)∧ (¬x1 ∨ x2 ∨ ¬x4)∧ (¬x1 ∨ x3 ∨ x4)∧ (x3 ∨ ¬x4)∧ (¬x2 ∨ ¬x3 ∨ x4). For
each variable, we draw an arc between its source and target block. Note that φ is
satisfiable (e.g., with the assignment x1 = x3 = true and x2 = x4 = false). A set
of variables that can be activated before Aφ is in bold, they correspond to the terms
being true in φ for the assignment x1 = x3 = true and x2 = x4 = false.

• With the blocks copy in (∗∗∗∗), we activate successively all the intermediate
variables Yi, i ∈ J2 ; m− 1K and the m copies A1

φ, . . . , A
m
φ of Aφ.

• For i ∈ J1 ; mK, since the variable Ai
φ has been activated, we activate in the

block var of (∗) the remaining variable Xi or X̄i. We also activate all its
copies and corresponding intermediate variables U j

i or Ū j
i .

• For c ∈ J1 ; γK, in (∗∗), since all variables Lp have been activated, we activate
the remaining intermediate variables V p

c .

27

• At this point, every variable has been activated. Using again Lemma 3.13,
we know that the resulting instance is 3DT-collapsible, and can be reduced
down to the empty 3DT-instance ε.

Hence Iφ is 3DT-collapsible.
⇐ Assume now that Iφ is 3DT-collapsible: we consider a sequence of 3DT-steps

reducing Iφ to ε. This sequence gives a total order on the set of variables: the order
in which they are activated. We write Q for the set of variables activated before Aφ,
and P ⊆ J1 ; mK for the set of indices i such that Xi ∈ Q (see the variables in bold
in Figure 3.9). We show that the truth assignment defined by (xi = true ⇔ i ∈ P)
satisfies the formula φ.

• For each i ∈ J1 ; mK, Ai
φ cannot belong to Q, using the property of the block

copy in (∗∗∗∗) (each Ai
φ can only be activated after Aφ). Hence, with the

block var in (∗), we have Xi /∈ Q∨X̄i /∈ Q. Moreover, with the block copy, we
have

∀1 ≤ j ≤ qi, Xj
i ∈ Q⇒ Xi ∈ Q (a)

∀1 ≤ j ≤ q̄i, X̄j
i ∈ Q⇒ X̄i ∈ Q⇒ Xi /∈ Q (b)

• Since Aφ is defined in a block Aφ = and(Wγ−1,Γγ) in (∗∗∗), we necessarily
have Wγ−1 ∈ Q and Γγ ∈ Q. Likewise, since Wγ−1 is defined by Wγ−1 =
and(Wγ−2,Γγ−1), we also have Wγ−2 ∈ Q and Γγ−1 ∈ Q. Applying this
reasoning recursively, we have Γc ∈ Q for each c ∈ J1 ; γK.

• For each c ∈ J1 ; γK, consider the clause Cc = λ1∨λ2∨. . .∨λk, with k = k(Cc).
Using the property of the block or in (∗∗), there exists some p0 ∈ J1 ; kK
such that the variable Lp0

is activated before Γc: hence Lp0
∈ Q. If the

corresponding literal λp0
is the j-th occurrence of xi (respectively, ¬xi), then

Lp0
= Xj

i (resp., Lp0
= X̄j

i), thus by (a) (resp. (b)), Xi ∈ Q (resp., Xi /∈ Q),
and consequently i ∈ P (resp., i /∈ P). In both cases, the literal λp0

is true
in the truth assignment defined by (xi = true⇔ i ∈ P).

If Iφ is 3DT-collapsible, we have found a truth assignment such that at least one
literal is true in each clause of the formula φ, and thus φ is satisfiable.

4. Sorting by Transpositions Is NP-Hard. As noted previously, there is no
guarantee that any 3DT-instance I has an equivalent permutation π. However, with
the following theorem, we show that such a permutation can be found in the special
case of assemblings of basic blocks, which is the case we are interested in, in order to
complete our reduction.

Theorem 4.1. Let I be a 3DT-instance of span n with B an l-block decomposition
such that (I,B) is an assembling of basic blocks. Then there exists a permutation πI ,
computable in polynomial time in n, such that I ∼ πI .

An example of the construction of πI for the 3DT-instance defined in Example 3.2
is given in Figure 4.1.

The rough idea of the proof is as follows. Each block Bh of B (corresponding to
positions Jsh + 1 ; thK) is assigned a unique interval of integers Jph + 1 ; qhK. Then
we create a permutation of Jph + 1 ; qhK, depending on the kind of the block, and
πI is obtained as the concatenation of these permutations. However, external triples
(in variables) need a special treatment: when a variable is activated, exactly three
integers are moved from one block to another. Hence, for each variable, some integers
which should appear in the target block are originally present in the source block.
In other words, the part of πI corresponding to each block has three extra integers

28

for each output variable, and three missing integers for each input variable. We keep
track of elements which are displaced with two functions, α and β: for a variable A,
the three affected integers are α(A) + 1, α(A) + 2 and β(A) + 1.

Proof. LetA be the set of variables of the l-block decomposition B of I = 〈Σ, T, ψ〉.
Let n be the span of I, and L its domain. Note that L = J1 ; nK. For any h ∈ J1 ; lK,
we write ni(Bh) (resp. no(Bh)) for the number of input (resp. output) variables of
Bh. We also define two integers ph, qh by:

p1 = 0

∀h ∈ J1 ; lK ,qh = ph + th − sh + 3(ni(Bh)− no(Bh))

∀h ∈ J2 ; lK ,ph = qh−1

The permutation πI will be defined such that ph and qh have the following property
for any h ∈ J1 ; lK: πI(sh) = ph, and πI(th) = qh.

We also define two applications α, β over the set A of variables. The permutation
πI will be defined so that, for any variable A = [(a, b, c), (x, y, z)], we have πI(ψ(a)−
1) = α(A) and πI(ψ(z) − 1) = β(A). In order to have this property, α and β are
defined as follows.

For each h ∈ J1 ; lK:
• If Bh is a block of the kind [A1, A2] = copy(A), define

α(A) = ph, β(A) = ph + 4.

• If Bh is a block of the kind A = and(A1, A2), define

α(A1) = ph, β(A1) = ph + 7, α(A2) = ph + 3, β(A2) = ph + 9.

• If Bh is a block of the kind A = or(A1, A2), define

α(A1) = ph, β(A1) = ph + 13, α(A2) = ph + 3, β(A2) = ph + 16.

• If Bh is a block of the kind [A1, A2] = var(A), define

α(A) = ph + 5, β(A) = ph + 9.

Note that for every A ∈ A, α(A) and β(A) are defined once and only once,
depending on the kind of the block Btarget(A). As already noted, the permutation πI is
designed in such a way that the image by πI of an interval Jsh + 1 ; thK is essentially the
interval Jph + 1 ; qhK. However, there are exceptions: namely, for each variable A, the
integers α(A)+1, α(A)+2, β(A)+1, which are included in

q
ptarget(A) + 1 ; qtarget(A)

y
,

are in the image of
q
ssource(A) + 1 ; tsource(A)

y
. This is formally described as follows.

For each h ∈ J1 ; kK we define a set Ph by:

Ph = Jph + 1 ; qhK ∪
⋃

A output of Bh

{α(A) + 1, α(A) + 2, β(A) + 1}

−
⋃

A input of Bh

{α(A) + 1, α(A) + 2, β(A) + 1}

We note that the sets {α(A)+1, α(A)+2, β(A)+1} are disjoint for different variables
A, and are each included in their respective interval

q
ptarget(A) + 1 ; qtarget(A)

y
. Hence

for any h ∈ J1 ; lK, we have |Ph| = qh − ph + 3no(Bh)− 3ni(Bh) = th − sh. Moreover,
the sets Ph, h ∈ J1 ; lK, form a partition of the set J1 ; nK.

29

We can now create the permutation πI . The image of 0 is 0, and for each h0 from
1 to l, we define the restriction of πI over Jsh0

+ 1 ; th0
K as a permutation of Ph0

, with
the constraint that πI(th0

) = qh0
. Note that, if this condition is fulfilled, then we

can assume πI(sh0
) = ph0

, since, if h0 = 1, πI(s1) = πI(0) = 0 = p1, and if h0 > 1,
πI(sh0

) = πI(th0−1) = qh0−1 = ph0
.

The definition of πI over each kind of block is given in Table 4.1. This table is ob-
tained by applying the following rules, until πI(u) is defined for all u ∈ Jsh0

+ 1 ; th0
K.

For all input variable of Bh0
A = [(a, b, c), (x, y, z)],

πI(ψ(z)) = α(A) + 3 (R1)

πI(ψ(c)) = β(A) + 2 (R2)

For all output variable of Bh0
A = [(a, b, c), (x, y, z)],

πI(ψ(x)) = β(A) + 1 (R3)

πI(ψ(b)) = α(A) + 1 (R4)

∀u ∈ Jsh0
+ 1 ; th0

K such that succ−1
Iφ

(u) ∈ Jsh0
+ 1 ; th0

K
πI(u) = πI(succ

−1
I (u)− 1) + 1 (R5)

We can see in Table 4.1 that rules (R1) and (R2) indeed apply to every input
variable, and rules (R3) and (R4) apply to every output variable. Moreover:

Rule (R5) applies to every u ∈ Jsh0+1 ; th0
K such that

u /∈ {ψ(b), ψ(c), ψ(x), ψ(z) | A = [(a, b, c), (x, y, z)] is input/output of Bh0
}.

(P1)

A simple case by case analysis shows that the following properties are also satisfied:

πI defines a bijection from Jsh0
+ 1 ; th0

K to Ph0
such that πI(th0

) = qh0
(P2)

For all input variable of Bh0
A = [(a, b, c), (x, y, z)],

πI(ψ(a)− 1) = α(A) (P3)

πI(ψ(z)− 1) = β(A) (P4)

For all output variable of Bh0
A = [(a, b, c), (x, y, z)],

πI(ψ(y)− 1) = α(A) + 2 (P5)

πI(ψ(b)− 1) = β(A) + 1 (P6)

Now that we have defined the permutation πI , we need to show that πI is equiva-
lent to I. Following Definition 2.8, we have πI(0) = 0. Then, L = J1 ; nK, so let us fix
any u ∈ J1 ; nK, and verify that πI(u) = πI(succ

−1
I (u) − 1) + 1. Let h be the integer

such that u ∈ Jsh + 1 ; thK.
First, consider the most general case, and assume that there is no variable A =

[(a, b, c), (x, y, z)] such that u ∈ {ψ(b), ψ(c), ψ(x), ψ(z)}. Note that this case includes
u = ψ(d), where d is part of some internal triple. Then, by Property (P1), we know
that Rule (R5) applies to u, hence we directly have πI(u) = πI(succ

−1
I (u)− 1) + 1.

Suppose now that there exists some variable A = [(a, b, c), (x, y, z)] such that
u ∈ {ψ(b), ψ(c), ψ(x), ψ(z)}. Then Rules (R1) and (R2), and Properties (P3) and (P4)
apply in the target block of A. Also, Rules (R3) and (R4), and Properties (P5)

30

Table 4.1: Definition of πI over an interval Jsh0
+ 1 ; th0

K, where Bh0
is one of the

blocks copy, and, or, var. We write s = sh0
and p = ph0

. We give the line ψ−1(u)
as a reminder of the definition of each block. We also add a column for u = s as a
reminder of the fact that πI(s) = p.

• If Bh0
is a block of the kind [A1, A2] = copy(A), we write α1, β1, α2, β2 for

the respective values of α(A1), β(A1), α(A2), β(A2).

u = s s+1 s+2 s+3 s+4 s+5 s+6 s+7 s+8 s+9
πI(u) = p α1+2 p+8 p+4 p+3 α2+2 p+7 β1+1 α1+1 p+6
ψ−1(u)= a y1 e z d y2 x1 b1 c

u =s+10 s+11 s+12
πI(u) =β2+1 α2+1 p+9
ψ−1(u)= x2 b2 f

• If Bh0
is a block of the kind A = and(A1, A2), we write α, β for the respective

values of α(A), β(A).

u = s s+1 s+2 s+3 s+4 s+5 s+6 s+7 s+8 s+9
πI(u) = p p+14 p+7 p+3 p+13 p+9 p+6 α+2 p+12 p+11
ψ−1(u)= a1 e z1 a2 c1 z2 d y c2

u =s+10 s+11 s+12
πI(u) = β+1 α+1 p+15
ψ−1(u)= x b f

• If Bh0
is a block of the kind A = or(A1, A2), we write α, β for the respective

values of α(A), β(A).

u = s s+1 s+2 s+3 s+4 s+5 s+6 s+7 s+8 s+9
πI(u) = p p+7 p+13 p+3 p+9 α+2 p+12 p+11 β+1 α+1
ψ−1(u)= a1 b′ z1 a2 d y a′ x b

u =s+10 s+11 s+12 s+13 s+14 s+15
πI(u) =p+16 p+6 p+15 p+10 p+8 p+18
ψ−1(u)= f z2 c1 e c′ c2

• If Bh0
is a block of the kind [A1, A2] = var(A), we write α1, β1, α2, β2 for the

respective values of α(A1), β(A1), α(A2), β(A2).

u = s s+1 s+2 s+3 s+4 s+5 s+6 s+7 s+8 s+9
πI(u) = p α1+2 p+5 p+3 α2+2 p+12 p+1 p+14 p+4 β1+1
ψ−1(u)= d1 y1 a d2 y2 e1 a′ e2 x1

u =s+10 s+11 s+12 s+13 s+14 s+15 s+16 s+17 s+18
πI(u) =α1+1 p+13 p+9 p+8 p+2 p+11 β2+1 α2+1 p+15
ψ−1(u)= b1 f1 c′ z b′ c x2 b2 f2

31

[X1, X2] = var(Y) Y = or(X1, X2)

Input variable (target of): Y Input variables (target of): X1, X2

Output variables (source of): X1, X2 Output variable (source of): Y

s1 = 0 t1 = 18
p1 = 0 q1 = p1 + 18− 3 = 15

s2 = 18 t2 = 33
p2 = 15 q2 = p2 + 15 + 3 = 33

α(Y) = p1 + 5 = 5 α(X1) = p2 = 15 α(X2) = p2 + 3 = 18
β(Y) = p1 + 9 = 9 β(X1) = p2 + 13 = 28 β(X2) = p2 + 16 = 31

Definition of πI over Js1 + 1 ; t1K:
u = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 . . .

πI(u) = 0 17 5 3 20 12 1 14 4 29 16 13 9 8 2 11 32 19 15 . . .
ψ−1(u) = d1 y1 a d2 y2 e1 a

′ e2 x1 b1 f1 c′ z b′ c x2 b2 f2 . . .

over Js2 + 1 ; t2K:
u = . . . 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

πI(u) = . . . 22 28 18 24 7 27 26 10 6 31 21 30 25 23 33
ψ−1(u) = . . . a1 b

′′ z1 a2 d y a′′ x b f z2 c1 e c′′ c2

Fig. 4.1: Creation of a permutation πI equivalent to the assembling of basic blocks
I = 〈Σ, T, ψ〉 of span 33 defined in Example 3.2, using the proof of Theorem 4.1.

and (P6) apply in the source block of A. Combining all these equations together, we
have:

πI(ψ(b)) = α(A) + 1 = πI(ψ(a)− 1) + 1 by (R3) and (P3)

πI(ψ(c)) = β(A) + 2 = πI(ψ(b)− 1) + 1 by (R2) and (P5)

πI(ψ(x)) = β(A) + 1 = πI(ψ(z)− 1) + 1 by (R4) and (P4)

πI(ψ(z)) = α(A) + 3 = πI(ψ(y)− 1) + 1 by (R1) and (P6)

For u = ψ(b) (resp. ψ(c), ψ(x), ψ(z)), we have succ−1
I (u) = ψ(a) (resp. ψ(b), ψ(z), ψ(y)).

Hence, in all four cases, we have πI(u) = πI(succ
−1
I (u)− 1) + 1, which completes the

proof that πI is equivalent to I.

With the previous theorem, we now have all the necessary ingredients to prove
the main result of this paper.

Theorem 4.2. The Sorting by Transpositions problem is NP-hard.
Proof. The reduction from SAT is as follows: given any instance φ of SAT, create

a 3DT-instance Iφ, being an assembling of basic blocks, which is 3DT-collapsible iff
φ is satisfiable (Theorem 3.14). Then create a 3-permutation πIφ equivalent to Iφ
(Theorem 4.1). The above two steps can be done in polynomial time. Finally, set
k = db(πIφ)/3 = n/3. We then have:

φ is satisfiable ⇔ Iφ is 3DT-collapsible

⇔ dt(πIφ) = k (by Theorem 2.12, since πIφ ∼ Iφ)

⇔ dt(πIφ) ≤ k (by Property 1.7).

32

Corollary 4.3. The following decision problem from [10] is NP-hard: given a
permutation π of J0 ; nK, is the equality dt(π) = db(π)/3 satisfied?

Conclusion. In this paper, we have proved that the Sorting by Transpo-
sitions problem is NP-hard, thus answering a long-standing open question. How-
ever, a number of questions remain open. For instance, does this problem admit a
polynomial-time approximation scheme? We note that the reduction we have pro-
vided does not answer this question, since it is not a gap-preserving reduction. In-
deed, in our reduction, if a formula φ is not satisfiable, it can be seen that we have
dt(πIφ) = db(πIφ)/3 + 1.

Also, do there exist some relevant parameters for which the problem is fixed pa-
rameter tractable? A parameter that comes to mind when dealing with the transpo-
sition distance is the length of the exchanged factors (i.e., the value max{j− i, k− j}
for a transposition τi,j,k). Does the problem become tractable if this parameter is
bounded? In fact, the answer to this question is negative if only the length of the
smallest factor, min{j − i, k − j}, is bounded: in our reduction, this parameter is
upper bounded by 6 for every transposition needed to sort πIφ , independently of the
formula φ.

REFERENCES

[1] A. Amir, Y. Aumann, G. Benson, A. Levy, O. Lipsky, E. Porat, S. Skiena, and U. Vishne.
Pattern matching with address errors: Rearrangement distances. J. Comput. Syst. Sci.,
75(6):359–370, 2009.

[2] A. Amir, Y. Aumann, P. Indyk, A. Levy, and E. Porat. Efficient computations of ℓ1 and ℓ∞
rearrangement distances. In Nivio Ziviani and Ricardo A. Baeza-Yates, editors, SPIRE,
volume 4726 of Lecture Notes in Computer Science, pages 39–49. Springer, 2007.

[3] V. Bafna and P. A. Pevzner. Sorting permutations by transpositions. In SODA, pages 614–623,
1995.

[4] V. Bafna and P. A. Pevzner. Sorting by transpositions. SIAM J. Discrete Math., 11(2):224–240,
1998.

[5] M. Benôıt-Gagné and S. Hamel. A new and faster method of sorting by transpositions. In
B. Ma and K. Zhang, editors, CPM, volume 4580 of Lecture Notes in Computer Science,
pages 131–141. Springer, 2007.

[6] D. Bongartz. Algorithmic Aspects of Some Combinatorial Problems in Bioinformatics. PhD
thesis, RWTH Aachen University, Germany, 2006.

[7] L. Bulteau, G. Fertin, and I. Rusu. Sorting by transpositions is difficult. In L. Aceto, M. Hen-
zinger, and J. Sgall, editors, ICALP (1), volume 6755 of Lecture Notes in Computer Sci-
ence, pages 654–665. Springer, 2011.

[8] B. Chitturi and I. H. Sudborough. Bounding prefix transposition distance for strings and
permutations. In HICSS, page 468. IEEE Computer Society, 2008.

[9] D. A. Christie. Sorting permutations by block-interchanges. Inf. Process. Lett., 60(4):165–169,
1996.

[10] D. A. Christie. Genome Rearrangement Problems. PhD thesis, University of Glasgow, Scotland,
1998.

[11] D. A. Christie and R. W. Irving. Sorting strings by reversals and by transpositions. SIAM J.
Discrete Math., 14(2):193–206, 2001.

[12] G. Cormode and S. Muthukrishnan. The string edit distance matching problem with moves.
In SODA, pages 667–676, 2002.

[13] Z. Dias and J. Meidanis. Sorting by prefix transpositions. In A. H. F. Laender and A. L.
Oliveira, editors, SPIRE, volume 2476 of Lecture Notes in Computer Science, pages 65–
76. Springer, 2002.

[14] I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting by transpositions.
IEEE/ACM Trans. Comput. Biology Bioinform., 3(4):369–379, 2006.

[15] H. Eriksson, K. Eriksson, J. Karlander, L. J. Svensson, and J. Wästlund. Sorting a bridge
hand. Discrete Mathematics, 241(1-3):289–300, 2001.

33

[16] J. Feng and D. Zhu. Faster algorithms for sorting by transpositions and sorting by block
interchanges. ACM Transactions on Algorithms, 3(3), 2007.

[17] G. Fertin, A. Labarre, I. Rusu, É. Tannier, and S. Vialette. Combinatorics of genome rear-
rangements. The MIT Press, 2009.

[18] Q.-P. Gu, S. Peng, and Q. M. Chen. Sorting permutations and its applications in genome
analysis. Lectures on Mathematics in the Life Science, 26:191–201, 1999.

[19] S. A. Guyer, L. S. Heath, and J. P. Vergara. Subsequence and run heuristics for sorting by
transpositions. Technical report, Virginia State University, 1997.

[20] T. Hartman and R. Shamir. A simpler and faster 1.5-approximation algorithm for sorting by
transpositions. Inf. Comput., 204(2):275–290, 2006.

[21] A. Labarre. New bounds and tractable instances for the transposition distance. IEEE/ACM
Trans. Comput. Biology Bioinform., 3(4):380–394, 2006.

[22] A. Labarre. Edit distances and factorisations of even permutations. In D. Halperin and
K. Mehlhorn, editors, ESA, volume 5193 of Lecture Notes in Computer Science, pages
635–646. Springer, 2008.

[23] P.A. Pevzner and M.S. Waterman. Open combinatorial problems in computational molecular
biology. In Proceedings of the Third Israel Symposium on the Theory of Computing and
Systems, pages 158–173. IEEE, 1995.

[24] X.-Q. Qi. Combinatorial Algorithms of Genome Rearrangements in Bioinformatics. PhD
thesis, University of Shandong, China, 2006.

[25] A. J. Radcliffe, A. D. Scott, and A. L. Wilmer. Reversals and transpositions over finite alpha-
bets. SIAM J. Discret. Math., 19:224–244, May 2005.

[26] D. Shapira and J. A. Storer. Edit distance with move operations. In A. Apostolico and
M. Takeda, editors, CPM, volume 2373 of Lecture Notes in Computer Science, pages 85–
98. Springer, 2002.

34

