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ABSTRACT

Texture segmentation constitutes a classical yet crucial task in image

processing. In many applications of very different natures (biomedi-

cal, geophysics,...) textures are naturally defined in terms of their lo-

cal regularity fluctuations, which can be quantified as the variations

of local Hölder exponents. Furthermore, such images are often nat-

urally embedded in the class of piece-wise constant local regularity

functions. The present contribution aims at proposing and assessing

a segmentation procedure for this class of images. Its originality is

twofold: First, local regularity is estimated using wavelet leaders,

a novel multiresolution quantity recently introduced for multifrac-

tal analysis but barely used in local regularity measurement, com-

parisons against wavelet coefficient based estimation are conducted;

Second, the challenging minimal partition problem underlying seg-

mentation is convexified and conducted within a customized proxi-

mal framework. The estimation of the number of regions and their

target regularity is obtained from a total-variation estimate that en-

ables the actual use of proximal minimization for texture segmenta-

tion. Performance is assessed and illustrated on synthetic textures.

Index Terms— Texture segmentation, piece-wise constant, lo-

cal regularity, wavelet leaders, proximal minimization.

1. MOTIVATION, RELATED WORKS, CONTRIBUTIONS

Texture segmentation from local regularity fluctuations. Tex-

ture characterization and segmentation constitutes a challenging task

in image processing (see e.g., [1, 2, 3, 4, 5] and references therein).

In a variety of applications of possibly very different natures, the

relevant information characterizing textures, and thus conveying the

information to be analyzed, consists of the fluctuations across space

of their local regularity. This is notably the case for biomedical tex-

tures such as bone [6] or breast [7] (see also [8] for a review), for

surface imagery [9], for satellite imagery [10], or for image registra-

tion [11, 12].

Often, local regularity is assessed in terms of the so-called

Hölder exponent h(x) [13]. In essence, h(x) consists of the power

law exponent quantifying the decrease of the powers of local fluc-

tuations, measured via multiresolution quantities TX(a, x) (e.g.,

wavelet coefficients) around a given space position x when the

analysis scales a goes towards fine scales, i.e., ETX(a, x)2 ≃

C(x)a2h(x) when a→ 0.

Related works: Hölder exponent estimation and segmentation.

Local regularity based analysis of textures can naturally be organized

into two sub-questions: i) Accurately estimating the Hölder expo-

nents for each location; ii) Splitting the image into regions where es-

timates can be considered constant, so as to achieve texture segmen-

tation. Though these issues have received significant efforts over the

past two decades for 1D signals (cf. e.g., [14, 15]), much less contri-

butions were dedicated to 2D fields or images (see a contrario [12]

and references therein).

Estimation relies on two key choices, with crucial impact on per-

formance: Multiresolution quantities TX(a, x) from which the h(x)
are measured; Range of analysis scales a to be practically involved

in the estimation. For multiresolution quantities, most works con-

ducted so far relied on either increments, oscillations or wavelet co-

efficients. Bilinear time-scale representations were also used [15].

The choice of the range of scales is naturally framed into a classi-

cal bias-variance trade-off. While theoretically, estimation should

be conducted in the limit of fine scales, practically a finite range of

scales am ≤ a ≤ aM has to be used. Choosing a large range of

scales yields smaller estimation variance at the price of increasing

the bias because the TX(a, x) at large scales are less well localized

(cf. e.g., [16, 15]).

For segmentation, i.e., to detect changes amongst Hölder expo-

nents measured at different locations, this trade-off also turns crucial.

This is why both estimation and change detection have mostly been

conducted in model dependent frameworks. Fractional Brownian

motion (fBm) [17], the paradigm model for scale invariance, implies

a constant and unique Hölder exponent across sample fields. Mul-

tifractional Brownian motion extends fBm by allowing piece-wise

smooth variations of h(x) across space (while preserving joint Gaus-

sianity) [18] and constitutes essentially the only model with space-

dependent h that has been studied and used. The problem has mostly

been addressed for 1D signals and barely for images (see a contrario

[12, 7] which aimed at identifying particular points in the image de-

fined by specific values of h(x)). Furthermore, to our knowledge,

little work has been published aiming at detecting changes in h(x)
in a context where an exact model is not a priori assumed (see a

contrario [15] for 1D signals).

With respect to the generic issue of image segmentation, effi-

cient variational methods were proposed [19, 20, 21, 22, 23, 24],

however none of them guarantees convergence towards a global

minimum, and thus, obtained solutions strongly depend on ini-

tialization. Instead, a convex relaxation of the minimal partition

techniques were proposed in [25, 26]. In [26], the algorithmic so-

lution is based on a Arrow-Hurwicz type primal-dual algorithm but

requires inner iterations and upper boundedness of the primal energy

in order to improve convergence speed. Also, a proximal solution

in a context of disparity estimation was proposed in [27]. Alter-

natively, recent techniques are framed into variational principles,

making use of comparisons between pairs of neighboring patches

[28, 3]. Notably, in [28], a convex relaxation of the original problem

was envisaged so as to ensure to find the global minimizer, while

in [3] a more general but non-convex framework was proposed,

which yields good results at the price of a well-chosen initialization.

However, the computational cost is a limitation of these methods.



Goals and contributions. In this context, the first originality of

the present contribution consists in performing region-segmentation

of images, that excludes the recourse to a fully parametric model for

the data, but instead only assumes that images belong to the class of

piecewise constant Hölder exponent functions. Its second originality

lies in a twofold departure from earlier works: For multiresolution

quantities, wavelet leaders are chosen and shown to yield improved

statistical performance for Hölder exponent estimation, compared to

the classical wavelet coefficients (cf. Section 2); For segmentation,

using estimated Hölder exponents as inputs, a proximal algorithm

is devised. It essentially relies on the customization of the formu-

lation proposed in [27], which expands on that proposed in [26] to

efficiently handle the resulting large size problem. Further, we pro-

pose an original method to a priori estimate the number of regions as

well as their mean regularity, an initialization step that turns compul-

sory and crucial for the actual use of the proximal approach in that

context. These are detailed in Section 3.

This combination (use of wavelet leaders and of proximal algo-

rithm with original initialization) enables us to propose an efficient

data-model free piecewise constant Hölder exponent minimal par-

tition image segmentation procedure, that furthermore depends on

very few parameters that need to be tuned manually.

2. WAVELET COEFFICIENTS AND LEADERS FOR

HÖLDER EXPONENT ESTIMATION

Local regularity and Hölder exponent. Let X denote the

bounded 2D function (image) to be analyzed. Local regularity

around position x0 ∈ R
2 is measured by the so-called Hölder ex-

ponent h(x0), defined as the largest α > 0, such that there exists a

constant C > 0 and a polynomial Px
0

of degree less than α, such

that |X(x) − Px
0
(x)| ≤ C|x − x0|

α in a neighborhood x of x0.

When h(x0) is close to 0, the image is locally very irregular and

close to discontinuous. Conversely, a large h(x0) corresponds to a

locally smooth field. For example, when h(x0) increases towards 2
then the fields becomes smoother and smoother up to being differ-

entiable. Fig. 1-b below displays a Gaussian texture, with piecewise

constant Hölder exponents, the region with the lowest h (outer ring)

is more irregular then the one with the largest h (inner ring).

Wavelet coefficients. Let φ(x) and ψ(x) denote the scaling func-

tion and mother wavelet defining a 1D multiresolution analysis. Let

the 2D wavelets be defined as: ψ(0)(x) = φ(x1)φ(x2), ψ
(1)(x) =

ψ(x1)φ(x2), ψ
(2)(x) = φ(x1)ψ(x2), ψ

(3)(x) = ψ(x1)ψ(x2) with

x = (x1, x2). The collections ψ
(m)
j,k (x) = 2−jψ(m)(2−jx − k)

of dilated (to scales a = 2j ) and translated (to space positions

x = 2jk) templates of ψ0 form a basis of L2(R2) for well cho-

sen functions ψ. Let d
(m)
X (j, k) = 〈X,ψ(m)

j,k 〉 denote the (L1-

normalized) coefficients of X of the so-called discrete wavelet

transform (DWT) ofX . Readers may refer to [29] for further details.

Wavelet leaders. Wavelet leaders were recently introduced in the

context of multifractal analysis [13, 30], their use in the context of

local regularity measurement has however been barely considered.

The wavelet leader LX(j, k), located around position x0 = 2jk,

is defined as the local supremum of all wavelet coefficients taken

within a spatial neighborhood across all finer scales 2j
′

≤ 2j :

LX(j, k) = sup
m=1,2,3,
λ
j′,k′⊂Λj,k

|d(m)
X (j′, k′)|, (1)

λj,k = [k2j , (k + 1)2j), Λj,k =
⋃
p∈{−1,0,1}2 λj,k+p [13, 30].

Local regularity estimation. It has long been known that, for

large (but not all) classes of images [13], wavelet coefficients re-

produce the Hölder exponent h(x0), in so far as, for all k0 such

that 2jk0 ≈ x0: 1
3

∑3
m=1 |d

(m)
X (j, k0)| ≃ Cd(x0)2

jh(x
0
) when

2j → 0. More recently, it has been shown [13, 30] that wavelet

leaders systematically (that is: for all classes of images) reproduce

the Hölder exponent h(x0): LX (j, k0) ≃ CL(x0)2
jh(x

0
) when

2j → 0. This naturally leads to the estimation of h(x0) by means of

linear regressions:

ĥd(x0) =

j2∑

j=j1

wj ln
1

3

3∑

m=1

|d(m)
X (j, k0)|, (2)

ĥL(x0) =

j2∑

j=j1

wj lnLX (j, k0), (3)

with weights wj chosen to perform non weighted regression [15].

Section 4 compares estimates obtained from either wavelet coeffi-

cients or leaders and shows that the latter yield a substantial decrease

in variance and are thus to be preferred.

3. MINIMAL PARTITION SEGMENTATION USING

PROXIMAL TOOLS

Let Ω ⊂ R
2 denote a spatially continuous domain and f ∈ L2(Ω)

the image that we intend to label. Note that, in Section 4, f will

successively model the estimated Hölder exponents obtained from

wavelet coefficients or leaders, i.e., f = ĥd or f = ĥL. The

Mumford-Shah approach in [20] consists in computing a piecewise

constant approximation of data f . Assuming that f can be approx-

imated by Q labels such that (Ωq)1≤q≤Q models the Q distinct re-

gions, this problem can be written as

min
Ω1,...,ΩQ

Q∑

q=1

∫

Ωq

(f − vq)
2
dx+

1

2

Q∑

q=1

Per(Ωq)

s.t.

{⋃Q

q=1 Ωq = Ω,

(∀q 6= p), Ωq ∩ Ωp = ∅,
(4)

where vq stands for the value of f in region Ωq (with, by convention,

vq ≤ vq+1), where the left-hand-side term consists of the sum of

the variances of f over all regions, and where Per(Ωq) measures

the perimeter of region Ωq , and where the constraints imposed on

Ωq ensure to obtain a non-overlapping partition of the image. The

discrete analogue of Model (4) is the Potts model which is known to

be NP-hard to solve. A solution to circumvent this difficulty consists

in relaxing this non convex formulation into a convex approximation

[26].

From now on, the sampled version of the image f is consid-

ered and denoted as a vector of pixels f = (f (n))1≤n≤N ∈ R
N .

The Q regions Ωq are labeled through an auxiliary variable u =

(u(n))1≤n≤N , such that u(n) = vq if and only if the pixel n belongs

to the region Ωq . Further, one can introduce Q binary functions

θ = (θ1, . . . , θQ) such that, for every q ∈ {1, . . . , Q},

(∀n ∈ {1, . . . , N}), θ
(n)
q =

{
1 if u(n) ≥ vq ,

0 otherwise.
(5)

It results that the labeling function u can be recovered from θ =
(θ1, . . . , θQ) through the relation

(∀n ∈ {1, . . . , N}), u
(n) =

Q∑

q=1

(vq − vq−1)θ
(n)
q , (6)



with v0 = 0. A bijection between u and θ is guaranteed by con-

straining, for every n ∈ {1, . . . , N}:

Bn = {θ(n) ∈ {0, 1} × . . .× {0, 1}, 1 ≥ θ
(n)
1 ≥ . . . ≥ θ

(n)
Q ≥ 0},

whose convex relaxation is

Bn = {θ(n) ∈ [0, 1]× . . .× [0, 1], 1 ≥ θ
(n)
1 ≥ . . . ≥ θ

(n)
Q ≥ 0}.

Moreover, for every n ∈ {1, . . . , N}, θ
(n)
1 = 1.

Convex criterion The convexification of Model (4) leads to the

following minimization problem involving the Q binary functions

θ = (θ1, . . . , θQ) [26]:

minimize
θ1,...,θQ

Q−1∑

q=1

N∑

n=1

(θ(n)q − θ
(n)
q+1)(f

(n) − vq)
2

+
N∑

n=1

θ
(n)
Q (f (n) − vQ)

2 +
1

2

Q∑

q=1

ρTV(Hθq, V θq)

s.t.

{
(∀n ∈ {1, . . . , N}), θ(n)1 = 1,

(∀n ∈ {1, . . . , N}), 1 ≥ θ
(n)
2 ≥ . . . ≥ θ

(n)
Q ≥ 0,

(7)

where H ∈ R
N×N and V ∈ R

N×N are matrix representa-

tions of, respectively, the horizontal and vertical first-order dis-

crete differences, and where the total variation reads, for every

η =
(
η(n)

)
1≤n≤N

∈ R
N and ζ =

(
ζ(n)

)
1≤n≤N

∈ R
N ,

ρTV :
((
η
(n)

)
1≤n≤N

,
(
(ζ(n)

)
1≤n≤N

)
7→

N∑

n=1

√
|η(n)|2 + |ζ(n)|2.

The functions involved in (7) are convex, lower semi-continuous,

and proper. H and V are diagonalizable in the Fourier domain and

the proximity operator of each function has a closed form. It results

that the proximal algorithms PPXA+ [31] can be used to efficiently

find the minimum of (7).

Estimation of (vq)1≤q≤Q The a priori choice of (vq)1≤q≤Q is

likely to strongly impact the estimated (θq)1≤q≤Q. Here, we pro-

pose to extract this values from a denoised estimator of f such that

f
∗ = argmin

g
‖f − g‖2 + λ ρTV(Hg,V g) (8)

where λ > 0 denotes a regularization parameter, that impacts the

quality of the denoised estimate. Section 4 further details the esti-

mation of the (vq)1≤q≤Q from f∗.

4. RESULTS

Numerical simulations. The potential and performance of the

combined estimation and segmentation procedures described in Sec-

tions 2 and 3 above are illustrated and assessed by application to

independent realizations of synthetic images. They are produced nu-

merically according to a 2D multifractional Brownian field model

[14, 18], whose definition has been slightly modified here to ensure

an homogeneous variance across the image:

X(x) = C(x)

∫

R2

eıxξ−1

|ξ|h(x)+
1

2

dW (ξ), (9)

where dW (ξ) is 2D Gaussian white noise and h(x) denotes the

prescribed Hölder exponent function. The normalizing factor C(x)
ensures that the local variance of X does not depend on the location

x. This model is chosen here for convenience in synthesis. Note that

the proposed estimation and segmentation procedures do not rely at

all on any knowledge of the model. A sample field of such processes

is shown in Fig. 1-b. Analysis is conducted using a standard 2D

DWT with orthonomal tensor product Daubechies mother wavelets

with Nψ = 2 vanishing moments. Regularity is estimated using the

scaling range (j1, j2) = (1, 3).

−4 −2 0 2 4 6
0

1

2

3

4

5
x 10
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(a) (b) (c)

Fig. 1. Synthetic data. (a) Piecewise constant Hölder exponent

mask (H1,H2,H3) = (0.25, 0.50, 0.75), (b) Sample field, and (c)

Corresponding histogram of the pixel values.

Estimation. To compare estimation performance obtained with

wavelet leaders against those produced with wavelet coefficients,

the estimation procedure described in Section 2 is applied to 100
independent copies, of size N × N , with N = 1024 and with

uniform Hölder exponent: h(x) ≡ H . Table 1 reports estimation

performance for different values of H and clearly indicates that

leader-based estimates of h systematically outperform wavelet co-

efficient based ones, with significant decrease in variances at the

price of increased biases, overall yielding substantially decreased

mean-square errors.

H = 0.25 0.50 0.75

WavC WavL WavC WavL WavC WavL

Bias -0.36 0.03 -0.19 0.08 -0.08 0.11

Std 0.52 0.19 0.55 0.37 0.60 0.50

RMSE 0.63 0.19 0.58 0.38 0.60 0.52

min -0.14 0.27 0.27 0.47 0.56 0.69

max -0.09 0.31 0.37 0.70 0.77 1.10

Table 1. Estimation Performance. Coefficients vs leaders.

Segmentation. Synthetic data are produced according to the

model in (9) with piecewise constant Hölder exponent function

h(x) = Hq for Region q. Each region is thus regarded as a different

texture and the goal is to achieve texture segmentation of the image.

As an instructive example, we use images consisting of Q = 3
different regions with piecewise constant Hölder exponents on con-

centric disks, as shown in Fig. 1-a. The three different textures can

clearly not be identified from the histogram of the image pixel values

shown in Fig. 1-c. In simulations, N ×N = 512× 512.

The estimation procedures of Section 2 are applied to such im-

ages, yielding local estimates of the Hölder exponents which are

plotted as images and histograms in Fig. 2-a (wavelet coefficients)

and in Fig. 3-a (wavelet leaders). Despite a visual perception of

3 different regions for the wavelet coefficient based estimates ĥd,

the corresponding histogram (Fig. 2-b) is unimodal and fails to re-

veal the existence of three constant-h regions in the image, a direct
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Fig. 2. Wavelet coefficient segmentation. (a) Estimate ĥd, (b) Histogram of ĥd, (c) ĥ∗
d, (d) Histogram of ĥ∗

d, (e) Segmentation based on

thresholding of ĥ∗
d, and (f) Labeling function u obtained from proximal segmentation with f = ĥd.
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Fig. 3. Wavelet leaders segmentation. (a) Estimate ĥL, (b) Histogram of ĥL, (c) ĥ∗
L, (d) Histogram of ĥ∗

L, (e) Segmentation based on

thresholding of ĥ∗
L, and (f) Labeling function u obtained from proximal segmentation with f = ĥL.

consequence of the very large variance of the estimate ĥd. Despite

smaller variance, resulting in a non unimodal histogram (Fig. 3-b),

the leader-based estimates ĥL (Fig. 3-a) do not clearly reveal the

three constant-h regions either.

The denoising procedure described in Section 3 (cf. (8)), applied

to both ĥd(x) and ĥL(x), yields estimates ĥ∗
d(x) and ĥ∗

L(x) (resp.

Fig. 2-c and Fig. 3-c) , whose histograms, shown in Fig. 2-d and

Fig. 3-d respectively, clearly display 3 modes. Segmentation based

on a direct thresholding of such histograms however yields poor re-

sults as illustrated in Fig. 2-e and Fig. 3-e and Table 2. Instead, the

denoising procedure is used to initialize the proximal based segmen-

tation: The number of regionsQ is set to the number of local maxima

observed in the denoised estimates ĥ∗
d(x) and ĥ∗

L(x), here Q = 3;

The target mean intensity values vq, q = 1, 2, 3 are set to values cor-

responding to the positions of the local maxima of the histograms of

estimates ĥ∗
d and ĥ∗

L.

The proximal tool based segmentation procedure described in

Section 3 is now applied to both ĥd(x) and ĥL(x), initialized as de-

scribed above. Results are compared in Fig. 2-f and Fig. 3-f, (for one

single image) and quantified in Table 2 (averaged across 100 inde-

pendent copies). This shows that the number of mis-classified pixels

is systematically smaller when segmentation is based on ĥL(x). Dif-

ferences between wavelet coefficient and leader based performance

may appear small, this is however only a consequence of the cho-

sen simple geometry for the piece-wise constant regions. Indeed,

quantifying the number of mis-classified pixels within narrow strips

comprising the borders between the piecewise constant-h regions

shows that segmentation based on ĥL(x) significantly outperforms

that based on ĥd(x), a direct consequence of the better localization

and lower variance of the ĥL(x). Wavelet leader based segmenta-

tion thus provides far better border delimitation, a crucial issue in

biomedical texture segmentation, for instance. Our codes were de-

veloped in MATLAB R2011b and the segmentation of a 512 × 512
image with Q = 3 labels requires only 5 minutes on an 2.4 GHz

Quad-Core Intel Xeon and 6 GB of RAM.

% of miss- entire around borders

classified pixels image (∼ 2.104 pixels)

ĥd ĥL ĥd ĥL

BasicThresh 33.3 22.1 93.6 62.2

ProxSeg 3.4 3.0 9.4 8.6

Table 2. Segmentation Performance. Coefficients vs. leaders

5. CONCLUSIONS AND PERSPECTIVES

We have proposed, to the best of our knowledge, the first fully oper-

ational texture segmentation procedure based on texture local reg-

ularity. The segmentation procedure is designed for the class of

piece-wise constant regularity images. It relies on combining im-

proved regularity estimates based on wavelet leaders with the proxi-

mal solution to the minimization of the convex criterion underlying

the segmentation problem. The proximal solution further relies on

a total variation and proximal based initialization. The procedure is

illustrated here using realizations of stochastic Gaussian model pro-

cess with prescribed region-wise constant local regularity. The seg-

mentation procedure does, however, not rely on any a priori model

knowledge besides that of data belonging to the class of piece-wise

constant regularity images.

The performance of the proposed procedure for different region

geometry, selection of scaling range, and sensitivity to local regular-

ity differences are currently being systematically quantified. Com-

parisons against alternative segmentation features, such as local en-

tropy, will be conducted. Comparisons of the robust convex opti-

mization based segmentation achieved here against recent classifi-

cation techniques, such as the one proposed in [28, 3] will also be

made. Moreover, extensions of the procedure to the class of piece-

wise smooth local regularity images are currently under study. Pre-

liminary analysis of real biomedical textures yields promising results

and will be further investigated.
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