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LOCAL REGULARITY FOR TEXTURE SEGMENTATION:
COMBINING WAVELET LEADERS AND PROXIMAL MINIMIZATION
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ABSTRACT

Texture segmentation constitutes a classical yet cruasélin image
processing. In many applications of very different natbésmedi-
cal, geophysics,...) textures are naturally defined inseshtheir lo-
cal regularity fluctuations, which can be quantified as thétians
of local Holder exponents. Furthermore, such images aenofat-
urally embedded in the class of piece-wise constant locallaeity
functions. The present contribution aims at proposing asessin

a segmentation procedure for this class of images. Itsraiity is

twofold: First, local regularity is estimated using wavdkeaders,
a novel multiresolution quantity recently introduced foultifrac-

tal analysis but barely used in local regularity measurdmem-
parisons against wavelet coefficient based estimationcréucted,;
Second, the challenging minimal partition problem undedyseg-
mentation is convexified and conducted within a customizedip

past two decades for 1D signals (cf. e.g., [14, 15]), much desitri-
butions were dedicated to 2D fields or images (see a contfE2jo
and references therein).

Estimation relies on two key choices, with crucial impacpen-
formance: Multiresolution quantiti€Bx (a, z) from which theh(z)
are measured; Range of analysis scalés be practically involved
in the estimation. For multiresolution quantities, mostrkgocon-
ducted so far relied on either increments, oscillations avelet co-
efficients. Bilinear time-scale representations were atsed [15].
The choice of the range of scales is naturally framed intcaast
cal bias-variance trade-off. While theoretically, estiima should
be conducted in the limit of fine scales, practically a finaage of
scalesa,, < a < apm has to be used. Choosing a large range of
scales yields smaller estimation variance at the price akasing
the bias because tl#x (a, z) at large scales are less well localized

mal framework. The estimation of the number of regions amirth (Cf- €., [16, 15]).

target regularity is obtained from a total-variation estienthat en-
ables the actual use of proximal minimization for texturgrsenta-
tion. Performance is assessed and illustrated on syntiesticres.

For segmentation, i.e., to detect changes amongst Hokger e
nents measured at different locations, this trade-offtalsts crucial.
This is why both estimation and change detection have mbstiy
conducted in model dependent frameworks. Fractional Biamvn

Index Terms— Texture segmentation, piece-wise constant, 10-mqtion (fBm) [17], the paradigm model for scale invariariceplies

cal regularity, wavelet leaders, proximal minimization.

1. MOTIVATION, RELATED WORKS, CONTRIBUTIONS

Texture segmentation from local regularity fluctuations. Tex-
ture characterization and segmentation constitutes é&clgithg task
in image processing (see e.g., [1, 2, 3, 4, 5] and referehegsin).
In a variety of applications of possibly very different nags, the
relevant information characterizing textures, and thus/eging the
information to be analyzed, consists of the fluctuationsssspace
of their local regularity. This is notably the case for biatizal tex-
tures such as bone [6] or breast [7] (see also [8] for a reyiéaw)
surface imagery [9], for satellite imagery [10], or for ingagegistra-
tion [11, 12].

a constant and unique Hdlder exponent across sample fikldk.
tifractional Brownian motion extends fBm by allowing pieatse
smooth variations o (z) across space (while preserving joint Gaus-
sianity) [18] and constitutes essentially the only modehvepace-

dependent that has been studied and used. The problem has mostly

been addressed for 1D signals and barely for images (seéraion
[12, 7] which aimed at identifying particular points in theage de-
fined by specific values 0i(z)). Furthermore, to our knowledge,
little work has been published aiming at detecting changeg i)

in a context where an exact model is not a priori assumed (see a

contrario [15] for 1D signals).
With respect to the generic issue of image segmentation, effi
cient variational methods were proposed [19, 20, 21, 22 223§,

however none of them guarantees convergence towards al globa

Often, local regularity is assessed in terms of the so-¢alle minimum, and thus, obtained solutions strongly depend @n in

Holder exponenh(z) [13]. In essencel(z) consists of the power
law exponent quantifying the decrease of the powers of Ifioel
tuations, measured via multiresolution quantitig(a,z) (e.g.,
wavelet coefficients) around a given space positionvhen the
analysis scales: goes towards fine scales, i.&Tx(a,z)? ~
C(z)a*"® whena — 0.

Related works: Holder exponent estimation and segmentation.
Local regularity based analysis of textures can naturalgrganized
into two sub-questions: i) Accurately estimating the Hibléxpo-

nents for each location; ii) Splitting the image into regiovhere es-
timates can be considered constant, so as to achieve terymeen-
tation. Though these issues have received significantefeer the

tialization. Instead, a convex relaxation of the minimaftpan
techniques were proposed in [25, 26]. In [26], the algoritheo-
lution is based on a Arrow-Hurwicz type primal-dual algbnit but
requires inner iterations and upper boundedness of thepeinergy

in order to improve convergence speed. Also, a proximalt&miu
in a context of disparity estimation was proposed in [27].teAl
natively, recent techniques are framed into variationahgiples,
making use of comparisons between pairs of neighboringhpatc
[28, 3]. Notably, in [28], a convex relaxation of the origimaoblem
was envisaged so as to ensure to find the global minimizetewnhi

in [3] a more general but non-convex framework was proposed,

which yields good results at the price of a well-chosenaliation.
However, the computational cost is a limitation of thesehuods.



Goals and contributions.  In this context, the first originality of
the present contribution consists in performing regiogrsentation
of images, that excludes the recourse to a fully parametoidahfor
the data, but instead only assumes that images belong tteseeaf
piecewise constant Holder exponent functions. Its seooigihality
lies in a twofold departure from earlier works: For multikgion
guantities, wavelet leaders are chosen and shown to yigitbirad
statistical performance for Holder exponent estimatocmmpared to
the classical wavelet coefficients (cf. Section 2); For seggation,
using estimated Holder exponents as inputs, a proximalristgn
is devised. It essentially relies on the customization ef flbrmu-
lation proposed in [27], which expands on that proposed &} {@
efficiently handle the resulting large size problem. Furthe pro-
pose an original method to a priori estimate the number abnsgas
well as their mean regularity, an initialization step thatt compul-
sory and crucial for the actual use of the proximal approacthat
context. These are detailed in Section 3.

This combination (use of wavelet leaders and of proximabd-alg
rithm with original initialization) enables us to propose efficient
data-model free piecewise constant Holder exponent nainpar-
tition image segmentation procedure, that furthermoreeddg on
very few parameters that need to be tuned manually.

2. WAVELET COEFFICIENTS AND LEADERS FOR
HOLDER EXPONENT ESTIMATION

Local regularity and Hodlder exponent. Let X denote the
bounded 2D function (image) to be analyzed. Local regylarit
around positionz, € R? is measured by the so-called Holder ex-
ponenth(z,), defined as the largest > 0, such that there exists a
constantC' > 0 and a polynomialP,, of degree less than, such
that | X (z) — Py (z)| < Clz — z,|* in a neighborhood: of z,.
Whenh(z,) is close to0, the image is locally very irregular and
close to discontinuous. Conversely, a latge,) corresponds to a
locally smooth field. For example, whér{z,) increases towards
then the fields becomes smoother and smoother up to beirgg-diff
entiable. Fig. 1-b below displays a Gaussian texture, wighgwise
constant Holder exponents, the region with the lowegiuter ring)

is more irregular then the one with the largkginner ring).

Wavelet coefficients. Let ¢(z) andy(z) denote the scaling func-
tion and mother wavelet defining a 1D multiresolution anialyket
the 2D wavelets be defined a8'” (z) = é(z1)p(x2), vV (z) =
Y(x1)p(w2), ¥ () = P(a)v(x2), ¥ (@) = P(a1)(w2) with
z = (x1,22). The collectionsy} (z) = 279¢(™ (277 — k)

N = [k27, (E+1)27), A = Upe 10,132 Nisk+p [13, 30].

Local regularity estimation. It has long been known that, for
large (but not all) classes of images [13], wavelet coefficee-
produce the Holder exponent(z,), in so far as, for allk, such
that 2k, ~ zo0 230 1TV (k)| =~ Ca(zy)27"=0) when
27— 0. More recently, it has been shown [13, 30] that wavelet
leaders systematically (that is: for all classes of imagegjoduce
the Holder exponent(z,): Lx(j,k,) ~ Cr(z,)2""=0) when

27 — 0. This naturally leads to the estimationhxfxo) by means of

linear regressions:  ,

halze) = 3 wiln s Z A% Gk &)
Jj=J1
= Z wj lnLX j7 )7 ()

J=ij1
with weightsw; chosen to perform non weighted regression [15].
Section 4 compares estimates obtained from either waveédti-c
cients or leaders and shows that the latter yield a subataettrease
in variance and are thus to be preferred.

3. MINIMAL PARTITION SEGMENTATION USING
PROXIMAL TOOLS

Let Q C R? denote a spatially continuous domain ahd L?(2)
the image that we intend to label. Note that, in Sectiorf 4yill
successively model the estimated Holder exponents autdiom
wavelet coefficients or leaders, i.gf, = ha OF f = hr. The
Mumford-Shah approach in [20] consists in computing a picee
constant approximation of daga Assuming thatf can be approx-
imated by@ labels such thafQ),):<,<o models the) distinct re-
gions, this problem can be written as

Q
> [ >_pe(t)

U?:l Qq = Q7
(Vg #p), QN =10,

wherev, stands for the value of in region(2, (with, by convention,

vy < vg+1), Where the left-hand-side term consists of the sum of
the variances off over all regions, and where R€X,) measures
the perimeter of regiof},, and where the constraints imposed on
Q, ensure to obtain a non-overlapping partition of the imagee T
discrete analogue of Model (4) is the Potts model which iskmto

be NP-hard to solve. A solution to circumvent this difficutynsists

in relaxing this non convex formulation into a convex apimeation

Q1,..,0¢

(4)

of dilated (to scales: = 27) and translated (to space positions [26].

= 27k) templates ofjo form a basis ofZ.?(R?) for well cho-

sen functionsy. Let d“”)( k) = (X, w(’”)) denote the L*-
normalized) coefficients ofX of the so- caIIed discrete wavelet
transform (DWT) ofX. Readers may refer to [29] for further details.

Wavelet leaders.
context of multifractal analysis [13, 30], their use in thentext of
local regularity measurement has however been barely demes.
The wavelet leadel x (4, k), located around position, = 27k,
is defined as the local supremum of all wavelet coefficierterta
within a spatial neighborhood across all finer scaPésg 27:

Lx(j k) = sup 14 (5, D), €))

m
/\j/,ﬁ/c g,k

Wavelet leaders were recently introduced in theg = (64,...

From now on, the sampled version of the imafjés consid-
ered and denoted as a vector of pixgls= (f™)1<,<n € RY.
The @ regions(2, are labeled through an auxiliary variable =
(u™)1<n<n, such thau™ = v, if and only if the pixeln belongs
to the region{2,. Further, one can introduc® binary functions

,00) such that, for every € {1,...,Q},
1 if uw™ >
v 1,...,N ol = = (5
(vne{l,.... N}, B {0 otherwise ®)

It results that the labeling function can be recovered froh =
(61, ...,0¢) through the relation

Q

u™ = Z(vq - Uqfl)gr(zn):

q=1

(Vn € {1,...,N}), (6)



with vo = 0. A bijection betweeru andé is guaranteed by con-
straining, for everyn € {1,...,N}:

B, ={0" €{0,1} x ... x {0,1},1 > 6" > ... > 05" > 0},
whose convex relaxation is

Bn={0" €[0,1] x...x[0,1],1>6{" >...> 065 >0}
Moreover, for everyr € {1,..., N}, 6" = 1.

Convex criterion  The convexification of Model (4) leads to the
following minimization problem involving the&) binary functions

0=(01,...,00) [26]:
Q-1 N
minimize 3~ (0" = 02 (/") — va)?
imize 2 2

N
+2057(F" —ve)* +
n=1 q=1
ot (Vn e {1,...,N}), 6 =1, o
(vne{l,...,N}), 1>6" >...> 065" >0,

@)

where H ¢ RN and V' ¢ RY*Y are matrix representa-

tions of, respectively, the horizontal and vertical firstler dis-

crete differences, and where the total variation reads,ef@ry
N N

n= (n(n))ISnSN € R and¢ = (C(n))ISnSN €RY,

(n)) |n(n)|2 + |C(n)|2_

. (n)
pTv: ((77 1<n<N? (¢ 1§n§N) =

The functions involved in (7) are convex, lower semi-contins,

and proper.H andV are diagonalizable in the Fourier domain and|

the proximity operator of each function has a closed formedults
that the proximal algorithms PPXA+ [31] can be used to effitie
find the minimum of (7).

Estimation of (vq)1<q<q The a priori choice ofvg)1<q<0 IS
likely to strongly impact the estimate@,).<,<¢. Here, we pro-
pose to extract this values from a denoised estimatgrsafch that

fr =argmg}nllf—g||2+/\pw(Hg7Vg) ®)

whereX > 0 denotes a regularization parameter, that impacts th&egmentation.

quality of the denoised estimate. Section 4 further dethisesti-
mation of the(v,)1<4<q from f*.

4. RESULTS

Numerical simulations.  The potential and performance of the
combined estimation and segmentation procedures deddnilgec-
tions 2 and 3 above are illustrated and assessed by appfidati
independent realizations of synthetic images. They aréymed nu-
merically according to a 2D multifractional Brownian fieldodel
[14, 18], whose definition has been slightly modified herensuee
an homogeneous variance across the image:

ezg§71

X(z) =C(z)

W (&), ©)

R2 |§|h(£)+§

where dW () is 2D Gaussian white noise ariz) denotes the
prescribed Holder exponent function. The normalizingdac(z)
ensures that the local varianceXfdoes not depend on the location
z. This model is chosen here for convenience in synthesise that
the proposed estimation and segmentation procedures delnatt

all on any knowledge of the model. A sample field of such preess

is shown in Fig. 1-b. Analysis is conducted using a stand&d 2
DWT with orthonomal tensor product Daubechies mother wetgel
with N, = 2 vanishing moments. Regularity is estimated using the
scaling rang€ji, j2) = (1, 3).

@)

(b)

Fig. 1. Synthetic data. (a) Piecewise constant Holder exponent
mask(H1, Hz, Hs) = (0.25,0.50,0.75), (b) Sample field, and (c)
Corresponding histogram of the pixel values.

Estimation.  To compare estimation performance obtained with
wavelet leaders against those produced with wavelet cieffi;
the estimation procedure described in Section 2 is apptietD®
independent copies, of sizZ&¥ x N, with N = 1024 and with
uniform Holder exponenth(z) = H. Table 1 reports estimation
performance for different values dff and clearly indicates that
leader-based estimates ofsystematically outperform wavelet co-
efficient based ones, with significant decrease in variaatdhe
price of increased biases, overall yielding substantidégreased
mean-square errors.

H=1] 0.25 I 0.50 I 0.75 I

| | WavC | WavL || WavC | WavL ]| WavC | WavL ||
Bias || -0.36| 0.03| -0.19| 0.08]| -0.08| 0.11
Std 0.52| 0.19 0.55| 0.37 0.60 | 0.50
RMSE 0.63| 0.19 0.58 | 0.38 0.60 | 0.52
min || -0.14 | 0.27 0.27| 0.47 0.56| 0.69
max || -0.09 | 0.31 0.37| 0.70 0.77| 1.10

Table 1. Estimation Performance. Coefficients vs leaders.

Synthetic data are produced according to the
model in (9) with piecewise constant Holder exponent fiomct
h(z) = H, for Regiong. Each region is thus regarded as a different
texture and the goal is to achieve texture segmentatioredfthge.

As an instructive example, we use images consisting)ot= 3
different regions with piecewise constant Holder exptsi@em con-
centric disks, as shown in Fig. 1-a. The three differentuied can
clearly not be identified from the histogram of the image pixdues
shown in Fig. 1-c. In simulationgy x N = 512 x 512.

The estimation procedures of Section 2 are applied to sueh im
ages, yielding local estimates of the Holder exponentsciviaire
plotted as images and histograms in Fig. 2-a (wavelet cieitis)
and in Fig. 3-a (wavelet leaders). Despite a visual peroepbif
3 different regions for the wavelet coefficient based essA,,
the corresponding histogram (Fig. 2-b) is unimodal ands failre-
veal the existence of three constantegions in the image, a direct



(@ ) ) © 0

Fig. 2. Wavelet coefficient segmentation(a) Estimatéhq, (b) Histogram ofhg, (c) hd, (d) Hlstogram ofhd, (e) Segmentation based on
thresholding oihd, and (f) Labeling function: obtained from proximal segmentation with= ha.

x10°

)

Fig. 3. Wavelet leaders segmentation(a) Estimateh_, (b) Histogram ofhr, (c) hL, (d) Hlstogram oth, (e) Segmentation based on
thresholding oh, and (f) Labeling function: obtained from proximal segmentation with= he.

consequence of the very large variance of the estiateDespite % of miss- entire around4bqrders
smaller variance, resulting in a non unimodal histograng.(Bib), classified pixels|  image (~ 2.10" pixels)
the leader-based estimatks (Fig. 3-a) do not clearly reveal the | [ hal B ] ha] he |
three constant-regions either. BasicThresh|| 33.3] 22.1 | 93.6 62.2
The den0|smg procedure described in Section 3 (cf (8plieq ProxSeg|| 3.4| 3.0 9.4 8.6

to botha(z) andhy (z), yields estimated;(z )andh*( ) (resp.
Fig. 2-c and Fig. 3-c) , whose histograms, shown in Fig. 2-d an Table 2. Segmentation PerformanceCoefficients vs. leaders
Fig. 3-d respectively, clearly displé&/modes. Segmentation based

on a direct thresholding of such histograms however yietds pe-

sults as illustrated in Fig. 2-e and Fig. 3-e and Table 2.ebu$tthe 5. CONCLUSIONS AND PERSPECTIVES
denoising procedure is used to initialize the proximal Hasgmen-

tation: The number of regior@ is set to the number of local maxima We have proposed, to the best of our knowledge, the first ayby-
observed in the denoised estimaf@@) andﬁz(g), here@ = 3; ational texture segmentation procedure based on textaet teg-
The target mean intensity values, ¢ = 1,2, 3 are set to values cor- ularity. The segmentation procedure is designed for thescix

responding to the positions of the local maxima of the histogs of ~ Piece-wise constant regularity images. It relies on coimbgirim-
estimate@; andﬁz proved regularity estimates based on wavelet leaders hétprtoxi-

Th | tool based tat dure d ived ‘mal solution to the minimization of the convex criterion enigting
e proximal tool base segmentation procedure described ly, segmentation problem. The proximal solution furthéieseon

Section 3 is now applied to bothy(z) andhy (z), initialized as de- 3 total variation and proximal based initialization. Theqedure is
scribed above. Results are compared in Fig. 2-f and Fig(f8fone  jjjystrated here using realizations of stochastic Gaussiadel pro-
single image) and quantified in Table 2 (averaged acto8snde-  cegs with prescribed region-wise constant local regylafine seg-
pendent copies). This shows that the number of mis-cladsifiels  mentation procedure does, however, not rely on any a priodeh
is systematically smaller when segmentation is basdeidm). Dif-  knowledge besides that of data belonging to the class oepigse
ferences between wavelet coefficient and leader basedrpemice  constant regularity images.

may appear small, this is however only a consequence of e ch  The performance of the proposed procedure for differerioreg
sensimple geometryor the piece-wise constant regions. Indeed, geometry, selection of scaling range, and sensitivity ¢talloegular-
quantifying the number of mis-classified pixels within mavrstrips ity differences are currently being systematically quéedi Com-
comprising the borders between the piecewise condtaegions  parisons against alternative segmentation features,asutdcal en-
shows that segmentation based/iof(z) significantly outperforms  tropy, will be conducted. Comparisons of the robust convett- o
that based o4 (z), a direct consequence of the better localizationmization based segmentation achieved here against relesstfie
and lower variance of thé,, (z). Wavelet leader based segmenta- €&tion techniques, such as the one proposed in [28, 3] vl be
tion thus provides far better border delimitation, a cruiaue in ~ Mmade. Moreover, extensions of the procedure to the clas®@oép
biomedical texture segmentation, for instance. Our coderee- ~ Wise smooth local regularity images are currently undetystére-
veloped in MATLAB R2011b and the segmentation dfl2 x 512 liminary analysis of real biomedical textures yields preimg results
image withQ = 3 labels requires only 5 minutes on an 2.4 GHz and will be further investigated.

Quad-Core Intel Xeon and 6 GB of RAM.
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