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We develop a reduced complexity model for three-dimensional sand dunes, based on a simplified description of
the longitudinal and lateral sand transport. The spatiotemporal evolution of a dune migrating over a nonerodible
bed under unidirectional wind is reduced to the dynamics of its crest line, providing a simple framework for the
investigation of three-dimensional dunes, such as barchan and transverse dunes. Within this model, we derive
analytical solutions for barchan dunes and investigate the stability of a rectilinear transverse dune against lateral
fluctuations. We show, in particular, that the latter is unstable only if the lateral transport on the dune slip face
prevails over that on the upwind face. We also predict the wavelength and the characteristic time that control
the subsequent evolution of an unstable transverse dune into a wavy ridge and the ultimate fragmentation into
barchan dunes.

DOI: 10.1103/PhysRevE.87.052206 PACS number(s): 45.70.Mg, 45.70.Qj, 47.54.−r

I. INTRODUCTION

Aeolian sand dunes are ubiquitous natural patterns present
on Earth but also on other planets, such as Mars. The
mechanism responsible for the primary instability that leads
a flat sand bed to destabilize in favor of a sand wave under
unidirectional flow is now well identified [1,2]. The instability
results from the phase lag between the flow shear stress and
the bedform, whereas, the most unstable wavelength, which
sets the minimum size for a dune, is governed by the drag
length (i.e., the length needed for the sediment to equilibrate
with the flow) [1,2]. The secondary instabilities, such as those
leading to three-dimensional (3D) patterns remain, however,
poorly understood.

Here, we address the issue on the stability of a rectilinear
transverse dune migrating over a nonerodible bed under
unidirectional flow and its subsequent dynamics. Recently,
rescaled water tank experiments [3] show that a rectilinear
transverse dune is intrinsically unstable and evolves into a
wavy ridge that eventually breaks up into barchan dunes.
Numerical studies [3,4] based on the resolution of Reynolds
equations and coupled with a sediment transport model have
shown their ability to replicate the complex dynamic of a
transverse dune.

In this article, we develop, instead, a simple model based
on a reduced number of physical ingredients which allows
clearly identifying the mechanisms competing for the destabi-
lization of a rectilinear transverse dune. We derive an explicit
criterion for the stability onset of rectilinear transverse dunes
and provide analytical predictions concerning the long-term
dynamics of the crest line and its subsequent fragmentation
into barchan dunes. The developed model further allows for
providing analytical solutions for barchan dunes.

In Sec. II, we set out the theoretical framework of our
model. In Sec. III, we investigate the linear stability analysis
of rectilinear transverse dunes, whereas, in Sec. IV, we
provide analytical solutions for barchan dunes. Section V
presents the model predictions concerning long-term dy-
namics of transverse dunes. Finally, a conclusion is given
in Sec. VI.

II. MODEL

Numerical models [4–7] are generally based on the reso-
lution of the flow over the bedform to provide the local basal
shear stress. The flux in sediment is then deduced via the
implementation of a transport law linking the mass transport
rate to the local basal shear stress, and the bedform evolution
can be computed using the mass conservation equation. Due
to flow separation, the downwind slope is a region with no
flow and captures the sand transported from the upwind slope.
The angle of the downwind slope is limited by a threshold
value above which avalanches occur and transport sediment
along the steepest slope. A crucial feature of the modeling of
the 3D bedform is the partition of the mass flux between the
longitudinal and the lateral directions. In aeolian transport, the
saltation mode (i.e., ballistic motion of the highly energetic
grains through successive jumps) mainly contributes to the
longitudinal transport, whereas, the reptation mode (stochastic
motion of the grains ejected from the bed via the collision of
the saltation grains with the bed during the splash process)
participate in the lateral transport [5].

Our model is based on several simplifications in comparison
with these numerical models. The first simplification is to
disregard the complex flow over a bedform and to assume
a simple triangular geometry for the bedform cross section
(see Fig. 1). The angles of the upwind and downwind slopes
(i.e., θ and φ, respectively) are set to typical values of aeolian
dunes: θ = 7◦ and φ = 26◦ [8]. A dune cross section is then
uniquely determined by the streamwise position x and height h
of its summit. A transverse dune can be, thus, simply described
in terms of only two continuum variables x(y,t) and h(y,t),
where y represents the lateral location of the cross section and
t represents the time.

The second simplification concerns the description of the
sediment transport. The longitudinal transport is characterized
by two features: (i) the incoming sand flux fin, that feeds
the dune, and (ii) the sand flux q at the dune crest, which is
primarily fixed by the flow strength. Both fluxes are prescribed
by the upwind boundary conditions. The sand advected up
to the crest is ultimately captured by the slip face with an
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FIG. 1. Schematic of the crest line model. Upwind and downwind
slope angles are θ and φ. Dune crest coordinates are (x,h). The
incoming flux of sediment is fin, the sand flux at the crest is q, and
the sand trapping efficiency of the slip face is Te.

efficiency rate Te [9]. In most numerical models [4–7], the
efficiency rate is taken to be 1 considering a fully efficient
capture by the slip face. However, as shown in Ref. [9], for a
given flow strength, the capture rate is an increasing function
of the dune height h. At this stage, we will consider, for the
sake of generality, that Te is an arbitrary function of h.

The modeling of the sediment transport should be com-
plemented by the lateral transport. The latter is characterized
by lateral mass fluxes on the upwind and downwind slopes,
denoted by Ju and Jd , respectively. Following Niiya et al.
[10], we will assume that lateral fluxes are governed by
the transverse gradients of the upwind and downwind dune
faces. Integrated over each dune face, we obtain the following
expressions for Ju and Jd :

Ju = Du

(
−B

A
h

∂h

∂y
+ h

∂x

∂y

)
, (1)

Jd = Dd

(
−C

A
h

∂h

∂y
− h

∂x

∂y

)
, (2)

where A, B, and C are geometrical constants [A =
tan θ tan φ/(tan θ + tan φ) = 0.1, B = tan φ/(tan θ +
tan φ) = 0.8, and C = tan θ/(tan θ + tan φ) = 0.2]. Du and
Dd are constant coefficients characterizing the intensity of
the lateral diffusion on the upwind and downwind slopes,
respectively.

Within this framework, the temporal evolution of the dune
crest is simply obtained from mass balance and is given by

h
∂x

∂t
= q(BTe + C) − Cfin − B

∂Jd

∂y
+ C

∂Ju

∂y
, (3)

h
∂h

∂t
= A

[
fin − (1 − Te)q − ∂Jd

∂y
− ∂Ju

∂y

]
. (4)

The system of Eqs. (3) and (4) combined with Eqs. (1) and (2)
completely describes the dune dynamics.

III. LINEAR STABILITY OF RECTILINEAR TRANSVERSE
DUNES

The model equations have a simple time-invariant solution
corresponding to a rectilinear transverse dune that drifts at a
constant velocity: x ≡ x0 = V0t with V0 = qTe(h0)/h0. The
height h0 of the dune is fixed by the incoming flux: fin =
[1 − Te(h0)]q. Note that, in the situation where fin = 0, there

exists a stationary solution only if Te = 1. In that case, the
dune can be of arbitrary height.

To investigate the stability of the dune against transverse
perturbations, we perform a linear stability analysis. We
assume sinusoidal perturbations of the form

x(y,t) = x0(t) + x1e
iky+ωt , (5)

h(y,t) = h0 + h1e
iky+ωt , (6)

where k and ω, respectively, are the wave number and the
growth rate of the perturbation. Plugging Eqs. (5) and (6) into
Eqs. (3) and (4) and retaining only the linear terms in x1 and
h1, we get the most unstable mode ω+,

2h2
0ω+ = Aq δTe − Du(1 + ρ)h2

0k
2 + [

A2q2δ2T 2
e

+ 2AqTeDu(ρ − 1)(2 − δ)h2
0k

2

+D2
u(1 − ρ)2h4

0k
4
]1/2

. (7)

Note that we introduced two dimensionless parameters,

δ = h0
T ′

e (h0)

Te(h0)
, (8)

ρ = Dd

Du

, (9)

where the prime in Eq. (8) stands for the derivation with respect
to h. δ quantifies the variation in the trapping efficiency with
the dune height, whereas, ρ quantifies the relative magnitude
of the lateral diffusion on the downwind slope with that on the
upwind face.

The values of these parameters are found to be crucial for the
dune stability. A positive δ acts as a destabilizing effect on the
system. In particular, a homogeneous deformation (i.e., k = 0)
is intrinsically unstable for δ > 0 (ω+ ∝ qTeδ > 0). A slight
uniform increase (respectively, decrease) in the dune height
will be, thus, amplified as more and more sand will be captured
by the slip face (respectively, less and less). Conversely, a
negative δ has a stabilizing effect. The differential lateral
transport on upwind and downwind slopes is a key mechanism
for the dune stability. Whereas, lateral transport on the upwind
slope always plays a stabilizing role, lateral transport on
the downwind slope will amplify crest line perturbations.
If we imagine that a slice of the dune is in advance with
respect to the rest of the dune, lateral downwind transport
will cause the volume of the slice to decrease, resulting in an
increase in the slice migration speed and, thus, reinforcing the
perturbation.

A quantitative analysis of the dispersion relation Eq. (7)
allows for determining the domain stability of the transverse
dune in the parameter space (δ,ρ) (see Fig. 2). (i) For δ > 0,
there always exists a band of unstable modes k between 0
and a cutoff value kc, causing a rectilinear transverse dune to
be unstable for any value of ρ [see Fig 3(a)]. It reflects the
destabilizing effect of an increasing with height capture rate.
(ii) In contrast, for δ � 0, a band of unstable modes appears
only if downwind lateral diffusion prevails over upwind lateral
diffusion [or, more precisely, if ρ is greater than a critical value
given by ρc = 1 − δ; see Fig. 3(b)]. Consequently, a rectilinear
dune will be stable if ρ < ρc and will be unstable otherwise.
The stabilizing effect of the capture rate is overcome by the
destabilizing effect of lateral transport in the slip face.
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FIG. 2. Stability diagram of a rectilinear transverse dune in the
parameter space (δ,ρ). In the case where δ > 0, rectilinear transverse
dunes are always unstable. Conversely, in the case where δ � 0,
rectilinear transverse dunes are stable only if ρ � 1 − δ. The dashed
line delimits the unstable regimes where the most unstable mode
kmax is finite from the regimes where the latter is reduced to
zero.

Interestingly, the most unstable mode kmax either is reduced
to zero [for δ > 0 and ρ < 1/(1 − δ)] or is finite otherwise
(see Fig. 2). We, thus, expect two different scenarios for the
dune crest dynamics: If kmax = 0, we expect the dune height
to uniformly increase or decrease at a much faster rate than
the unstable modes with a finite wave number, whereas, if
kmax > 0, the crest is expected to develop a wavy shape with
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FIG. 3. Growth rate ω versus k for various values of δ and ρ:
(a) δ = 0.3 and ρ = 0.5,2; (b) δ = 0 and ρ = 0.5,2. We set q/Du =
0.5 and Te = 0.9. For δ = 0.3, there is a band of unstable wave
numbers whatever the value ρ. For δ = 0, a band of unstable modes
appear for ρ > 1 − δ = 1.

a definite wavelength λmax = 2π/kmax within a characteristic
time τmax = ω−1

+ (kmax) given by

λmax = 2πh0

√
Du

AqTe

ρ(ρ − 1)

(1 + ρ)
√

ρ
√

1 − δ − ρ(2 − δ)
, (10)

τmax = h2
0

AqTe

ρ − 1

(
√

ρ − √
1 − δ)2

. (11)

These results on the transverse dune stability are extremely
general and are consistent with the predictions of previous
theoretical models and numerical simulations obtained in more
restricted configurations. The simulation of Parteli et al. [4]
and the analytical model of Melo et al. [11], based both on a
fully efficient sand capture at the slip face (i.e., with Te = 1 and
δ = 0) and on a lateral transport dominated by the avalanches
in the downwind slope (i.e., with ρ � 1), predict that a
transverse dune is intrinsically unstable as expected from our
stability analysis. The new finding of our study is that there
exists a region in the parameter space of our model where a
straight transverse dune is expected to be stable.

The next important issue is to determine the range of
possible values for the model parameters Te, Du, and Dd in
real physical situations. As shown by Momiji and Warren [9],
the efficiency of the capture rate Te for aeolian dunes is an
increasing function of the dune height (δ > 0) given the flow
strength. Situations where the capture rate would decrease
with increasing height (δ > 0) are unlikely to occur for aeolian
dunes. It is, however, not excluded that, in other contexts, such
as for subaqueous dunes, the interaction of the bedform with
the free surface of the flow may alter the sand capture process
at the slip face leading to a negative δ. The capture becomes
fully efficient (i.e., Te = 1) for dunes with large enough slip
face. Following these arguments, the simplest law for Te can
be written as

Te =
{

h/hc, if h � hc,

1, if h > hc,
(12)

where hc is the critical dune height above which Te = 1. From
Eq. (12), the parameter δ is easily calculated. For large dunes
(i.e., larger than hc), δ = 0, whereas, for small dunes (i.e.,
smaller than hc), δ = 1. (Had we taken a nonlinear law for
Te, δ would have been different from 1 for small dunes but
still positive and finite). From the stability diagram (see Fig. 2),
we, thus, conclude that small dunes are unstable whatever the
value of ρ. In contrast, large dunes are expected to be unstable
only if ρ is greater than 1, or in other words, if the transverse
transport is greater on the downwind slope than on the upwind
slope. This is one of the important predictions of our analysis.

It appears, therefore, crucial for large dunes to determine
in which situations downwind lateral transport prevails over
upwind lateral transport. It is a difficult task since lateral
transport is driven by many intricate phenomena (avalanches in
the downwind slope, wind deflection, saltation, and gravity in
the upwind slope). Most transverse sand dunes formed under
unidirectional flows (either in air or in water [3,12]) exhibit
sinuous or irregular crest lines, indicating that upstream lateral
transport is weaker than downstream lateral transport and is
unable to stabilize the crest line. However, one cannot exclude
that there might exist flow configurations (not yet explored)
for which straight transverse dunes are stable. A wide variety
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FIG. 4. (Color online) Height profile ζ (x) and crest line profile
ξ (y) for barchan dunes of various heights hB rescaled by the barchan
half-width WB . Model parameters: ρ = 2 and q = Du.

of processes could enhance the upstream lateral transport,
such as flow vortices, or fluctuations in the flow strength
but are unfortunately poorly documented [12]. It would be,
thus, interesting to conduct, for example, rescaled water tank
experiments within flow conditions that would favor upstream
lateral transport to check our predictions.

IV. BARCHAN DUNES

Our model can also provide solutions corresponding to
crescentic barchan dunes as a time-invariant solution drifting
with a constant speed under a uniformly distributed incoming
flux fin: x(y,t) = VB t + ξ (y) and h(y,t) = ζ (y). Assuming
that the capture rate Te(h) obeys Eq. (12), the height and
position profile can be obtained via a numerical resolution
of the model equations for a steadily migrating state and a
uniformly distributed incoming flux fin (see Fig. 4).

In the limit case where the barchan dune height hB is much
greater than hc, analytical predictions can be derived. We find,
in particular, that the migration speed is inversely proportional
to the dune height,

VB = 3q

2hB

, (13)

and that the dunes have parabolic profiles given by

ξ (y) = κξy
2, (14)

ζ (y) = hB − κζ y
2, (15)

with

κξ = q(B + Cρ)

4DdhB

, (16)

κζ = Aq(ρ − 1)

4DdhB

. (17)

Equation (17) tells us that the barchan half-width
WB(≡√

hB/κζ ) scales linearly with its height hB ,

WB =
√

4Dd

Aq(ρ − 1)
hB. (18)

Several remarks follow. First, the parabolic profiles as well as
the scalings found for the migration speed and the barchan

width are in agreement with field observations [8,13]. Second,
large barchan dunes exist only if ρ > 1, that is, in the parameter
space where large transverse dunes are unstable against lateral
fluctuations. Third, the analytical expressions of the curvatures
κζ and κξ can be utilized to infer, from geometrical properties
of real barchan dunes, an estimation of the diffusion coefficient
Dd and Du. Exploiting the topographic measurements on
barchan dunes reported by Sauermann et al. [8], we get
Dd ≈ 250 and Du ≈ 100 m2/yr such that ρ ≈ 2.5 (see the
Appendix).

Another interesting feature is the outgoing flux fout escap-
ing from the barchan dune. In an equilibrium regime (i.e.,
stationary), we simply have 〈fout〉 = fin where 〈 〉 means the
average over the lateral extent of a barchan. The latter can be
derived analytically for large barchan dunes (hB � hc),

〈fout〉 ≈ q
√

ρ/6(ρ − 1)(Wc/2WB ) for WB � Wc, (19)

where WB is the half-width of the barchan dune. Wc cor-
responds to the half-width of the barchan dune of height
hc (Wc = √

6Du/Aqhc). The outgoing flux is a decreasing
function of the barchan width in agreement with the field
observation [2]. As a consequence, barchan dunes are intrin-
sically unstable against variations in their widths.

V. LONG-TERM DYNAMICS OF TRANSVERSE DUNES

Long-term dynamics of the transverse dune can be in-
vestigated through the numerical integration of the model
equations. For the numerical investigations, we assume that
Te(h) is given by Eq. (12). As expected from the linear
stability analysis, different scenarios occur according to the
initial height h0 of the transverse dune.

For small transverse dunes (i.e., h0 < hc), we observe,
depending on the initial perturbation, either an increase or
a decrease in the average dune height, which ultimately leads
either to a giant transverse dune or to a complete disappearance
of the latter. This scenario is in agreement with the prediction
of the linear stability analysis since, for small dunes, kmax = 0.

Larger transverse dunes (i.e., h0 > hc) become unstable
only if ρ > 1. In this case, they develop a wavy crest line with
a finite wavelength corresponding to the linearly most unstable
mode kmax. The line crest undulation is accompanied by an
antiphase modulation in the dune height (in the crosswind
direction) whose amplitude increases exponentially in the
course of time as predicted by the linear analysis. Then comes
a time when the lower parts of the crest line approach the
ground ultimately leading the transverse dune to fragment
into a multitude of individual barchan dunes (see Fig. 5). The
initial width of the emerging barchan dunes is governed by
the most unstable wavelength λmax (λmax ≈ 18h0

√
Du/Aq for

ρ = 2 and δ = 0), and the characteristic time for barchans to
emerge scales as τmax, the inverse of the growth rate of the
most dangerous mode (τmax ≈ 6h2

0/Aq for ρ = 2 and δ = 0).
The further evolution is characterized by the decrease in the
barchan width in the course of time until complete disap-
pearance because barchan solutions are intrinsically unstable.
This scenario corresponds to that described experimentally by
Reffet et al. [3] and was confirmed later by Parteli et al. [4]
through numerical simulations.
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FIG. 5. (Color online) Temporal evolution of a rectilinear trans-
verse dune with an initial height h0 > hc, ultimately leading to
barchan dunes. The lateral extent of the transverse dune is L = 5λmax,
and the crest line position is initially perturbed with a random signal
whose amplitude x1 is such that |x1| < 0.01h0. Model parameters:
ρ = 2, q = Du = 1, and h0 = 5hc.

VI. CONCLUSION

The crest line model is a simple alternative model to
investigate the dynamics of sand dunes migrating on a bedrock
under unidirectional flow. It provides a unique framework to
derive analytical solutions for barchan dunes and a stability
criterion for rectilinear transverse dunes. In particular, we
predict the wavelength driving the destabilization process
of a rectilinear transverse dune into barchan dunes. This
prediction could be tested, for example, through rescaled
laboratory experiments. Further interesting issues could be
tackled within this model, such as the long-term dynamics of a
transverse dune under time-dependent boundary conditions or
the spatiotemporal evolution of a train of transverse dunes.
In the future, it would also be worthwhile to extend the
model to more complex wind regimes with various wind
directions.
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APPENDIX: CALCULATION OF THE LATERAL
DIFFUSION COEFFICIENTS FROM

GEOMORPHOLOGICAL DATA

Here, we detail how we can infer the values of the lateral
diffusion coefficients Du and Dd introduced in our model from
the geometrical parameters of a barchan dune. As illustrated in
Fig. 6, several morphological parameters can be extracted from
field measurements, such as the dune height hB , the half-width
WB , the length of the upwind face L0, the length of the slip
face Ls , and the length of the barchan horns Lc.

We recall that our model predicts that large barchan dunes
(i.e., hB � hc) have parabolic profiles given by

ξ (y) = κξy
2, (A1)

ζ (y) = hB − κζ y
2, (A2)

L0 Ls Lc

2WB

hB

θ φ

Wind

direction

FIG. 6. Sketch of an ideal symmetrical barchan dune.

with

κξ = q(BDu + CDd )

4DdDuhB

, (A3)

κζ = Aq(Dd − Du)

4DdDuhB

. (A4)
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FIG. 7. (a) Diffusion coefficients Du and Dd (on the upwind and
downwind sides, respectively, of the dune) deduced from the field
data reported in Ref. [8]: The solid and dashed lines represent the
average values for Dd and Du, respectively. (b) Dune width 2WB

versus the dune height hB : comparison between symbols: the field
data from Sauermann et al. [8] and solid line: the model prediction
with Du = 100, Dd = 250, and q = 192 m2/yr.
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Using Eqs. (A3) and (A4), we can derive an expression for
Du and Dd as a function of κξ and κζ and the geometrical
parameters A, B, and C,

Du = Aq

4hB

1

Aκξ + Bκζ

, Dd = Aq

4hB

1

Aκξ − Cκζ

. (A5)

The curvatures of κξ and κζ can simply be expressed as
a function of the geomorphological parameters defined in
Fig. 6,

κξ = Lc + Ls

W 2
B

, κζ = hB

W 2
B

, (A6)

as well as the geometrical parameters A, B, and C,

A = hB

L0 + Ls

, B = L0

L0 + Ls

, C = Ls

L0 + Ls

. (A7)

Finally, plugging Eqs. (A6) and (A7) into Eqs. (A5) and
taking advantage of the fact that VB = 3q/2hB [cf. Eq. (18)],

we get

Du = VB

6

W 2
B

Lc + L0 + Ls

, Dd = VB

6

W 2
B

Lc

. (A8)

Equations (A8) provide an expression of the diffusion coef-
ficients Du and Dd as a function of the geomorphological
parameters of the barchan dune and its migration speed, which
can easily be extracted from field measurements.

Using the field data of Sauermann et al. in Morocco [8],
we can calculate the corresponding values of the diffusion
coefficients for each barchan of the dune site [see Fig. 7(a)].
The diffusion coefficients Du and Dd are found to be indepen-
dent of the dune height (except for the smallest dune, which
exhibits an abnormally high diffusion coefficient Dd ) and are
on the order of Du ≈ 100 and Dd ≈ 250 m2/yr, respectively.
We can also estimate the sand flux q using the migration
dune speed obtained from field measurements together with
Eq. (13): q = 192 m2/yr. Taking the above values for Dd, Dd ,
and q, from Eq. (18), we get a correlation between the dune
width and its height (2WB = 12.2hB ), which agrees well with
the field data [see Fig. 7(b)].
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